research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of oxam­yl

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr, thkim@gnu.ac.kr

Edited by J. Simpson, University of Otago, New Zealand (Received 8 November 2016; accepted 12 November 2016; online 18 November 2016)

The title compound, C7H13N3O3S [systematic name: (Z)-methyl 2-di­methyl­amino-N-(methyl­carbamo­yloxy)-2-oxoethanimido­thio­ate], is an oxime carbamate acaride, insecticide and nematicide. The asymmetric unit comprises two independent mol­ecules, A and B. The dihedral angles between the mean planes [r.m.s. deviations = 0.0017 (A) and 0.0016 Å (B)] of the acetamide and oxyimino groups are 88.80 (8)° for A and 87.05 (8)° for B. In the crystal, N/C—H⋯O hydrogen bonds link adjacent mol­ecules, forming chains along the a axis. The chains are further linked by C—H⋯O hydrogen bonds, resulting in a three-dimensional network with alternating rows of A and B mol­ecules in the bc plane stacked along the a-axis direction. The structure was refined as an inversion twin with a final BASF parameter of 0.16 (9).

1. Chemical context

Oxamyl [(N,N-dimethyl-2-methyl­carbamoyloximino-2-(di­methyl­sulfan­yl)acetamide] is a carbamate compound used in a wide range of agricultural situations. It is systemic and active as an insecticide or a nematicide. It is used for the control of nematodes in vegetables, bananas, pineapple, peanuts, cotton, soya beans, tobacco, potatoes, sugar beet, and other crops. It is also used in India for controlling the growth of nematodes on vegetable crops (Mohammad et al., 2015[Mohammad, S. G., Ahmed, S. M. & Badawi, A. F. M. (2015). Desalination Water Treatment, 55, 2109-2120.]; Agarwal et al., 2016[Agarwal, S., Sadeghi, N., Tyagi, I., Gupta, V. K. & Fakhri, A. (2016). J. Colloid Interface Sci. 478, 430-438.]). In addition, oxamyl was classified by the World Health Organization (WHO) as highly haza­rdous (class IB) (Al-Dabbas et al., 2014[Al-Dabbas, M. M., Shaderma, A. M. & Al-Antary, T. M. (2014). Life Sci. J. 11, 68-73.]). Oxamyl can be integrated with horse manure, sesame-oil-cake, or Bacillus thuringiensis to improve eggplant growth response and reduce development of the nematode Meloidogyne incognita (Osman et al., 2009[Osman, K. A., Al-Rehiayani, S. M., Al-Deghairi, M. A. & Salama, A. K. (2009). Int. Biodeterior. Biodegradation, 63, 341-346.]). Also, oxamyl has a very high water solubility (280 g/L at 298 K) and low sorption solubility affinity to soils. As a result of these properties, oxamyl easily migrates into the water compartment (Mazellier et al., 2010[Mazellier, P., Zamy, C. & Sarakha, M. (2010). Environ. Chem. Lett. 8, 19-24.]). Herein, we report the mol­ecular and crystal structure of oxamyl.

[Scheme 1]

2. Structural commentary

The asymmetric unit of oxamyl comprises two independent mol­ecules, A and B (Fig. 1[link]). The compound consists of carbamate, acetamide, methyl­thio and oxyimino functional groups. The dihedral angles between the mean planes [r.m.s. deviations = 0.0017 (A) and 0.0016 Å (B)] of the acetamide and oxyimino groups are 88.80 (8) for A and 87.05 (8)° for B. All bond lengths and bond angles are normal and comparable to those observed in methomyl [systematic name: (E)-methyl N-(methyl­carbamo­yl)oxyethanimido­thio­ate] which adopts similar crystal structure (Takusagawa & Jacobson, 1977[Takusagawa, F. & Jacobson, R. A. (1977). J. Agric. Food Chem. 25, 577-581.]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

3. Supra­molecular features

The crystal structure is stabilized by several N—H⋯O and C—H⋯O hydrogen bonds (Table 1[link]). Adjacent A mol­ecules form inter­molecular N1—H1N⋯O1 hydrogen bonds. In addition, C6—H6B⋯O2 and C7—H7B⋯O1 hydrogen bonds between the carbamate and di­methyl­amine groups generate R22(8) inversion dimers. These contacts link the A mol­ecules into double chains along the a axis. A closely similar situation obtains for the B mol­ecules, with inter­molecular N4—H4N⋯O4 hydrogen bonds together with C13—H13B⋯O4 and C14—H14B⋯O5 R22(8) inversion dimers also forming a double chain, this time solely of B mol­ecules, parallel to the one described previously, again along the a axis, Fig. 2[link]. The A and B double chains are further linked by C4—H4B⋯O6 and C11—H11B⋯O3 contacts, Table 1[link], to give a three-dimensional network with alternating rows of A and B mol­ecules in the bc plane stacked along the a-axis direction, Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 2.13 2.871 (3) 142
N4—H4N⋯O4ii 0.88 2.04 2.794 (3) 142
C4—H4B⋯O6iii 0.98 2.54 3.075 (4) 114
C6—H6B⋯O2iv 0.98 2.60 3.518 (4) 156
C7—H7B⋯O1iv 0.98 2.52 3.431 (4) 155
C11—H11B⋯O3v 0.98 2.53 3.042 (4) 113
C13—H13B⋯O4iv 0.98 2.53 3.440 (4) 155
C14—H14B⋯O5iv 0.98 2.59 3.554 (4) 168
Symmetry codes: (i) [x-{\script{1\over 2}}, -y, z]; (ii) [x-{\script{1\over 2}}, -y+1, z]; (iii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iv) x-1, y, z; (v) [-x+1, -y, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The double chains formed through inter­molecular N—H⋯O (black dashed lines) and C—H⋯O (sky-blue dashed lines) hydrogen bonds. The A and B mol­ecules are shown in green and yellow, respectively. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.
[Figure 3]
Figure 3
The three-dimensional network made up of mol­ecules A (green) and B (yellow). Black dashed lines represent inter­molecular N—H⋯O hydrogen bonds. The C—H⋯O hydrogen bonds are shown as sky-blue (between each mol­ecule A or B) and red (between mol­ecules A and B) dashed lines, respectively. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Synthesis and crystallization

The title compound was purchased from Dr Ehrenstorfer GmbH. Slow evaporation of its solution in CH3OH gave single crystals suitable for X-ray analysis.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were positioned geometrically [with d(N—H) = 0.88 Å, Uiso = 1.2Ueq(C) for N—H group, Uiso = 1.5Ueq(C) for methyl group, d(C—H) = 0.98 Å]. The crystal studied was an inversion twin with a 0.84 (9):0.16 (9) domain ratio.

Table 2
Experimental details

Crystal data
Chemical formula C7H13N3O3S
Mr 219.26
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 173
a, b, c (Å) 8.3367 (4), 10.7752 (5), 24.1016 (12)
V3) 2165.04 (18)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.50 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.665, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 19300, 5238, 4655
Rint 0.035
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.090, 1.04
No. of reflections 5238
No. of parameters 262
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.23
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.16 (9)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

(Z)-[(Dimethylcarbamoyl)(methylsulfanyl)methylidene]amino N-methylcarbamate top
Crystal data top
C7H13N3O3SDx = 1.345 Mg m3
Mr = 219.26Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 6335 reflections
a = 8.3367 (4) Åθ = 2.5–27.8°
b = 10.7752 (5) ŵ = 0.29 mm1
c = 24.1016 (12) ÅT = 173 K
V = 2165.04 (18) Å3Plate, colourless
Z = 80.50 × 0.14 × 0.11 mm
F(000) = 928
Data collection top
Bruker APEXII CCD
diffractometer
4655 reflections with I > 2σ(I)
φ and ω scansRint = 0.035
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 28.3°, θmin = 1.7°
Tmin = 0.665, Tmax = 0.746h = 1111
19300 measured reflectionsk = 1414
5238 independent reflectionsl = 3231
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.3998P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.21 e Å3
5238 reflectionsΔρmin = 0.23 e Å3
262 parametersAbsolute structure: Refined as an inversion twin
1 restraintAbsolute structure parameter: 0.16 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.55678 (10)0.32807 (7)0.87717 (3)0.0373 (2)
S20.97239 (10)0.16264 (7)0.54545 (3)0.0376 (2)
O10.8636 (3)0.13823 (18)0.74085 (9)0.0308 (5)
O20.6589 (2)0.17413 (17)0.79576 (8)0.0270 (4)
O30.2966 (3)0.0966 (2)0.91570 (10)0.0431 (6)
O41.2851 (3)0.36802 (18)0.67471 (9)0.0307 (5)
O51.0771 (3)0.32628 (17)0.62210 (9)0.0282 (5)
O60.7167 (3)0.3997 (2)0.50123 (10)0.0403 (6)
N10.6479 (3)0.0112 (2)0.73350 (10)0.0290 (5)
H1N0.54970.00370.74510.035*
N20.5009 (3)0.1328 (2)0.81132 (10)0.0272 (5)
N30.1571 (3)0.2143 (2)0.85463 (10)0.0303 (6)
N41.0729 (3)0.4993 (2)0.67852 (10)0.0287 (5)
H4N0.97640.51510.66550.034*
N50.9217 (3)0.3683 (2)0.60490 (10)0.0261 (5)
N60.5764 (3)0.2808 (2)0.56227 (10)0.0291 (6)
C10.7188 (4)0.0672 (3)0.69115 (14)0.0348 (7)
H1A0.78440.01640.66620.052*
H1B0.63350.10790.66990.052*
H1C0.78630.13040.70880.052*
C20.7298 (4)0.1050 (2)0.75477 (12)0.0244 (6)
C30.4493 (4)0.2044 (3)0.84969 (11)0.0242 (6)
C40.4197 (5)0.3917 (4)0.92805 (16)0.0481 (10)
H4A0.32550.42600.90910.072*
H4B0.47360.45760.94900.072*
H4C0.38580.32590.95360.072*
C50.2909 (3)0.1659 (3)0.87589 (13)0.0271 (6)
C60.0028 (4)0.1835 (4)0.88024 (16)0.0398 (8)
H6A0.01710.11380.90590.060*
H6B0.07420.16040.85130.060*
H6C0.03760.25570.90070.060*
C70.1526 (4)0.3046 (3)0.80973 (14)0.0372 (7)
H7A0.11880.38530.82430.056*
H7B0.07640.27700.78130.056*
H7C0.25970.31220.79330.056*
C81.1426 (4)0.5816 (3)0.71943 (13)0.0348 (7)
H8A1.18340.53260.75070.052*
H8B1.06070.63960.73270.052*
H8C1.23110.62810.70260.052*
C91.1516 (4)0.4014 (2)0.66055 (11)0.0242 (6)
C100.8681 (4)0.2936 (2)0.56845 (11)0.0240 (6)
C110.8379 (5)0.0982 (3)0.49430 (15)0.0462 (9)
H11A0.74310.06410.51290.069*
H11B0.89280.03200.47390.069*
H11C0.80490.16350.46840.069*
C120.7109 (4)0.3295 (2)0.54159 (13)0.0267 (6)
C130.5720 (4)0.1938 (3)0.60790 (14)0.0366 (7)
H13A0.53640.11260.59440.055*
H13B0.49720.22380.63630.055*
H13C0.67950.18610.62400.055*
C140.4231 (4)0.3106 (4)0.53622 (15)0.0420 (8)
H14A0.43010.39220.51840.063*
H14B0.33860.31200.56450.063*
H14C0.39760.24760.50830.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0356 (4)0.0368 (4)0.0393 (4)0.0072 (3)0.0091 (4)0.0137 (4)
S20.0352 (4)0.0330 (4)0.0447 (5)0.0083 (3)0.0103 (4)0.0155 (4)
O10.0210 (10)0.0284 (10)0.0428 (12)0.0018 (9)0.0060 (9)0.0027 (9)
O20.0212 (10)0.0271 (10)0.0325 (11)0.0017 (8)0.0047 (9)0.0055 (8)
O30.0392 (14)0.0478 (13)0.0423 (13)0.0036 (11)0.0085 (11)0.0196 (11)
O40.0246 (11)0.0275 (10)0.0401 (12)0.0007 (9)0.0058 (10)0.0029 (9)
O50.0211 (10)0.0257 (10)0.0379 (12)0.0023 (8)0.0061 (9)0.0072 (9)
O60.0342 (13)0.0476 (12)0.0393 (12)0.0008 (11)0.0035 (10)0.0185 (11)
N10.0227 (12)0.0282 (11)0.0360 (13)0.0003 (10)0.0061 (10)0.0077 (10)
N20.0233 (13)0.0265 (12)0.0318 (13)0.0011 (11)0.0054 (11)0.0001 (10)
N30.0269 (13)0.0338 (13)0.0303 (13)0.0022 (11)0.0031 (11)0.0026 (10)
N40.0259 (12)0.0261 (11)0.0343 (12)0.0015 (10)0.0078 (10)0.0065 (10)
N50.0204 (12)0.0268 (11)0.0310 (13)0.0025 (10)0.0039 (10)0.0028 (10)
N60.0242 (13)0.0338 (12)0.0293 (13)0.0019 (10)0.0014 (10)0.0019 (10)
C10.0351 (17)0.0295 (15)0.0398 (17)0.0018 (13)0.0061 (14)0.0103 (12)
C20.0232 (15)0.0219 (12)0.0281 (14)0.0057 (11)0.0031 (12)0.0023 (11)
C30.0265 (15)0.0235 (13)0.0225 (13)0.0020 (12)0.0005 (11)0.0021 (11)
C40.047 (2)0.052 (2)0.045 (2)0.0018 (18)0.0094 (18)0.0225 (17)
C50.0276 (15)0.0256 (13)0.0282 (14)0.0014 (11)0.0051 (13)0.0014 (12)
C60.0255 (15)0.055 (2)0.0388 (17)0.0041 (15)0.0053 (16)0.0005 (16)
C70.0364 (18)0.0385 (17)0.0368 (17)0.0014 (14)0.0027 (15)0.0072 (14)
C80.0439 (19)0.0293 (14)0.0311 (15)0.0019 (14)0.0055 (14)0.0050 (12)
C90.0236 (14)0.0225 (13)0.0266 (13)0.0036 (11)0.0002 (12)0.0020 (11)
C100.0262 (15)0.0210 (12)0.0249 (13)0.0001 (12)0.0008 (11)0.0001 (11)
C110.048 (2)0.0461 (19)0.045 (2)0.0003 (17)0.0105 (17)0.0213 (16)
C120.0277 (15)0.0253 (12)0.0271 (14)0.0005 (11)0.0025 (13)0.0024 (12)
C130.0346 (18)0.0368 (16)0.0383 (18)0.0050 (14)0.0050 (14)0.0040 (14)
C140.0240 (15)0.057 (2)0.045 (2)0.0030 (15)0.0041 (15)0.0001 (16)
Geometric parameters (Å, º) top
S1—C31.737 (3)C1—H1A0.9800
S1—C41.811 (3)C1—H1B0.9800
S2—C101.748 (3)C1—H1C0.9800
S2—C111.805 (3)C3—C51.521 (4)
O1—C21.218 (4)C4—H4A0.9800
O2—C21.371 (3)C4—H4B0.9800
O2—N21.440 (3)C4—H4C0.9800
O3—C51.216 (4)C6—H6A0.9800
O4—C91.219 (4)C6—H6B0.9800
O5—C91.378 (3)C6—H6C0.9800
O5—N51.434 (3)C7—H7A0.9800
O6—C121.233 (4)C7—H7B0.9800
N1—C21.323 (4)C7—H7C0.9800
N1—C11.451 (4)C8—H8A0.9800
N1—H1N0.8800C8—H8B0.9800
N2—C31.279 (4)C8—H8C0.9800
N3—C51.334 (4)C10—C121.512 (4)
N3—C71.455 (4)C11—H11A0.9800
N3—C61.464 (4)C11—H11B0.9800
N4—C91.315 (4)C11—H11C0.9800
N4—C81.448 (4)C13—H13A0.9800
N4—H4N0.8800C13—H13B0.9800
N5—C101.272 (4)C13—H13C0.9800
N6—C121.334 (4)C14—H14A0.9800
N6—C131.445 (4)C14—H14B0.9800
N6—C141.460 (4)C14—H14C0.9800
C3—S1—C4102.89 (16)N3—C6—H6C109.5
C10—S2—C11102.61 (16)H6A—C6—H6C109.5
C2—O2—N2114.5 (2)H6B—C6—H6C109.5
C9—O5—N5114.6 (2)N3—C7—H7A109.5
C2—N1—C1120.5 (2)N3—C7—H7B109.5
C2—N1—H1N119.8H7A—C7—H7B109.5
C1—N1—H1N119.8N3—C7—H7C109.5
C3—N2—O2108.1 (2)H7A—C7—H7C109.5
C5—N3—C7124.6 (3)H7B—C7—H7C109.5
C5—N3—C6118.9 (3)N4—C8—H8A109.5
C7—N3—C6116.3 (3)N4—C8—H8B109.5
C9—N4—C8121.0 (3)H8A—C8—H8B109.5
C9—N4—H4N119.5N4—C8—H8C109.5
C8—N4—H4N119.5H8A—C8—H8C109.5
C10—N5—O5108.5 (2)H8B—C8—H8C109.5
C12—N6—C13124.1 (3)O4—C9—N4126.9 (3)
C12—N6—C14119.2 (3)O4—C9—O5115.2 (2)
C13—N6—C14116.6 (3)N4—C9—O5117.9 (3)
N1—C1—H1A109.5N5—C10—C12116.0 (2)
N1—C1—H1B109.5N5—C10—S2123.7 (2)
H1A—C1—H1B109.5C12—C10—S2120.1 (2)
N1—C1—H1C109.5S2—C11—H11A109.5
H1A—C1—H1C109.5S2—C11—H11B109.5
H1B—C1—H1C109.5H11A—C11—H11B109.5
O1—C2—N1126.2 (3)S2—C11—H11C109.5
O1—C2—O2115.7 (2)H11A—C11—H11C109.5
N1—C2—O2118.1 (3)H11B—C11—H11C109.5
N2—C3—C5115.3 (2)O6—C12—N6124.7 (3)
N2—C3—S1124.4 (2)O6—C12—C10117.4 (3)
C5—C3—S1119.9 (2)N6—C12—C10117.9 (3)
S1—C4—H4A109.5N6—C13—H13A109.5
S1—C4—H4B109.5N6—C13—H13B109.5
H4A—C4—H4B109.5H13A—C13—H13B109.5
S1—C4—H4C109.5N6—C13—H13C109.5
H4A—C4—H4C109.5H13A—C13—H13C109.5
H4B—C4—H4C109.5H13B—C13—H13C109.5
O3—C5—N3125.1 (3)N6—C14—H14A109.5
O3—C5—C3117.4 (3)N6—C14—H14B109.5
N3—C5—C3117.4 (3)H14A—C14—H14B109.5
N3—C6—H6A109.5N6—C14—H14C109.5
N3—C6—H6B109.5H14A—C14—H14C109.5
H6A—C6—H6B109.5H14B—C14—H14C109.5
C2—O2—N2—C3179.8 (2)S1—C3—C5—N393.6 (3)
C9—O5—N5—C10178.1 (2)C8—N4—C9—O40.0 (5)
C1—N1—C2—O13.0 (5)C8—N4—C9—O5179.2 (2)
C1—N1—C2—O2178.2 (3)N5—O5—C9—O4178.6 (2)
N2—O2—C2—O1179.9 (2)N5—O5—C9—N42.1 (3)
N2—O2—C2—N11.0 (3)O5—N5—C10—C12174.7 (2)
O2—N2—C3—C5173.4 (2)O5—N5—C10—S20.4 (3)
O2—N2—C3—S10.5 (3)C11—S2—C10—N5179.2 (3)
C4—S1—C3—N2179.3 (3)C11—S2—C10—C124.2 (3)
C4—S1—C3—C58.0 (3)C13—N6—C12—O6176.8 (3)
C7—N3—C5—O3175.0 (3)C14—N6—C12—O60.1 (4)
C6—N3—C5—O30.1 (5)C13—N6—C12—C101.4 (4)
C7—N3—C5—C32.4 (4)C14—N6—C12—C10178.1 (3)
C6—N3—C5—C3177.5 (3)N5—C10—C12—O685.8 (3)
N2—C3—C5—O389.3 (3)S2—C10—C12—O689.5 (3)
S1—C3—C5—O384.0 (3)N5—C10—C12—N695.9 (3)
N2—C3—C5—N393.1 (3)S2—C10—C12—N688.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.882.132.871 (3)142
N4—H4N···O4ii0.882.042.794 (3)142
C4—H4B···O6iii0.982.543.075 (4)114
C6—H6B···O2iv0.982.603.518 (4)156
C7—H7B···O1iv0.982.523.431 (4)155
C11—H11B···O3v0.982.533.042 (4)113
C13—H13B···O4iv0.982.533.440 (4)155
C14—H14B···O5iv0.982.593.554 (4)168
Symmetry codes: (i) x1/2, y, z; (ii) x1/2, y+1, z; (iii) x+1, y+1, z+1/2; (iv) x1, y, z; (v) x+1, y, z1/2.
 

Acknowledgements

This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).

References

First citationAgarwal, S., Sadeghi, N., Tyagi, I., Gupta, V. K. & Fakhri, A. (2016). J. Colloid Interface Sci. 478, 430–438.  CrossRef CAS Google Scholar
First citationAl-Dabbas, M. M., Shaderma, A. M. & Al-Antary, T. M. (2014). Life Sci. J. 11, 68–73.  Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMazellier, P., Zamy, C. & Sarakha, M. (2010). Environ. Chem. Lett. 8, 19–24.  CrossRef CAS Google Scholar
First citationMohammad, S. G., Ahmed, S. M. & Badawi, A. F. M. (2015). Desalination Water Treatment, 55, 2109–2120.  CrossRef CAS Google Scholar
First citationOsman, K. A., Al-Rehiayani, S. M., Al-Deghairi, M. A. & Salama, A. K. (2009). Int. Biodeterior. Biodegradation, 63, 341–346.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTakusagawa, F. & Jacobson, R. A. (1977). J. Agric. Food Chem. 25, 577–581.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds