research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N,N′-di­benzyl­pyromellitic di­imide

CROSSMARK_Color_square_no_text.svg

aResearch Institute of Natural Science and Department of Chemistry, Gyeongsang National University, Jinju 52828, Republic of Korea, and bDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, kmpark@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 3 November 2016; accepted 7 November 2016; online 15 November 2016)

The title compound, C24H16N2O4 [systematic name: 2,6-di­benzyl­pyrrolo­[3,4-f]iso­indole-1,3,5,7(2H,6H)-tetra­one], consists of a central pyromellitic di­imide moiety with terminal benzyl groups at the N-atom positions. The mol­ecule is located about an inversion centre, so the asymmetric unit contains one half-mol­ecule. In the mol­ecule, both terminal phenyl groups, tilted by 72.97 (4)° with respect to the mean plane of the central pyromellitic di­imide moiety (r.m.s. deviation = 0.0145 Å), are oriented away from each other, forming an elongated S-shaped conformation. In the crystal, mol­ecules are connected via weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions, resulting in the formation of supra­molecular layers extending parallel to the ab plane.

1. Chemical context

As a result of their potential applications in organic photovoltaics (Huang et al., 2014[Huang, H., Zhou, N., Ortiz, R. P., Chen, Z., Loser, S., Zhang, S., Guo, X., Casado, J., López Navarrete, J. T., Yu, X., Facchetti, A. & Marks, T. J. (2014). Adv. Funct. Mater. 24, 2782-2793.]) and as mol­ecular electronic devices (Guo et al., 2014[Guo, X., Facchetti, A. & Marks, T. J. (2014). Chem. Rev. 114, 8943-9021.]) and energy storage devices (Song et al., 2010[Song, Z., Zhan, H. & Zhou, Y. (2010). Angew. Chem. Int. Ed. 49, 8444-8448.]), several π-conjugated, redox-active aromatic di­imides including pyromellitic di­imides, naphthalene di­imides and perylene di­imides have received considerable attention from materials chemists. Additionally, π-conjugated aromatic di­imides and their derivatives are used as rigid structural components in supra­molecular assemblies for the exploitation of supra­molecular inter­actions such as hydrogen-bonding and halogen–π inter­actions (Hay & Custelcean, 2009[Hay, B. P. & Custelcean, R. (2009). Cryst. Growth Des. 9, 2539-2545.]; Lu et al., 2007[Lu, Y.-X., Zou, J.-W., Wang, Y.-H. & Yu, Q.-S. (2007). Chem. Phys. 334, 1-7.]; Gamez et al., 2007[Gamez, P., Mooibroek, T. J., Teat, S. J. & Reedijk, J. (2007). Acc. Chem. Res. 40, 435-444.]). Recently, our group reported a copper(I) coordination polymer with a pyromellitic di­imide ligand, namely N,N′-bis­[3-(methyl­thio)­prop­yl]pyromellitic di­imide, and revealed the presence of halogen–π inter­actions between the chlorine atoms of a di­chloro­methane solvent mol­ecule of crystallization and pyromellitic di­imide rings (Park et al., 2011[Park, G., Yang, H., Kim, T. H. & Kim, J. (2011). Inorg. Chem. 50, 961-968.]). In an extension of our studies of pyromellitic di­imide derivatives, we have prepared the title compound by the reaction of pyromellitic dianhydride with 2-phenyethyl­amine and we report its crystal structure here.

2. Structural commentary

The mol­ecular structure of the title compound consists of a central pyromellitic di­imide ring system with terminal benzyl groups on each of the inversion-related nitro­gen atoms (Fig. 1[link]). As the mol­ecule is located about a crystallographic inversion centre, the asymmetric unit of the compound comprises one half-mol­ecule. Short intramolecular C—H⋯O contacts (Table 1[link]) enclose S(5) rings and may contribute to the planarity of the pyromellitic di­imide ring system (r.m.s. deviation = 0.0145 Å). The two terminal phenyl groups in the mol­ecule are oriented away from each other, forming an elongated S-shaped conformation. The terminal phenyl ring is tilted by 72.97 (4)° with respect to the mean plane of the central pyromellitic di­imide moiety.

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O1 0.99 2.53 2.917 (2) 103
C12—H12⋯O2i 0.95 2.45 3.401 (2) 178
C7—H7BCg1ii 0.99 2.60 3.478 (2) 148
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z.
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius and yellow dashed lines represent the intra­molecular C—H⋯O short contacts. [Symmetry code; (i) −x + 2, −y + 1, −z.]

3. Supra­molecular features

In the crystal, adjacent mol­ecules are connected by weak C12—H12⋯O2 hydrogen bonds, Table 1[link] (yellow dashed lines in Fig. 2[link]), forming inversion dimers. Inversion symmetry links these into a chain propagating along [[\overline{1}]10]. Neighboring chains are linked through inter­molecular C—H⋯π inter­actions between a methyl­ene H atom and the terminal phenyl ring, resulting in the formation of supra­molecular layers extending parallel to the ab plane (black dashed lines in Fig. 3[link] and Table 1[link]). These layers are separated from each other by 3.104 (3) Å. No inter­molecular ππ inter­actions are found between the pyromellitic di­imide moieties.

[Figure 2]
Figure 2
Chains of the title compound formed through inter­molecular C—H⋯O hydrogen bonds (yellow dashed lines).
[Figure 3]
Figure 3
Supra­molecular layers of the title compound formed through inter­molecular C—H⋯π inter­actions (black dashed lines) between the chains generated by inter­molecular C—H⋯O hydrogen bonds (yellow dashed lines). H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Synthesis and crystallization

The title compound was synthesized by the reaction of pyromellitic dianhydride with 2-phenyl­ethyl­amine according to a literature procedure (Kang et al., 2015[Kang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183-5187.]). X-ray quality single crystals were obtained by slow evaporation of a di­chloro­methane solution of the title compound.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically with d(C—H) = 0.95 Å for Csp2—H and 0.99 Å for methyl­ene, and were refined as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C24H16N2O4
Mr 396.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 6.1500 (5), 4.7475 (3), 31.002 (2)
β (°) 90.461 (3)
V3) 905.14 (11)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.50 × 0.06 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.661, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 4593, 2016, 1444
Rint 0.034
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.119, 1.04
No. of reflections 2016
No. of parameters 136
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.25, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2,6-Dibenzylpyrrolo[3,4-f]isoindole-1,3,5,7(2H,6H)-tetraone top
Crystal data top
C24H16N2O4F(000) = 412
Mr = 396.39Dx = 1.454 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.1500 (5) ÅCell parameters from 874 reflections
b = 4.7475 (3) Åθ = 2.6–24.8°
c = 31.002 (2) ŵ = 0.10 mm1
β = 90.461 (3)°T = 173 K
V = 905.14 (11) Å3Needle, colourless
Z = 20.50 × 0.06 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
1444 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: multi-scan
(SADABS; Bruker 2013)
θmax = 27.5°, θmin = 1.3°
Tmin = 0.661, Tmax = 0.746h = 67
4593 measured reflectionsk = 26
2016 independent reflectionsl = 3840
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.089P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2016 reflectionsΔρmax = 0.25 e Å3
136 parametersΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9145 (2)0.9617 (3)0.09759 (4)0.0314 (4)
O20.4737 (2)0.2514 (3)0.04921 (4)0.0282 (3)
N10.6589 (2)0.6176 (3)0.08217 (5)0.0218 (4)
C10.2783 (3)0.3279 (4)0.15445 (6)0.0303 (5)
H10.16170.36590.13500.036*
C20.2505 (4)0.1311 (4)0.18711 (7)0.0363 (5)
H20.11570.03540.19010.044*
C30.4206 (4)0.0760 (4)0.21524 (7)0.0399 (6)
H30.40210.05680.23780.048*
C40.6175 (4)0.2130 (4)0.21071 (6)0.0356 (5)
H40.73460.17240.22990.043*
C50.6439 (3)0.4094 (4)0.17812 (6)0.0298 (5)
H50.77920.50360.17510.036*
C60.4739 (3)0.4699 (4)0.14973 (6)0.0233 (4)
C70.4994 (3)0.6895 (4)0.11523 (6)0.0252 (4)
H7A0.35650.72010.10110.030*
H7B0.54320.86910.12900.030*
C80.8499 (3)0.7687 (3)0.07548 (6)0.0213 (4)
C90.9507 (3)0.6455 (3)0.03618 (5)0.0199 (4)
C100.8168 (3)0.4283 (3)0.02169 (5)0.0186 (4)
C110.6279 (3)0.4093 (3)0.05118 (5)0.0211 (4)
C121.1389 (3)0.7249 (3)0.01520 (5)0.0202 (4)
H121.23030.87250.02530.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0344 (9)0.0305 (7)0.0293 (7)0.0060 (6)0.0023 (6)0.0098 (6)
O20.0247 (8)0.0285 (7)0.0316 (7)0.0056 (6)0.0030 (6)0.0014 (6)
N10.0230 (9)0.0219 (7)0.0204 (8)0.0001 (6)0.0034 (6)0.0008 (6)
C10.0264 (11)0.0300 (9)0.0346 (11)0.0002 (8)0.0036 (9)0.0041 (9)
C20.0402 (14)0.0287 (10)0.0401 (12)0.0023 (10)0.0169 (10)0.0015 (10)
C30.0580 (17)0.0307 (10)0.0313 (12)0.0042 (11)0.0151 (11)0.0035 (9)
C40.0460 (14)0.0341 (10)0.0267 (10)0.0039 (10)0.0045 (9)0.0039 (9)
C50.0301 (12)0.0315 (9)0.0279 (10)0.0028 (9)0.0009 (9)0.0003 (9)
C60.0258 (11)0.0228 (8)0.0214 (9)0.0009 (8)0.0049 (8)0.0046 (7)
C70.0248 (11)0.0269 (9)0.0240 (9)0.0025 (8)0.0043 (8)0.0009 (8)
C80.0227 (10)0.0198 (8)0.0214 (9)0.0011 (7)0.0010 (8)0.0016 (7)
C90.0211 (10)0.0184 (8)0.0202 (9)0.0011 (7)0.0025 (7)0.0010 (7)
C100.0187 (9)0.0181 (7)0.0190 (8)0.0005 (7)0.0001 (7)0.0024 (7)
C110.0239 (10)0.0194 (8)0.0199 (9)0.0012 (8)0.0021 (7)0.0027 (7)
C120.0229 (11)0.0182 (7)0.0195 (9)0.0014 (7)0.0019 (7)0.0005 (7)
Geometric parameters (Å, º) top
O1—C81.210 (2)C4—H40.9500
O2—C111.210 (2)C5—C61.391 (2)
N1—C111.391 (2)C5—H50.9500
N1—C81.393 (2)C6—C71.503 (2)
N1—C71.465 (2)C7—H7A0.9900
C1—C61.387 (3)C7—H7B0.9900
C1—C21.389 (3)C8—C91.491 (2)
C1—H10.9500C9—C121.385 (2)
C2—C31.382 (3)C9—C101.392 (2)
C2—H20.9500C10—C12i1.384 (2)
C3—C41.383 (3)C10—C111.487 (3)
C3—H30.9500C12—C10i1.384 (2)
C4—C51.385 (3)C12—H120.9500
C11—N1—C8111.98 (15)N1—C7—C6114.25 (14)
C11—N1—C7124.05 (15)N1—C7—H7A108.7
C8—N1—C7123.68 (14)C6—C7—H7A108.7
C6—C1—C2121.05 (19)N1—C7—H7B108.7
C6—C1—H1119.5C6—C7—H7B108.7
C2—C1—H1119.5H7A—C7—H7B107.6
C3—C2—C1119.4 (2)O1—C8—N1125.37 (17)
C3—C2—H2120.3O1—C8—C9128.58 (17)
C1—C2—H2120.3N1—C8—C9106.04 (14)
C2—C3—C4120.40 (19)C12—C9—C10122.98 (16)
C2—C3—H3119.8C12—C9—C8129.19 (15)
C4—C3—H3119.8C10—C9—C8107.81 (16)
C3—C4—C5119.9 (2)C12i—C10—C9122.44 (16)
C3—C4—H4120.1C12i—C10—C11129.49 (16)
C5—C4—H4120.1C9—C10—C11108.03 (15)
C4—C5—C6120.59 (19)O2—C11—N1125.35 (18)
C4—C5—H5119.7O2—C11—C10128.50 (16)
C6—C5—H5119.7N1—C11—C10106.14 (15)
C1—C6—C5118.72 (17)C10i—C12—C9114.59 (15)
C1—C6—C7120.50 (17)C10i—C12—H12122.7
C5—C6—C7120.77 (17)C9—C12—H12122.7
C6—C1—C2—C30.1 (3)N1—C8—C9—C12178.00 (17)
C1—C2—C3—C40.7 (3)O1—C8—C9—C10179.63 (17)
C2—C3—C4—C50.8 (3)N1—C8—C9—C100.36 (18)
C3—C4—C5—C60.2 (3)C12—C9—C10—C12i0.4 (3)
C2—C1—C6—C50.7 (3)C8—C9—C10—C12i178.05 (15)
C2—C1—C6—C7177.86 (17)C12—C9—C10—C11178.18 (15)
C4—C5—C6—C10.6 (3)C8—C9—C10—C110.31 (18)
C4—C5—C6—C7178.03 (17)C8—N1—C11—O2178.89 (16)
C11—N1—C7—C671.0 (2)C7—N1—C11—O24.8 (3)
C8—N1—C7—C6115.62 (18)C8—N1—C11—C100.08 (18)
C1—C6—C7—N1115.50 (19)C7—N1—C11—C10173.99 (14)
C5—C6—C7—N165.9 (2)C12i—C10—C11—O21.1 (3)
C11—N1—C8—O1179.57 (16)C9—C10—C11—O2178.61 (17)
C7—N1—C8—O15.5 (3)C12i—C10—C11—N1177.67 (16)
C11—N1—C8—C90.27 (18)C9—C10—C11—N10.15 (18)
C7—N1—C8—C9173.83 (14)C10—C9—C12—C10i0.4 (3)
O1—C8—C9—C121.3 (3)C8—C9—C12—C10i177.73 (16)
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7B···O10.992.532.917 (2)103
C12—H12···O2ii0.952.453.401 (2)178
C7—H7B···Cg1iii0.992.603.478 (2)148
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y+1, z.
 

Acknowledgements

This work was supported from the National Research Foundation of Korea (NRF) project (2012R1A4A1027750 and 2015R1D1A3A01020410).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGamez, P., Mooibroek, T. J., Teat, S. J. & Reedijk, J. (2007). Acc. Chem. Res. 40, 435–444.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGuo, X., Facchetti, A. & Marks, T. J. (2014). Chem. Rev. 114, 8943–9021.  Web of Science CrossRef CAS Google Scholar
First citationHay, B. P. & Custelcean, R. (2009). Cryst. Growth Des. 9, 2539–2545.  Web of Science CrossRef CAS Google Scholar
First citationHuang, H., Zhou, N., Ortiz, R. P., Chen, Z., Loser, S., Zhang, S., Guo, X., Casado, J., López Navarrete, J. T., Yu, X., Facchetti, A. & Marks, T. J. (2014). Adv. Funct. Mater. 24, 2782–2793.  Web of Science CrossRef CAS Google Scholar
First citationKang, G., Jeon, Y., Lee, K. Y., Kim, J. & Kim, T. H. (2015). Cryst. Growth Des. 15, 5183–5187.  Web of Science CSD CrossRef CAS Google Scholar
First citationLu, Y.-X., Zou, J.-W., Wang, Y.-H. & Yu, Q.-S. (2007). Chem. Phys. 334, 1–7.  Web of Science CrossRef CAS Google Scholar
First citationPark, G., Yang, H., Kim, T. H. & Kim, J. (2011). Inorg. Chem. 50, 961–968.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSong, Z., Zhan, H. & Zhou, Y. (2010). Angew. Chem. Int. Ed. 49, 8444–8448.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds