research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A tetra­nuclear cubane-like nickel(II) complex with a tridentate salicyl­­idene­imine Schiff base ligand: tetra­kis­[μ3-4-methyl-N-(2-oxidophen­yl)salicylideneiminato]tetra­kis­[methano­lnickel(II)] methanol 0.8-solvate

CROSSMARK_Color_square_no_text.svg

aUniversity of Zagreb, Faculty of Textile Technology, Laboratory of Applied Chemistry, Prilaz baruna Filipovića 28a, HR-10000 Zagreb, Croatia, and bUniversity of Zagreb, Faculty of Science, Department of Chemistry, Horvatovac 102a, HR-10000 Zagreb, Croatia
*Correspondence e-mail: gpavlovic@ttf.hr

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 4 October 2016; accepted 7 November 2016; online 10 November 2016)

The tetra­nuclear title complex, [Ni4(C14H11NO2)4(CH3OH)4]·0.8CH3OH, has a distorted cubane topology shaped by four Schiff base ligands. The cubane [Ni4(μ3-O4)] core is formed via the O atoms from the Schiff base ligands. The octa­hedrally coordinated NiII ions occupy alternating vertices of the cube. Each NiII ion is coordinated by one O,N,O′-tridentate dianionic ligand, two O atoms of oxidophenyl groups from adjacent ligands and the O atom of a coordinating methanol mol­ecule. The cubane core is stabilized via an intra­molecular O—H⋯O hydrogen bond between the hy­droxy group of the coordinating methanol mol­ecules and the phenolate O atom of the aldehyde Schiff base fragment. Additional stabilization is obtained via intra­molecular C—H⋯O hydrogen bonds involving aromatic C—H groups and the oxygen atoms of adjacent methanol mol­ecules. In the crystal, complex mol­ecules are linked into chains parallel to the c axis via weak C—H⋯O hydrogen bonds. The partial-occupancy disordered methanol solvent mol­ecule has a site occupancy of 0.8 and is linked to the tetra­nuclear unit via an inter­molecular C—H⋯O hydrogen bond involving a phenolate O atom.

1. Chemical context

Octa­hedrally coordinated NiII atoms are paramagnetic and spanned by an appropriate bridging ligand. They can be organized into polynuclear units of different nuclearity with potential practical applications as nanomagnetic devices, switches and sensors or single-mol­ecule magnets (Ji et al., 2009[Ji, C. M., Yang, H. J., Zhao, C. C., Tangoulis, V., Cui, A. L. & Kou, H. Z. (2009). Cryst. Growth Des. 9, 4607-4609.]; Karmakar & Khanra, 2014[Karmakar, S. & Khanra, S. (2014). CrystEngComm, 16, 2371-2383.]; Kou et al., 2010[Kou, H. Z., An, G. Y., Ji, C. M., Wang, B. W. & Cui, A. L. (2010). Dalton Trans. 39, 9604-9610.]; Osa et al., 2004[Osa, S., Kido, T., Matsumoto, N., Re, N., Pochaba, A. & Mrozinski, J. (2004). J. Am. Chem. Soc. 126, 420-421.]; Perlepe et al., 2014[Perlepe, P. S., Athanasopoulou, A. A., Alexopoulou, K. I., Raptopoulou, C. P., Psycharis, V., Escuer, A., Perlepes, S. P. & Stamatatos, T. C. (2014). Dalton Trans. 43, 16605-16609.]; Pardo et al., 2008[Pardo, E., Ruiz-Garcia, R., Cano, J., Ottenwaelder, X., Lescouëzec, R., Journaux, Y., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 2780-2805.]; Papatrianta­fyll­op­oulou et al., 2008[Papatriantafyllopoulou, C., Jones, L. F., Nguyen, T. D., Matamoros-Salvador, N., Cunha-Silva, L., Almeida Paz, F. A., Rocha, J., Evangelisti, M., Brechin, E. K. & Perlepes, S. P. (2008). Dalton Trans. pp. 3153.]; Polyakov et al., 2012[Polyakov, A. O., Arkenbout, A. H., Baas, J., Blake, R. G., Meetsma, A., Caretta, A., van Loosdrecht, P. H. M. & Palstra, T. T. M. (2012). Chem. Mater. 24, 133-139.]). One of the major requirements in designing single-mol­ecule magnets (SMM) is to obtain slight structural changes in enduring metal–organic frameworks. The important subject in this field is the relationship between the magnetic behaviour of the mol­ecule and its microenvironment. It is known that any symmetry decrease manifested as reduced symmetry of the arrangement of ligands around metal atoms (no imposed crystallographic symmetry within complex mol­ecule), crystallographic disorders of terminal groups of the ligand mol­ecules, existence of two or more crystallographically independent complex mol­ecules in one asymmetric unit or weakly inter­acting solvent mol­ecules (Lawrence et al., 2008[Lawrence, J., Yang, E.-C., Edwards, R., Olmstead, M. M., Ramsey, C., Dalal, N. S., Gantzel, P. K., Hill, S. & Hendrickson, D. N. (2008). Inorg. Chem. 47, 1965-1974.]; Cotton et al., 2007[Cotton, F. A., Herrero, S., Jiménez-Aparicio, R., Murillo, C. A., Urbanos, F. A., Villagrán, D. & Wang, X. (2007). J. Am. Chem. Soc. 129, 12666-12667.]) influences the magnetic properties strongly. Although it has been shown that Ni4O4 cubane-like Ni units have a rather robust structure with persistent geometrical parameters, even weak inter­actions influence their magnetic behaviour, causing almost indiscernible distortions of the cubane core. The particular importance of the Ni—μ3-O—Ni bond angles is emphasized in the modelling of the intra­molecular magnetic inter­actions. Previous investigations showed that ferromagnetic inter­actions are associated with angles close to 90° and anti­ferromagnetic inter­actions with larger angles (Ballester et al., 1992[Ballester, L., Coronado, E., Gutierrez, A., Monge, A., Perpinan, M. F., Pinilla, E. & Rico, T. (1992). Inorg. Chem. 31, 2053-2056.]; Bertrand et al., 1978[Bertrand, J. A., Marbella, C. & Vanderveer, D. G. (1978). Inorg. Chim. Acta, 26, 113-118.]; Gladfelter et al., 1981[Gladfelter, W. L., Lynch, M. W., Schaefer, W. P., Hendrickson, D. N. & Gray, H. B. (1981). Inorg. Chem. 20, 2390-2397.]; Halcrow et al., 1995[Halcrow, M. A., Sun, J. S., Huffman, J. C. & Christou, G. (1995). Inorg. Chem. 34, 4167-4177.]; Petit et al., 2012[Petit, S., Neugebauer, P., Pilet, G. M., Chastanet, G., Barra, A. L., Antunes, A. B., Wernsdorfer, W. & Luneau, D. (2012). Inorg. Chem. 51, 6645-6654.]; Zhang et al., 2012[Zhang, S. Y., Chen, W. Q., Hu, B., Chen, Y. M., Li, W. & Li, Y. (2012). Inorg. Chem. Commun. 16, 74-77.]). Therefore, the cubane Ni4L4 topology represents a plethora of possibilities in the design of single-mol­ecule magnets.

[Scheme 1]

2. Structural commentary

In the title compound, each NiII ion (Fig. 1[link]) is six-coordinated by one phenolate oxygen atom [1.957 (3)–1.975 (3) Å], one imino nitro­gen atom [1.967 (4)–1.976 (4) Å] and the oxygen atom of the N-substituent moiety [2.043 (3)–2.083 (3) Å] from a dianionic tridentate Schiff base ligand as well as by the μ3-O oxygen atom of the N-substituent moiety of another ligand mol­ecule. The sixth coordination site trans to the μ3-O oxygen is provided by the oxygen atom from a neutral MeOH monodentate ligand [2.071 (4)-2.137 (4) Å]. Two oxygen atoms and one nitro­gen atom from the same salicylaldiminato moiety form two five- and six-membered chelate rings fused across the Ni—N bond. The trend of values of the Ni—O bond lengths is Ni—O(phenolate) < Ni—O(CH3OH) < Ni—μ3-O. The bond angles indicate that nickel(II) ions exhibit a distorted octa­hedral environment with the X—Ni—X (X = O, N) angles in the ranges 77.90 (12)–101.58 (13)° and 163.76 (13)–172.48 (13)° for cis and trans angles, respectively. The deformation from the ideal tetra­hedral geometry around the μ3-O oxygen atoms is also suggested by the values of the Ni—μ3-O—Ni angles which fall in the range 91.58 (12)–102.38 (13)°. The significant double-bond character of the C—N bonds [1.284 (6)–1.285 (6) Å] clearly indicates the presence of the imino tautomeric form of all four Schiff base ligands. The Csp2—N single bonds are in the range 1.413 (6)–1.427 (6) Å.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. The edges of the Ni4O4 cubane are denoted in violet.

3. Supra­molecular features

The coordinating methanol mol­ecules participate in the formation of intra­molecular hydrogen bonds with the phenolate O atoms of the Schiff base ligand (O11, O21, O31 and O41). These intra­molecular hydrogen bonds (Table 1[link], Fig. 2[link]) span across four of six cubane faces influencing the values of the Ni⋯Ni separations [3.081 (1) –3.323  (1) Å]. The methanol mol­ecule of crystallization inter­acts with the complex units via an inter­molecular hydrogen bond with the phenolate O31 atom. In the crystal, the Ni4L4 complex mol­ecules are linked into chains running parallel to the c axis by weak C—H⋯O hydrogen bonds between the C46 aromatic carbon atom and the O11 phenolate oxygen atom (Table 1[link]). In the framework of our research on this type of Ni4L4 units, we have published analogous Ni4L4 cubane-like units with the N-(2-hy­droxy-5-methyl­phen­yl)salicyl­idene­imine ligand (Cindrić et al., 2016[Cindrić, M., Pavlović, G., Pajić, D., Zadro, K., Cinčić, D., Hrenar, T., Lekšić, E., Pinar Prieto, A. B., Lazić, P. & Šišak Jung, D. (2016). New J. Chem. 40, 6604-6614.]). In these compounds, similar C—H⋯O hydrogen bonds involving an aromatic C—H group and one phenolate oxygen atom result in the formation of discrete centrosymmetric dimers.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13O⋯O21 0.84 (2) 1.89 (3) 2.688 (5) 161 (6)
O23—H23O⋯O31 0.84 (2) 1.87 (2) 2.709 (5) 177 (7)
O33—H33O⋯O41 0.82 (2) 1.88 (3) 2.645 (5) 155 (7)
O43—H43O⋯O11 0.81 (2) 1.93 (3) 2.686 (5) 155 (7)
C46—H46⋯O11i 0.93 2.55 3.307 (6) 139
C110—H110⋯O23 0.93 2.42 3.177 (6) 138
C210—H210⋯O33 0.93 2.44 3.175 (6) 136
C310—H310⋯O43 0.93 2.48 3.218 (6) 137
C410—H410⋯O13 0.93 2.45 3.189 (6) 136
O1—H11O⋯O31 0.83 2.2100 3.034 (8) 177
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The supra­molecular assembly of the complex units of the title compound via intra- and inter­molecular hydrogen bonds. The hydrogen bonds are denoted as follows: intra­molecular in magenta, inter­molecular with the methanol solvent mol­ecule in orange and inter­molecular linking cluster units in blue.

4. Synthesis and crystallization

The title compound was prepared by mixing a methano­lic solution of Ni(O2CMe)2·4H2O (1 mmol in 10 ml) and a methano­lic solution of the Schiff base ligand N-(2-hy­droxy-4-methyl­phen­yl)salicyl­idene­imine (1 mmol in 10 ml) at room temperature. After two days, green prismatic single crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent. Yield 58%: Analysis calculated (without lattice solvent) (%) for C60H60N4Ni4O12: C, 57.02; H, 4.78; N, 4.43; Ni, 18.57. Found: C,56.70; H, 4.80; N, 4.29; Ni, 18.50. Spectroscopic analysis, IR (ATR, cm−1): 3406 (b,m), 3056 (m), 3007 (m), 2917 (m), 2793 (m), 1604 (vs), 1531 (s), 1490 (vs), 1378 (m), 1305 (s), 1226 (s), 1127 (s), 1034 (m), 825 (s), 750 (s), 522 (m).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The methanol molecule is disordered and was refined with a site-occupancy factor of 0.80. The C-bound hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups. The hy­droxy H atoms of the coordinating methanol mol­ecules were firstly found in a difference Fourier map and then refined by constraining the C—H bond length to be 0.84 (2) Å and the isotropic displacement parameters to be 1.2 times the equivalent isotropic displacement parameters of the parent oxygen atoms. The hy­droxy H atom of the disordered methanol mol­ecule was located in a difference Fourier map and refined with fixed coordinates and Uiso(H) = 1.5Ueq(O). Displacement restraints (SIMU and DELU; Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) were applied to the disordered partial methanol mol­ecule.

Table 2
Experimental details

Crystal data
Chemical formula [Ni4(C14H11NO2)4(CH4O)4]·0.8CH4O
Mr 1289.59
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 22.5810 (5), 13.7701 (3), 18.5242 (4)
β (°) 92.125 (2)
V3) 5756.0 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.36
Crystal size (mm) 0.18 × 0.11 × 0.09
 
Data collection
Diffractometer Oxford Diffraction Xcalibur Sapphire3
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.928, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23546, 12324, 6994
Rint 0.069
(sin θ/λ)max−1) 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.130, 0.99
No. of reflections 12324
No. of parameters 760
No. of restraints 11
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.94, −0.52
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

Tetrakis[µ3-4-methyl-N-(2-oxidophenyl)salicylideneiminato]tetrakis[methanolnickel(II)] methanol 0.8-solvate top
Crystal data top
[Ni4(C14H11NO2)4(CH4O)4]·0.8CH4ODx = 1.488 Mg m3
Mr = 1289.59Melting point: 651 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 22.5810 (5) ÅCell parameters from 4839 reflections
b = 13.7701 (3) Åθ = 4.1–29.0°
c = 18.5242 (4) ŵ = 1.36 mm1
β = 92.125 (2)°T = 296 K
V = 5756.0 (2) Å3Prism, green
Z = 40.18 × 0.11 × 0.09 mm
F(000) = 2682
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
6994 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.069
ω scansθmax = 27.0°, θmin = 4.1°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
h = 1128
Tmin = 0.928, Tmax = 1.000k = 1517
23546 measured reflectionsl = 2323
12324 independent reflections500 standard reflections every 90 min
Refinement top
Refinement on F211 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.068H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0392P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
12324 reflectionsΔρmax = 0.94 e Å3
760 parametersΔρmin = 0.52 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.22977 (3)0.33062 (4)0.22684 (3)0.01959 (16)
Ni20.28942 (3)0.53003 (4)0.20271 (4)0.02273 (17)
Ni30.19370 (3)0.47067 (4)0.08836 (3)0.02057 (16)
Ni40.30539 (3)0.34270 (4)0.09204 (3)0.02114 (17)
N110.14516 (18)0.3221 (3)0.2498 (2)0.0212 (10)
N210.36757 (19)0.5812 (3)0.1782 (2)0.0243 (10)
N310.11291 (18)0.4170 (3)0.0853 (2)0.0211 (10)
N410.39195 (18)0.3621 (3)0.0962 (2)0.0233 (10)
O110.24166 (15)0.1885 (2)0.22879 (18)0.0241 (8)
O130.25424 (16)0.3688 (2)0.33300 (19)0.0275 (9)
O210.30451 (15)0.5418 (2)0.30751 (18)0.0274 (9)
O220.28278 (14)0.4994 (2)0.09477 (18)0.0224 (8)
O230.24994 (16)0.6682 (2)0.1800 (2)0.0322 (9)
O310.16684 (15)0.6065 (2)0.08120 (19)0.0275 (9)
O320.21570 (14)0.3282 (2)0.10809 (16)0.0185 (7)
O330.20342 (16)0.4437 (2)0.02057 (19)0.0273 (9)
O410.30032 (15)0.3357 (2)0.01353 (17)0.0257 (8)
O420.31442 (14)0.3721 (2)0.20030 (17)0.0207 (8)
O430.31349 (17)0.1940 (2)0.1165 (2)0.0309 (9)
O120.20613 (14)0.4745 (2)0.20637 (17)0.0195 (8)
C110.1986 (2)0.1234 (3)0.2342 (3)0.0236 (12)
C120.1378 (2)0.1468 (3)0.2425 (3)0.0238 (12)
C130.0963 (3)0.0704 (4)0.2466 (3)0.0299 (13)
H130.05660.08580.25150.036*
C140.1118 (3)0.0238 (4)0.2436 (3)0.0371 (15)
H140.08340.07240.24610.045*
C150.1714 (3)0.0472 (4)0.2369 (3)0.0444 (17)
H150.18300.11190.23560.053*
C160.2131 (3)0.0253 (4)0.2321 (3)0.0341 (14)
H160.25250.00790.22730.041*
C170.1147 (2)0.2434 (3)0.2504 (3)0.0250 (12)
H170.07410.24930.25650.030*
C180.1214 (2)0.4156 (3)0.2649 (3)0.0222 (12)
C190.1570 (2)0.4941 (3)0.2444 (3)0.0234 (12)
C210.3566 (2)0.5616 (4)0.3385 (3)0.0294 (13)
C220.4074 (2)0.5907 (3)0.3019 (3)0.0284 (13)
C230.4604 (3)0.6102 (4)0.3420 (3)0.0374 (15)
H230.49380.62910.31760.045*
C240.4641 (3)0.6022 (4)0.4154 (4)0.0434 (16)
H240.49970.61470.44060.052*
C250.4146 (3)0.5752 (4)0.4517 (3)0.0402 (16)
H250.41670.57010.50180.048*
C260.3621 (3)0.5558 (4)0.4143 (3)0.0365 (15)
H260.32910.53820.44000.044*
C270.4100 (2)0.6017 (3)0.2238 (3)0.0300 (14)
H270.44500.62550.20560.036*
C280.3690 (2)0.5989 (3)0.1032 (3)0.0240 (12)
C290.3212 (2)0.5602 (3)0.0612 (3)0.0235 (12)
C310.1121 (2)0.6349 (4)0.0894 (3)0.0249 (12)
C320.0624 (2)0.5713 (4)0.0934 (3)0.0240 (12)
C330.0055 (2)0.6113 (4)0.1023 (3)0.0310 (13)
H330.02670.56960.10520.037*
C340.0039 (3)0.7102 (4)0.1070 (3)0.0334 (14)
H340.04170.73500.11280.040*
C350.0446 (3)0.7713 (4)0.1028 (3)0.0338 (14)
H350.03910.83820.10570.041*
C360.1001 (2)0.7353 (3)0.0947 (3)0.0299 (13)
H360.13150.77870.09240.036*
C370.0650 (2)0.4667 (4)0.0890 (3)0.0249 (12)
H370.02940.43290.08890.030*
C380.1137 (2)0.3143 (3)0.0758 (3)0.0206 (11)
C390.1696 (2)0.2716 (3)0.0836 (2)0.0171 (11)
C410.3423 (2)0.3634 (3)0.0560 (3)0.0262 (12)
C420.4017 (2)0.3897 (3)0.0316 (3)0.0252 (12)
C430.4411 (2)0.4243 (3)0.0826 (3)0.0290 (13)
H430.47880.44350.06640.035*
C440.4271 (3)0.4312 (4)0.1544 (3)0.0342 (14)
H440.45430.45450.18670.041*
C450.3702 (3)0.4022 (4)0.1782 (3)0.0344 (14)
H450.35980.40540.22720.041*
C460.3298 (2)0.3693 (3)0.1312 (3)0.0292 (13)
H460.29270.35010.14930.035*
C470.4230 (2)0.3847 (3)0.0420 (3)0.0248 (12)
H470.46280.39900.05140.030*
C480.4152 (2)0.3554 (3)0.1684 (3)0.0242 (12)
C490.3717 (2)0.3562 (3)0.2224 (3)0.0211 (12)
C1100.1400 (2)0.5863 (3)0.2631 (3)0.0236 (12)
H1100.16370.63840.25070.028*
C1110.0882 (2)0.6046 (4)0.3001 (3)0.0297 (13)
C1120.0537 (2)0.5253 (4)0.3188 (3)0.0305 (13)
H1120.01870.53540.34280.037*
C1130.0707 (2)0.4323 (4)0.3022 (3)0.0281 (13)
H1130.04770.38000.31630.034*
C1140.0694 (3)0.7072 (4)0.3181 (3)0.0442 (17)
H11A0.04750.73450.27750.066*
H11B0.10380.74610.32890.066*
H11C0.04470.70600.35920.066*
C1150.2231 (3)0.3516 (4)0.3974 (3)0.0368 (15)
H11D0.19660.40470.40550.055*
H11E0.25100.34620.43760.055*
H11F0.20090.29240.39250.055*
C2100.3156 (2)0.5828 (3)0.0120 (3)0.0269 (13)
H2100.28350.55870.03940.032*
C2110.3570 (3)0.6408 (4)0.0447 (3)0.0343 (15)
C2120.4047 (3)0.6756 (4)0.0026 (3)0.0350 (15)
H2120.43330.71310.02420.042*
C2130.4104 (2)0.6562 (3)0.0697 (3)0.0327 (14)
H2130.44230.68170.09660.039*
C2140.3498 (3)0.6647 (4)0.1238 (3)0.0439 (16)
H21A0.30890.67770.13570.066*
H21B0.36290.61080.15180.066*
H21C0.37310.72100.13420.066*
C2150.2791 (3)0.7600 (5)0.1679 (4)0.076 (3)
H21D0.30860.77110.20560.115*
H21E0.25040.81140.16790.115*
H21F0.29770.75840.12210.115*
C3100.1757 (2)0.1729 (3)0.0683 (2)0.0209 (11)
H3100.21320.14480.07150.025*
C3110.1274 (2)0.1162 (3)0.0485 (3)0.0254 (12)
C3120.0722 (3)0.1590 (4)0.0433 (3)0.0325 (14)
H3120.03920.12130.03090.039*
C3130.0651 (2)0.2569 (4)0.0562 (3)0.0280 (13)
H3130.02760.28460.05180.034*
C3140.1350 (3)0.0092 (3)0.0349 (3)0.0392 (15)
H31A0.11580.00770.01040.059*
H31B0.11760.02700.07300.059*
H31C0.17650.00580.03350.059*
C3150.1592 (2)0.4417 (4)0.0765 (3)0.0440 (16)
H31D0.13510.38480.07160.066*
H31E0.17750.44040.12250.066*
H31F0.13480.49860.07360.066*
C4100.3899 (2)0.3465 (3)0.2940 (3)0.0223 (12)
H4100.36170.34380.32930.027*
C4110.4501 (2)0.3407 (3)0.3147 (3)0.0255 (12)
C4120.4914 (2)0.3417 (3)0.2607 (3)0.0316 (13)
H4120.53160.33850.27370.038*
C4130.4745 (2)0.3474 (3)0.1891 (3)0.0299 (13)
H4130.50300.34580.15420.036*
C4140.4682 (2)0.3359 (4)0.3931 (3)0.0337 (14)
H41A0.45920.27270.41160.051*
H41B0.44700.38420.41920.051*
H41C0.51000.34760.39890.051*
C4150.3597 (3)0.1311 (4)0.1015 (4)0.059 (2)
H41D0.37310.14390.05390.088*
H41E0.34600.06520.10410.088*
H41F0.39170.14070.13630.088*
H13O0.267 (3)0.426 (2)0.335 (3)0.071*
H23O0.224 (2)0.648 (4)0.151 (3)0.071*
H33O0.227 (2)0.399 (3)0.026 (4)0.071*
H43O0.299 (3)0.180 (4)0.154 (2)0.071*
O10.1877 (4)0.6934 (5)0.0662 (4)0.114 (3)0.8
H11O0.18350.67040.02550.137*0.8
C10.2122 (4)0.7851 (6)0.0592 (6)0.079 (3)0.8
H1A0.18120.83200.05370.118*0.8
H1B0.23360.80020.10160.118*0.8
H1C0.23870.78690.01760.118*0.8
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0153 (3)0.0220 (3)0.0217 (4)0.0002 (3)0.0027 (3)0.0003 (3)
Ni20.0162 (4)0.0247 (3)0.0274 (4)0.0023 (3)0.0025 (3)0.0023 (3)
Ni30.0146 (3)0.0231 (3)0.0242 (4)0.0018 (3)0.0024 (3)0.0011 (3)
Ni40.0146 (3)0.0256 (3)0.0234 (4)0.0013 (3)0.0029 (3)0.0025 (3)
N110.018 (2)0.025 (2)0.021 (2)0.000 (2)0.0033 (19)0.0007 (18)
N210.020 (2)0.021 (2)0.032 (3)0.002 (2)0.001 (2)0.0069 (19)
N310.020 (2)0.022 (2)0.021 (2)0.003 (2)0.004 (2)0.0027 (18)
N410.015 (2)0.026 (2)0.029 (3)0.0000 (19)0.006 (2)0.0075 (19)
O110.020 (2)0.0251 (18)0.027 (2)0.0013 (16)0.0009 (17)0.0021 (15)
O130.025 (2)0.0307 (19)0.027 (2)0.0031 (18)0.0051 (18)0.0027 (17)
O210.019 (2)0.033 (2)0.029 (2)0.0055 (17)0.0020 (17)0.0085 (16)
O220.0179 (19)0.0233 (18)0.026 (2)0.0032 (15)0.0043 (16)0.0035 (15)
O230.025 (2)0.0209 (19)0.052 (3)0.0084 (18)0.0059 (19)0.0012 (18)
O310.0141 (19)0.0273 (19)0.041 (2)0.0027 (17)0.0059 (18)0.0044 (16)
O320.0133 (18)0.0243 (17)0.0186 (18)0.0042 (16)0.0079 (15)0.0012 (15)
O330.020 (2)0.040 (2)0.022 (2)0.0008 (17)0.0019 (17)0.0006 (17)
O410.022 (2)0.0330 (19)0.023 (2)0.0055 (17)0.0057 (17)0.0035 (16)
O420.0150 (19)0.0256 (18)0.0214 (19)0.0016 (16)0.0002 (16)0.0005 (15)
O430.027 (2)0.028 (2)0.039 (3)0.0062 (18)0.0128 (19)0.0004 (18)
O120.0134 (17)0.0238 (17)0.0219 (19)0.0028 (16)0.0084 (15)0.0012 (15)
C110.029 (3)0.027 (3)0.015 (3)0.003 (3)0.001 (2)0.004 (2)
C120.028 (3)0.026 (3)0.018 (3)0.003 (3)0.000 (2)0.001 (2)
C130.030 (3)0.033 (3)0.026 (3)0.007 (3)0.003 (3)0.007 (2)
C140.037 (4)0.031 (3)0.044 (4)0.011 (3)0.012 (3)0.007 (3)
C150.050 (4)0.028 (3)0.056 (4)0.002 (3)0.008 (4)0.004 (3)
C160.035 (4)0.027 (3)0.041 (4)0.006 (3)0.009 (3)0.001 (3)
C170.019 (3)0.031 (3)0.025 (3)0.001 (3)0.004 (2)0.001 (2)
C180.018 (3)0.027 (3)0.021 (3)0.002 (2)0.001 (2)0.005 (2)
C190.023 (3)0.027 (3)0.020 (3)0.003 (2)0.002 (2)0.001 (2)
C210.025 (3)0.028 (3)0.035 (3)0.004 (3)0.004 (3)0.011 (3)
C220.022 (3)0.022 (3)0.040 (4)0.001 (2)0.003 (3)0.010 (2)
C230.024 (3)0.035 (3)0.052 (4)0.001 (3)0.008 (3)0.011 (3)
C240.032 (4)0.039 (3)0.058 (5)0.004 (3)0.018 (3)0.013 (3)
C250.045 (4)0.036 (3)0.039 (4)0.001 (3)0.011 (3)0.007 (3)
C260.037 (4)0.029 (3)0.044 (4)0.002 (3)0.003 (3)0.006 (3)
C270.018 (3)0.024 (3)0.048 (4)0.004 (2)0.007 (3)0.011 (3)
C280.020 (3)0.020 (3)0.032 (3)0.001 (2)0.007 (3)0.004 (2)
C290.020 (3)0.020 (3)0.031 (3)0.003 (2)0.010 (3)0.001 (2)
C310.023 (3)0.032 (3)0.019 (3)0.003 (3)0.001 (2)0.002 (2)
C320.023 (3)0.029 (3)0.020 (3)0.002 (3)0.003 (2)0.005 (2)
C330.023 (3)0.041 (3)0.028 (3)0.002 (3)0.002 (3)0.003 (3)
C340.025 (3)0.043 (3)0.032 (3)0.010 (3)0.004 (3)0.008 (3)
C350.033 (4)0.032 (3)0.036 (4)0.006 (3)0.005 (3)0.003 (3)
C360.029 (3)0.023 (3)0.039 (4)0.000 (3)0.010 (3)0.003 (2)
C370.012 (3)0.035 (3)0.028 (3)0.005 (3)0.005 (2)0.007 (2)
C380.020 (3)0.026 (3)0.016 (3)0.000 (2)0.007 (2)0.000 (2)
C390.019 (3)0.022 (3)0.011 (2)0.004 (2)0.003 (2)0.003 (2)
C410.025 (3)0.023 (3)0.032 (3)0.001 (2)0.003 (3)0.005 (2)
C420.020 (3)0.027 (3)0.030 (3)0.002 (2)0.008 (3)0.004 (2)
C430.019 (3)0.029 (3)0.040 (4)0.002 (2)0.006 (3)0.003 (3)
C440.031 (4)0.040 (3)0.033 (4)0.003 (3)0.018 (3)0.003 (3)
C450.031 (3)0.043 (3)0.030 (3)0.002 (3)0.011 (3)0.000 (3)
C460.026 (3)0.032 (3)0.030 (3)0.008 (3)0.001 (3)0.003 (2)
C470.016 (3)0.025 (3)0.034 (3)0.004 (2)0.001 (3)0.004 (2)
C480.022 (3)0.023 (3)0.028 (3)0.000 (2)0.001 (2)0.007 (2)
C490.020 (3)0.016 (2)0.027 (3)0.002 (2)0.003 (2)0.001 (2)
C1100.023 (3)0.023 (3)0.025 (3)0.002 (2)0.006 (2)0.001 (2)
C1110.028 (3)0.035 (3)0.027 (3)0.004 (3)0.005 (3)0.002 (2)
C1120.019 (3)0.040 (3)0.033 (3)0.011 (3)0.010 (3)0.008 (3)
C1130.023 (3)0.032 (3)0.030 (3)0.001 (3)0.009 (3)0.006 (2)
C1140.042 (4)0.032 (3)0.060 (4)0.008 (3)0.017 (4)0.008 (3)
C1150.032 (3)0.052 (4)0.028 (3)0.005 (3)0.015 (3)0.007 (3)
C2100.020 (3)0.024 (3)0.038 (3)0.003 (2)0.010 (3)0.001 (2)
C2110.035 (4)0.027 (3)0.042 (4)0.006 (3)0.018 (3)0.005 (3)
C2120.028 (3)0.025 (3)0.053 (4)0.003 (3)0.020 (3)0.007 (3)
C2130.023 (3)0.026 (3)0.050 (4)0.005 (3)0.014 (3)0.001 (3)
C2140.051 (4)0.034 (3)0.048 (4)0.003 (3)0.019 (3)0.011 (3)
C2150.056 (5)0.062 (5)0.112 (7)0.004 (4)0.006 (5)0.026 (5)
C3100.021 (3)0.021 (3)0.021 (3)0.001 (2)0.003 (2)0.002 (2)
C3110.032 (3)0.026 (3)0.018 (3)0.012 (3)0.005 (3)0.002 (2)
C3120.036 (4)0.033 (3)0.029 (3)0.016 (3)0.003 (3)0.003 (3)
C3130.023 (3)0.039 (3)0.022 (3)0.007 (3)0.001 (3)0.008 (2)
C3140.041 (4)0.028 (3)0.048 (4)0.010 (3)0.001 (3)0.010 (3)
C3150.025 (3)0.075 (4)0.032 (4)0.002 (3)0.003 (3)0.001 (3)
C4100.022 (3)0.018 (3)0.027 (3)0.002 (2)0.003 (2)0.006 (2)
C4110.023 (3)0.015 (2)0.038 (3)0.000 (2)0.004 (3)0.003 (2)
C4120.017 (3)0.033 (3)0.044 (4)0.002 (3)0.006 (3)0.007 (3)
C4130.016 (3)0.034 (3)0.041 (4)0.003 (3)0.005 (3)0.003 (3)
C4140.032 (3)0.030 (3)0.038 (3)0.004 (3)0.011 (3)0.006 (3)
C4150.059 (5)0.047 (4)0.073 (5)0.023 (4)0.033 (4)0.010 (4)
O10.112 (7)0.108 (5)0.122 (7)0.010 (5)0.007 (6)0.021 (5)
C10.057 (7)0.043 (5)0.138 (10)0.012 (5)0.023 (7)0.001 (6)
Geometric parameters (Å, º) top
Ni1—O111.975 (3)C33—H330.9300
Ni1—N111.976 (4)C34—C351.386 (7)
Ni1—O422.072 (3)C34—H340.9300
Ni1—O122.083 (3)C35—C361.361 (7)
Ni1—O132.090 (4)C35—H350.9300
Ni1—O322.211 (3)C36—H360.9300
Ni2—O211.965 (4)C37—H370.9300
Ni2—N211.969 (4)C38—C3131.390 (7)
Ni2—O122.034 (3)C38—C391.394 (6)
Ni2—O222.043 (3)C39—C3101.396 (6)
Ni2—O232.137 (4)C41—C461.415 (7)
Ni2—O422.247 (3)C41—C421.446 (7)
Ni3—N311.967 (4)C42—C431.404 (7)
Ni3—O311.969 (3)C42—C471.431 (7)
Ni3—O222.049 (3)C43—C441.360 (7)
Ni3—O322.053 (3)C43—H430.9300
Ni3—O332.071 (4)C44—C451.401 (8)
Ni3—O122.194 (3)C44—H440.9300
Ni4—O411.957 (3)C45—C461.360 (7)
Ni4—N411.971 (4)C45—H450.9300
Ni4—O422.049 (3)C46—H460.9300
Ni4—O322.067 (3)C47—H470.9300
Ni4—O432.103 (3)C48—C4131.384 (7)
Ni4—O222.219 (3)C48—C491.427 (7)
N11—C171.285 (6)C49—C4101.382 (7)
N11—C181.427 (6)C110—C1111.400 (7)
N21—C271.285 (6)C110—H1100.9300
N21—C281.413 (6)C111—C1121.393 (7)
N31—C371.284 (6)C111—C1141.517 (7)
N31—C381.425 (6)C112—C1131.377 (6)
N41—C471.285 (6)C112—H1120.9300
N41—C481.422 (6)C113—H1130.9300
O11—C111.328 (6)C114—H11A0.9600
O13—C1151.427 (6)C114—H11B0.9600
O13—H13O0.836 (19)C114—H11C0.9600
O21—C211.318 (6)C115—H11D0.9600
O22—C291.371 (5)C115—H11E0.9600
O23—C2151.446 (7)C115—H11F0.9600
O23—H23O0.84 (2)C210—C2111.386 (7)
O31—C311.310 (6)C210—H2100.9300
O32—C391.365 (5)C211—C2121.390 (8)
O33—C3151.414 (6)C211—C2141.505 (7)
O33—H33O0.82 (2)C212—C2131.367 (7)
O41—C411.310 (6)C212—H2120.9300
O42—C491.359 (6)C213—H2130.9300
O43—C4151.391 (6)C214—H21A0.9600
O43—H43O0.81 (2)C214—H21B0.9600
O12—C191.364 (5)C214—H21C0.9600
C11—C161.391 (6)C215—H21D0.9600
C11—C121.424 (7)C215—H21E0.9600
C12—C131.413 (7)C215—H21F0.9600
C12—C171.438 (6)C310—C3111.381 (7)
C13—C141.345 (7)C310—H3100.9300
C13—H130.9300C311—C3121.379 (7)
C14—C151.392 (8)C311—C3141.505 (6)
C14—H140.9300C312—C3131.379 (7)
C15—C161.377 (7)C312—H3120.9300
C15—H150.9300C313—H3130.9300
C16—H160.9300C314—H31A0.9600
C17—H170.9300C314—H31B0.9600
C18—C1131.377 (6)C314—H31C0.9600
C18—C191.408 (6)C315—H31D0.9600
C19—C1101.374 (6)C315—H31E0.9600
C21—C261.407 (7)C315—H31F0.9600
C21—C221.412 (7)C410—C4111.399 (7)
C22—C231.410 (7)C410—H4100.9300
C22—C271.458 (7)C411—C4121.393 (7)
C23—C241.364 (8)C411—C4141.496 (7)
C23—H230.9300C412—C4131.369 (7)
C24—C251.376 (8)C412—H4120.9300
C24—H240.9300C413—H4130.9300
C25—C261.378 (8)C414—H41A0.9600
C25—H250.9300C414—H41B0.9600
C26—H260.9300C414—H41C0.9600
C27—H270.9300C415—H41D0.9600
C28—C2131.388 (7)C415—H41E0.9600
C28—C291.410 (7)C415—H41F0.9600
C29—C2101.393 (7)O1—C11.383 (9)
C31—C361.413 (6)O1—H11O0.827 (8)
C31—C321.427 (7)C1—H1A0.9600
C32—C331.413 (7)C1—H1B0.9600
C32—C371.444 (6)C1—H1C0.9600
C33—C341.382 (7)
O11—Ni1—N1193.97 (15)C29—C28—N21115.7 (4)
O11—Ni1—O4298.72 (13)O22—C29—C210122.8 (5)
N11—Ni1—O42167.26 (14)O22—C29—C28117.6 (5)
O11—Ni1—O12168.32 (14)C210—C29—C28119.6 (5)
N11—Ni1—O1281.52 (14)O31—C31—C36119.0 (5)
O42—Ni1—O1285.81 (12)O31—C31—C32124.7 (4)
O11—Ni1—O13101.58 (13)C36—C31—C32116.3 (5)
N11—Ni1—O1392.06 (15)C33—C32—C31119.1 (5)
O42—Ni1—O1386.55 (13)C33—C32—C37115.7 (5)
O12—Ni1—O1389.38 (13)C31—C32—C37125.1 (5)
O11—Ni1—O3291.02 (12)C34—C33—C32122.3 (5)
N11—Ni1—O3296.28 (14)C34—C33—H33118.8
O42—Ni1—O3282.40 (12)C32—C33—H33118.8
O12—Ni1—O3278.86 (12)C33—C34—C35118.1 (5)
O13—Ni1—O32164.38 (12)C33—C34—H34120.9
O21—Ni2—N2194.24 (16)C35—C34—H34120.9
O21—Ni2—O1297.17 (13)C36—C35—C34121.1 (5)
N21—Ni2—O12168.59 (16)C36—C35—H35119.4
O21—Ni2—O22170.86 (14)C34—C35—H35119.4
N21—Ni2—O2283.23 (15)C35—C36—C31123.0 (5)
O12—Ni2—O2285.45 (13)C35—C36—H36118.5
O21—Ni2—O23100.18 (14)C31—C36—H36118.5
N21—Ni2—O2390.40 (15)N31—C37—C32124.8 (5)
O12—Ni2—O2387.82 (13)N31—C37—H37117.6
O22—Ni2—O2388.64 (14)C32—C37—H37117.6
O21—Ni2—O4293.72 (13)C313—C38—C39119.3 (4)
N21—Ni2—O4296.52 (14)C313—C38—N31125.7 (5)
O12—Ni2—O4282.54 (12)C39—C38—N31114.9 (4)
O22—Ni2—O4277.90 (12)O32—C39—C38118.0 (4)
O23—Ni2—O42163.98 (13)O32—C39—C310122.9 (4)
N31—Ni3—O3194.13 (15)C38—C39—C310119.1 (4)
N31—Ni3—O22168.96 (14)O41—C41—C46119.1 (5)
O31—Ni3—O2296.86 (13)O41—C41—C42124.7 (5)
N31—Ni3—O3282.19 (14)C46—C41—C42116.2 (5)
O31—Ni3—O32172.48 (13)C43—C42—C47117.3 (5)
O22—Ni3—O3286.78 (12)C43—C42—C41118.6 (5)
N31—Ni3—O3392.10 (16)C47—C42—C41124.1 (5)
O31—Ni3—O3398.53 (14)C44—C43—C42123.4 (5)
O22—Ni3—O3387.24 (14)C44—C43—H43118.3
O32—Ni3—O3388.19 (13)C42—C43—H43118.3
N31—Ni3—O1296.99 (14)C43—C44—C45117.8 (5)
O31—Ni3—O1294.12 (13)C43—C44—H44121.1
O22—Ni3—O1281.29 (12)C45—C44—H44121.1
O32—Ni3—O1279.88 (12)C46—C45—C44121.5 (6)
O33—Ni3—O12163.85 (13)C46—C45—H45119.3
O41—Ni4—N4193.86 (16)C44—C45—H45119.3
O41—Ni4—O42171.08 (13)C45—C46—C41122.4 (5)
N41—Ni4—O4282.65 (15)C45—C46—H46118.8
O41—Ni4—O3296.76 (14)C41—C46—H46118.8
N41—Ni4—O32169.24 (15)N41—C47—C42125.6 (5)
O42—Ni4—O3286.60 (12)N41—C47—H47117.2
O41—Ni4—O4399.72 (14)C42—C47—H47117.2
N41—Ni4—O4392.60 (15)C413—C48—N41125.8 (5)
O42—Ni4—O4388.67 (13)C413—C48—C49119.4 (5)
O32—Ni4—O4387.31 (13)N41—C48—C49114.7 (4)
O41—Ni4—O2293.77 (13)O42—C49—C410123.5 (5)
N41—Ni4—O2295.49 (14)O42—C49—C48117.5 (4)
O42—Ni4—O2278.46 (12)C410—C49—C48118.9 (5)
O32—Ni4—O2282.13 (12)C19—C110—C111122.4 (5)
O43—Ni4—O22163.76 (13)C19—C110—H110118.8
C17—N11—C18123.6 (4)C111—C110—H110118.8
C17—N11—Ni1125.1 (3)C112—C111—C110117.8 (5)
C18—N11—Ni1111.3 (3)C112—C111—C114120.7 (5)
C27—N21—C28124.4 (5)C110—C111—C114121.4 (5)
C27—N21—Ni2125.5 (4)C113—C112—C111120.6 (5)
C28—N21—Ni2110.0 (3)C113—C112—H112119.7
C37—N31—C38123.4 (4)C111—C112—H112119.7
C37—N31—Ni3125.5 (3)C112—C113—C18120.8 (5)
C38—N31—Ni3111.1 (3)C112—C113—H113119.6
C47—N41—C48123.9 (4)C18—C113—H113119.6
C47—N41—Ni4124.9 (4)C111—C114—H11A109.5
C48—N41—Ni4111.0 (3)C111—C114—H11B109.5
C11—O11—Ni1124.8 (3)H11A—C114—H11B109.5
C115—O13—Ni1128.6 (3)C111—C114—H11C109.5
C115—O13—H13O108 (4)H11A—C114—H11C109.5
Ni1—O13—H13O111 (5)H11B—C114—H11C109.5
C21—O21—Ni2124.5 (3)O13—C115—H11D109.5
C29—O22—Ni2107.1 (3)O13—C115—H11E109.5
C29—O22—Ni3136.7 (3)H11D—C115—H11E109.5
Ni2—O22—Ni397.63 (13)O13—C115—H11F109.5
C29—O22—Ni4115.7 (3)H11D—C115—H11F109.5
Ni2—O22—Ni4102.38 (13)H11E—C115—H11F109.5
Ni3—O22—Ni492.11 (12)C211—C210—C29121.0 (5)
C215—O23—Ni2128.3 (4)C211—C210—H210119.5
C215—O23—H23O120 (5)C29—C210—H210119.5
Ni2—O23—H23O97 (4)C210—C211—C212118.4 (5)
C31—O31—Ni3124.4 (3)C210—C211—C214120.1 (6)
C39—O32—Ni3108.0 (3)C212—C211—C214121.6 (5)
C39—O32—Ni4138.3 (3)C213—C212—C211121.7 (5)
Ni3—O32—Ni496.56 (12)C213—C212—H212119.2
C39—O32—Ni1114.7 (3)C211—C212—H212119.2
Ni3—O32—Ni1100.82 (12)C212—C213—C28120.6 (6)
Ni4—O32—Ni192.08 (13)C212—C213—H213119.7
C315—O33—Ni3128.3 (3)C28—C213—H213119.7
C315—O33—H33O110 (5)C211—C214—H21A109.5
Ni3—O33—H33O110 (5)C211—C214—H21B109.5
C41—O41—Ni4124.6 (3)H21A—C214—H21B109.5
C49—O42—Ni4108.8 (3)C211—C214—H21C109.5
C49—O42—Ni1139.4 (3)H21A—C214—H21C109.5
Ni4—O42—Ni196.81 (14)H21B—C214—H21C109.5
C49—O42—Ni2112.7 (3)O23—C215—H21D109.5
Ni4—O42—Ni2101.23 (13)O23—C215—H21E109.5
Ni1—O42—Ni291.58 (12)H21D—C215—H21E109.5
C415—O43—Ni4128.5 (3)O23—C215—H21F109.5
C415—O43—H43O110 (5)H21D—C215—H21F109.5
Ni4—O43—H43O113 (4)H21E—C215—H21F109.5
C19—O12—Ni2135.6 (3)C311—C310—C39121.4 (5)
C19—O12—Ni1107.6 (3)C311—C310—H310119.3
Ni2—O12—Ni197.62 (13)C39—C310—H310119.3
C19—O12—Ni3116.3 (3)C312—C311—C310118.7 (5)
Ni2—O12—Ni393.45 (12)C312—C311—C314121.1 (5)
Ni1—O12—Ni3100.42 (12)C310—C311—C314120.2 (5)
O11—C11—C16118.7 (5)C311—C312—C313121.1 (5)
O11—C11—C12124.5 (4)C311—C312—H312119.5
C16—C11—C12116.8 (5)C313—C312—H312119.5
C13—C12—C11118.8 (5)C312—C313—C38120.4 (5)
C13—C12—C17116.1 (5)C312—C313—H313119.8
C11—C12—C17125.1 (5)C38—C313—H313119.8
C14—C13—C12122.8 (5)C311—C314—H31A109.5
C14—C13—H13118.6C311—C314—H31B109.5
C12—C13—H13118.6H31A—C314—H31B109.5
C13—C14—C15118.7 (5)C311—C314—H31C109.5
C13—C14—H14120.6H31A—C314—H31C109.5
C15—C14—H14120.6H31B—C314—H31C109.5
C16—C15—C14120.2 (5)O33—C315—H31D109.5
C16—C15—H15119.9O33—C315—H31E109.5
C14—C15—H15119.9H31D—C315—H31E109.5
C15—C16—C11122.7 (5)O33—C315—H31F109.5
C15—C16—H16118.6H31D—C315—H31F109.5
C11—C16—H16118.6H31E—C315—H31F109.5
N11—C17—C12125.6 (5)C49—C410—C411121.4 (5)
N11—C17—H17117.2C49—C410—H410119.3
C12—C17—H17117.2C411—C410—H410119.3
C113—C18—C19120.1 (5)C412—C411—C410118.2 (5)
C113—C18—N11125.1 (4)C412—C411—C414122.1 (5)
C19—C18—N11114.7 (4)C410—C411—C414119.7 (5)
O12—C19—C110123.6 (4)C413—C412—C411121.7 (5)
O12—C19—C18118.1 (4)C413—C412—H412119.1
C110—C19—C18118.3 (5)C411—C412—H412119.1
O21—C21—C26117.8 (5)C412—C413—C48120.3 (5)
O21—C21—C22125.3 (5)C412—C413—H413119.8
C26—C21—C22116.9 (5)C48—C413—H413119.8
C23—C22—C21119.3 (6)C411—C414—H41A109.5
C23—C22—C27116.0 (5)C411—C414—H41B109.5
C21—C22—C27124.6 (5)H41A—C414—H41B109.5
C24—C23—C22122.0 (6)C411—C414—H41C109.5
C24—C23—H23119.0H41A—C414—H41C109.5
C22—C23—H23119.0H41B—C414—H41C109.5
C23—C24—C25119.1 (6)O43—C415—H41D109.5
C23—C24—H24120.4O43—C415—H41E109.5
C25—C24—H24120.4H41D—C415—H41E109.5
C24—C25—C26120.5 (6)O43—C415—H41F109.5
C24—C25—H25119.8H41D—C415—H41F109.5
C26—C25—H25119.8H41E—C415—H41F109.5
C25—C26—C21122.2 (6)C1—O1—H11O109.0 (9)
C25—C26—H26118.9O1—C1—H1A109.5
C21—C26—H26118.9O1—C1—H1B109.5
N21—C27—C22125.0 (5)H1A—C1—H1B109.5
N21—C27—H27117.5O1—C1—H1C109.5
C22—C27—H27117.5H1A—C1—H1C109.5
C213—C28—C29118.8 (5)H1B—C1—H1C109.5
C213—C28—N21125.3 (5)
Ni1—O11—C11—C16177.5 (3)Ni3—N31—C38—C313165.5 (4)
Ni1—O11—C11—C122.8 (7)C37—N31—C38—C39171.0 (5)
O11—C11—C12—C13179.1 (4)Ni3—N31—C38—C3910.9 (5)
C16—C11—C12—C131.2 (7)Ni3—O32—C39—C3821.8 (5)
O11—C11—C12—C173.9 (8)Ni4—O32—C39—C38145.0 (4)
C16—C11—C12—C17175.8 (5)Ni1—O32—C39—C3889.7 (4)
C11—C12—C13—C140.6 (8)Ni3—O32—C39—C310160.1 (4)
C17—C12—C13—C14176.7 (5)Ni4—O32—C39—C31037.0 (7)
C12—C13—C14—C150.5 (9)Ni1—O32—C39—C31088.3 (4)
C13—C14—C15—C161.1 (9)C313—C38—C39—O32175.2 (4)
C14—C15—C16—C110.5 (9)N31—C38—C39—O328.1 (6)
O11—C11—C16—C15179.6 (5)C313—C38—C39—C3102.9 (7)
C12—C11—C16—C150.7 (8)N31—C38—C39—C310173.7 (4)
C18—N11—C17—C12173.6 (5)Ni4—O41—C41—C46169.9 (3)
Ni1—N11—C17—C127.3 (7)Ni4—O41—C41—C429.6 (7)
C13—C12—C17—N11178.5 (5)O41—C41—C42—C43175.7 (4)
C11—C12—C17—N111.4 (8)C46—C41—C42—C433.8 (7)
C17—N11—C18—C11320.7 (8)O41—C41—C42—C472.8 (8)
Ni1—N11—C18—C113160.2 (4)C46—C41—C42—C47177.6 (4)
C17—N11—C18—C19165.0 (5)C47—C42—C43—C44178.8 (5)
Ni1—N11—C18—C1914.1 (5)C41—C42—C43—C442.5 (8)
Ni2—O12—C19—C11036.8 (7)C42—C43—C44—C450.1 (8)
Ni1—O12—C19—C110158.3 (4)C43—C44—C45—C460.9 (8)
Ni3—O12—C19—C11090.1 (5)C44—C45—C46—C410.6 (8)
Ni2—O12—C19—C18144.0 (4)O41—C41—C46—C45176.6 (4)
Ni1—O12—C19—C1822.5 (5)C42—C41—C46—C453.0 (7)
Ni3—O12—C19—C1889.1 (5)C48—N41—C47—C42178.2 (4)
C113—C18—C19—O12178.7 (5)Ni4—N41—C47—C427.0 (7)
N11—C18—C19—O126.7 (7)C43—C42—C47—N41174.3 (4)
C113—C18—C19—C1100.5 (7)C41—C42—C47—N414.3 (8)
N11—C18—C19—C110174.1 (4)C47—N41—C48—C41317.4 (7)
Ni2—O21—C21—C26172.2 (3)Ni4—N41—C48—C413167.2 (4)
Ni2—O21—C21—C229.3 (7)C47—N41—C48—C49163.4 (4)
O21—C21—C22—C23179.6 (5)Ni4—N41—C48—C4912.0 (5)
C26—C21—C22—C231.2 (7)Ni4—O42—C49—C410163.9 (4)
O21—C21—C22—C270.9 (8)Ni1—O42—C49—C41037.8 (7)
C26—C21—C22—C27179.4 (5)Ni2—O42—C49—C41084.6 (5)
C21—C22—C23—C240.2 (8)Ni4—O42—C49—C4819.9 (5)
C27—C22—C23—C24179.6 (5)Ni1—O42—C49—C48146.0 (4)
C22—C23—C24—C250.7 (8)Ni2—O42—C49—C4891.6 (4)
C23—C24—C25—C260.6 (8)C413—C48—C49—O42174.8 (4)
C24—C25—C26—C210.5 (8)N41—C48—C49—O426.0 (6)
O21—C21—C26—C25179.9 (5)C413—C48—C49—C4101.5 (7)
C22—C21—C26—C251.3 (8)N41—C48—C49—C410177.7 (4)
C28—N21—C27—C22175.1 (4)O12—C19—C110—C111177.8 (5)
Ni2—N21—C27—C220.1 (7)C18—C19—C110—C1111.4 (8)
C23—C22—C27—N21175.2 (5)C19—C110—C111—C1120.7 (8)
C21—C22—C27—N214.2 (8)C19—C110—C111—C114178.0 (5)
C27—N21—C28—C21312.7 (8)C110—C111—C112—C1131.0 (8)
Ni2—N21—C28—C213163.1 (4)C114—C111—C112—C113179.7 (5)
C27—N21—C28—C29172.4 (4)C111—C112—C113—C181.8 (8)
Ni2—N21—C28—C2911.8 (5)C19—C18—C113—C1121.1 (8)
Ni2—O22—C29—C210158.7 (4)N11—C18—C113—C112175.1 (5)
Ni3—O22—C29—C21036.8 (7)O22—C29—C210—C211176.8 (4)
Ni4—O22—C29—C21088.0 (5)C28—C29—C210—C2111.6 (7)
Ni2—O22—C29—C2822.9 (5)C29—C210—C211—C2120.3 (7)
Ni3—O22—C29—C28144.8 (4)C29—C210—C211—C214179.6 (5)
Ni4—O22—C29—C2890.5 (4)C210—C211—C212—C2131.8 (8)
C213—C28—C29—O22176.5 (4)C214—C211—C212—C213178.1 (5)
N21—C28—C29—O228.3 (6)C211—C212—C213—C281.4 (8)
C213—C28—C29—C2102.1 (7)C29—C28—C213—C2120.6 (7)
N21—C28—C29—C210173.2 (4)N21—C28—C213—C212174.1 (5)
Ni3—O31—C31—C36169.8 (4)O32—C39—C310—C311175.4 (4)
Ni3—O31—C31—C3210.2 (7)C38—C39—C310—C3112.7 (7)
O31—C31—C32—C33180.0 (5)C39—C310—C311—C3120.6 (7)
C36—C31—C32—C330.0 (7)C39—C310—C311—C314177.8 (4)
O31—C31—C32—C370.1 (8)C310—C311—C312—C3131.2 (8)
C36—C31—C32—C37179.8 (5)C314—C311—C312—C313179.6 (5)
C31—C32—C33—C340.3 (8)C311—C312—C313—C380.9 (8)
C37—C32—C33—C34179.6 (5)C39—C38—C313—C3121.2 (7)
C32—C33—C34—C350.1 (8)N31—C38—C313—C312175.1 (4)
C33—C34—C35—C360.2 (8)O42—C49—C410—C411173.0 (4)
C34—C35—C36—C310.4 (9)C48—C49—C410—C4113.1 (7)
O31—C31—C36—C35179.7 (5)C49—C410—C411—C4122.1 (7)
C32—C31—C36—C350.3 (8)C49—C410—C411—C414176.6 (4)
C38—N31—C37—C32175.3 (4)C410—C411—C412—C4130.6 (7)
Ni3—N31—C37—C322.4 (7)C414—C411—C412—C413179.2 (5)
C33—C32—C37—N31175.6 (5)C411—C412—C413—C482.1 (8)
C31—C32—C37—N314.5 (8)N41—C48—C413—C412179.8 (4)
C37—N31—C38—C31312.5 (8)C49—C48—C413—C4121.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13O···O210.84 (2)1.89 (3)2.688 (5)161 (6)
O23—H23O···O310.84 (2)1.87 (2)2.709 (5)177 (7)
O33—H33O···O410.82 (2)1.88 (3)2.645 (5)155 (7)
O43—H43O···O110.81 (2)1.93 (3)2.686 (5)155 (7)
C46—H46···O11i0.932.553.307 (6)139
C110—H110···O230.932.423.177 (6)138
C210—H210···O330.932.443.175 (6)136
C310—H310···O430.932.483.218 (6)137
C410—H410···O130.932.453.189 (6)136
O1—H11O···O310.832.21003.034 (8)177
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

This study was supported by Grants 119–1191342-1082 and 098–1191344-2943 from the Ministry of Science, Education and Sports of the Republic of Croatia.

References

First citationBallester, L., Coronado, E., Gutierrez, A., Monge, A., Perpinan, M. F., Pinilla, E. & Rico, T. (1992). Inorg. Chem. 31, 2053–2056.  CSD CrossRef CAS Web of Science Google Scholar
First citationBertrand, J. A., Marbella, C. & Vanderveer, D. G. (1978). Inorg. Chim. Acta, 26, 113–118.  CSD CrossRef CAS Web of Science Google Scholar
First citationCindrić, M., Pavlović, G., Pajić, D., Zadro, K., Cinčić, D., Hrenar, T., Lekšić, E., Pinar Prieto, A. B., Lazić, P. & Šišak Jung, D. (2016). New J. Chem. 40, 6604–6614.  Google Scholar
First citationCotton, F. A., Herrero, S., Jiménez-Aparicio, R., Murillo, C. A., Urbanos, F. A., Villagrán, D. & Wang, X. (2007). J. Am. Chem. Soc. 129, 12666–12667.  Web of Science CSD CrossRef CAS Google Scholar
First citationGladfelter, W. L., Lynch, M. W., Schaefer, W. P., Hendrickson, D. N. & Gray, H. B. (1981). Inorg. Chem. 20, 2390–2397.  CSD CrossRef CAS Web of Science Google Scholar
First citationHalcrow, M. A., Sun, J. S., Huffman, J. C. & Christou, G. (1995). Inorg. Chem. 34, 4167–4177.  CSD CrossRef CAS Web of Science Google Scholar
First citationJi, C. M., Yang, H. J., Zhao, C. C., Tangoulis, V., Cui, A. L. & Kou, H. Z. (2009). Cryst. Growth Des. 9, 4607–4609.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarmakar, S. & Khanra, S. (2014). CrystEngComm, 16, 2371–2383.  Web of Science CSD CrossRef CAS Google Scholar
First citationKou, H. Z., An, G. Y., Ji, C. M., Wang, B. W. & Cui, A. L. (2010). Dalton Trans. 39, 9604–9610.  Web of Science CSD CrossRef CAS Google Scholar
First citationLawrence, J., Yang, E.-C., Edwards, R., Olmstead, M. M., Ramsey, C., Dalal, N. S., Gantzel, P. K., Hill, S. & Hendrickson, D. N. (2008). Inorg. Chem. 47, 1965–1974.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOsa, S., Kido, T., Matsumoto, N., Re, N., Pochaba, A. & Mrozinski, J. (2004). J. Am. Chem. Soc. 126, 420–421.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPapatriantafyllopoulou, C., Jones, L. F., Nguyen, T. D., Matamoros-Salvador, N., Cunha-Silva, L., Almeida Paz, F. A., Rocha, J., Evangelisti, M., Brechin, E. K. & Perlepes, S. P. (2008). Dalton Trans. pp. 3153.  Google Scholar
First citationPardo, E., Ruiz-Garcia, R., Cano, J., Ottenwaelder, X., Lescouëzec, R., Journaux, Y., Lloret, F. & Julve, M. (2008). Dalton Trans. pp. 2780–2805.  Web of Science CrossRef Google Scholar
First citationPerlepe, P. S., Athanasopoulou, A. A., Alexopoulou, K. I., Raptopoulou, C. P., Psycharis, V., Escuer, A., Perlepes, S. P. & Stamatatos, T. C. (2014). Dalton Trans. 43, 16605–16609.  Web of Science CSD CrossRef CAS Google Scholar
First citationPetit, S., Neugebauer, P., Pilet, G. M., Chastanet, G., Barra, A. L., Antunes, A. B., Wernsdorfer, W. & Luneau, D. (2012). Inorg. Chem. 51, 6645–6654.  Web of Science CSD CrossRef CAS Google Scholar
First citationPolyakov, A. O., Arkenbout, A. H., Baas, J., Blake, R. G., Meetsma, A., Caretta, A., van Loosdrecht, P. H. M. & Palstra, T. T. M. (2012). Chem. Mater. 24, 133–139.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhang, S. Y., Chen, W. Q., Hu, B., Chen, Y. M., Li, W. & Li, Y. (2012). Inorg. Chem. Commun. 16, 74–77.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds