research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three carbazole derivatives: 12-ethyl-7-phenyl­sulfonyl-7H-benzofuro[2,3-b]carbazole, (1), 2-(4,5-dimeth­­oxy-2-nitro­phen­yl)-4-hy­dr­oxy-9-phenyl­sulfonyl-9H-carbazole-3-carbaldehyde, (2), and 12-phenyl-7-phenyl­sulfonyl-7H-benzofuro[2,3-b]carbazole, (3)

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Ethiraj College for Women (Autonomous), Chennai 600 008, India, bDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 October 2016; accepted 20 October 2016; online 4 November 2016)

The three title compounds, C26H19NO3S, (1), C27H20N2O8S, (2), and C30H19NO3S, (3), are carbazole derivatives, where (1) and (3) are heterocycle-containing carbazoles with a benzo­furan moiety fused to a carbazole unit. In (2), a di­meth­oxy­nitro­phenyl ring is attached to the carbazole moiety. In the three derivatives, a phenyl­sulfonyl group is attached to the N atom of the carbazole unit. Compound (1) crystallizes with two independent mol­ecules in the asymmetric unit (A and B). The carbazole skeleton in the three compounds is essentially planar. In compound (1), the benzene ring of the phenyl­sulfonyl moiety is almost orthogonal to the carbazole moiety, with dihedral angles of 85.42 (9) and 84.52 (9)° in mol­ecules A and B, respectively. The benzene ring of the phenyl­sulfonyl group in compounds (2) and (3) are inclined to the carbazole moiety, making dihedral angles of 70.73 (13) and 81.73 (12)°, respectively. The S atom has a distorted tetra­hedral configuration in all three compounds. In the crystals, C—H⋯O hydrogen bonds give rise to R22(12) inversion dimers for compound (1), and to R22(24) inversion dimers and R44(40) ring motifs for compound (2). The crystal packing in (1) also features C—H⋯π and ππ inter­actions [shortest inter­centroid distance = 3.684 (1) Å], leading to supra­molecular three-dimensional aggregation. In the crystal of compound (2), the combination of the various C—H⋯O hydrogen bonds leads to the formation of a three-dimensional network. In the crystal of compound (3), mol­ecules are linked by C—H⋯O hydrogen bonds, forming chains running parallel to the a axis, and the chains are linked by C—H⋯π inter­actions, forming corrugated sheets parallel to the ab plane.

1. Chemical context

Carbazoles are widely used as building blocks for new organic materials and play an important role in electroactive and photoactive devices. Carbazole derivatives have also been used as luminescent and hole-transporting materials (Dijken et al., 2004[Dijken, A. V., Bastiaansen, J. J. A. M., Kiggen, N. M. M., Langeveld, B. M. W., Rothe, C., Monkman, A., Bach, I., Stössel, P. & Brunner, K. (2004). J. Am. Chem. Soc. 126, 7718-7727.]). These compounds are also thermally and phytochemically stable which makes them useful materials for technological applications (Diaz et al., 2002[Diaz, J. L., Villacampa, B., Lopez-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240-2251.]).

Heterocycle-containing carbazole derivatives are embodied in many natural products (Itoigawa et al., 2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K.-H. (2000). J. Nat. Prod. 63, 893-897.]) and display a broad spectrum of useful biological activities, such as anti­tumour, anti­mitotic and anti­oxidative activities (Prudhomme, 2003[Prudhomme, M. (2003). Eur. J. Med. Chem. 38, 123-140.]; Tachibana et al., 2003[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2003). J. Agric. Food Chem. 51, 6461-6467.]; Hu et al., 2006[Hu, L., Li, Z., Li, Y., Qu, J., Ling, Y.-H., Jiang, J. & Boykin, D. W. (2006). J. Med. Chem. 49, 6273-6282.]). A number of benzo-annulated carbazole ring systems containing an aromatic ring fused to the carbazole nucleus are potential candidates for cancer treatment as a result of their DNA inter­calative binding properties. They have been shown to bind to estrogen receptors and exhibit a pronounced anti­tumor activity against leukemia, renal tumor, colon cancer and malignant melanoma tumor cell lines (Pindur & Lemster, 1997[Pindur, U. & Lemster, T. (1997). In Recent Research Developments in Organic and Bioorganic Chemistry, Vol. 1, edited by S. G. Pandalai, pp. 33-54. Trivandrum India: Transworld Research Network.]).

[Scheme 1]

Most heterocycle-containing carbazoles reported in the literature comprise a common heterocyclic ring moiety fused with a carbazole ring system, such as pyridocarbazoles and indolocarbazoles. In this context, we discuss here three carbazole derivatives, two of which have benzo­furan moieties fused with the carbazole unit.

2. Structural commentary

The three title compounds C26H19NO3S, (1), C27H20N2O8S, (2), and C30H19NO3S, (3), are carbazole derivatives, where (1) and (3) are heterocycle-containing carbazoles with a benzo­furan fused to the carbazole skeleton (Figs. 1[link] and 3[link], respectively). In (2), a di­meth­oxy­nitro­phenyl ring is attached to the carbazole moiety (Fig. 2[link]). In the three derivatives, a phenyl­sulfonyl group is attached to the N atom of the carbazole unit. Compound (1) crystallizes with two independent mol­ecules (A and B) in the asymmetric unit, as shown in Fig. 1[link]. The carbazole skeleton in the three compounds is essentially planar [maximum deviations of 0.052 (2) Å for atom C12 in mol­ecule A and 0.080 (2) Å for atom C12′ in mol­ecule B of (1), −0.034 (2) Å for atom C10 in (2), and −0.042 (4) Å for atom C3 in (3)]. The carbazole benzo­furan fused penta­cyclic unit is almost planar in (1) and (3), with dihedral angles between the benzo­furan and carbazole units being 2.48 (6) and 4.16 (6)° in mol­ecules A and B, respectively of (1), and 2.33 (8)° in compound (3). In compound (1), the benzene ring of the phenyl­sulfonyl group is almost orthogonal to the carbazole moiety, with the dihedral angles between their mean planes being 85.42 (9) and 84.52 (9)° in mol­ecules A and B, respectively. The benzene ring of the phenyl­sulfonyl group in compounds (2) and (3) are inclined to the carbazole moiety making dihedral angles of 70.73 (12) and 81.73 (12)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of compound (1), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. The intra­molecular C—H⋯O hydrogen bonds, which generate two S(6) ring motifs, are shown as dashed lines (see Table 1[link]).
[Figure 3]
Figure 3
The mol­ecular structure of compound (3), showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level. The intra­molecular C—H⋯O hydrogen bonds, which generate two S(6) ring motifs, are shown as dashed lines (see Table 3[link]).
[Figure 2]
Figure 2
The mol­ecular structure of compound (2), showing the atom-numbering scheme and displacement ellipsoids are drawn at the 30% probability level. The intra­molecular O—H⋯O and C—H⋯O hydrogen bonds, which generate three S(6) ring motifs, are shown as dashed lines (see Table 2[link]).

In all three compounds, there are two intra­molecular C—H⋯O hydrogen bonds, involving the sulfonyl ring O atoms forming two cyclic S(6) motifs (Tables 1[link], 2[link] and 3[link]). In compound (2), an O—H⋯O hydrogen bond generates an additional S(6) ring motif (Table 2[link]). Atom S1 has a distorted tetra­hedral geometry in all three compounds. The widening of angle O2=S1=O1 [119.55 (10) and 119.46 (10)° in mol­ecules A and B, respectively, of (1), 119.78 (10)° in (2) and 119.99 (13)° in (3)] and narrowing of angle N—S—C [104.85 (9) and 104.82 (9)° in mol­ecules A and B, respectively, of (1), 102.92 (9)° in (2) and 105.79 (12)° in (3)] from the ideal tetra­hedral value are attributed to the Thorpe–Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). As a result of the electron-withdrawing character of the phenyl­sulfonyl group, the bond lengths N1—C5 [1.430 (2) and 1.431 (2) Å in mol­ecules A and B of (1), 1.429 (3) Å in (2) and 1.432 (4) Å in (3)] and N1—C8 [1.428 (2) and 1.425 (2) Å in mol­ecules A and B of (1), 1.414 (2) Å in (2) and 1.432 (3) Å in (3)] in all three compounds are longer than the normal value of 1.355 (14) Å [Cambridge Structural Database (CSD), Version 5.37; last update May 2016,; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]].

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

Cg1, Cg4, Cg6, Cg17 and Cg20 are the centoids of rings O3/C10/C11/C13/C14, C7–C12, C21–C26, O3′/C10′/C11′/C13′/C14′ and C7′–C12′, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2 0.93 2.35 2.954 (3) 122
C4′—H4′⋯O1′ 0.93 2.36 2.966 (3) 122
C9—H9⋯O1 0.93 2.29 2.881 (2) 121
C9′—H9′⋯O2′ 0.93 2.28 2.875 (2) 121
C4—H4⋯O2i 0.93 2.53 3.277 (3) 137
C20′—H20ACg17ii 0.96 2.82 3.449 (3) 124
C20′—H20CCg20ii 0.96 2.79 3.427 (3) 125
C20—H20DCg4iii 0.96 2.83 3.464 (3) 124
C20′—H20CCg1iii 0.96 2.85 3.478 (3) 124
C25′—H25′⋯Cg6iv 0.93 2.90 3.762 (3) 155
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z.

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4 0.82 1.83 2.554 (3) 146
C4—H4⋯O1 0.93 2.29 2.866 (3) 119
C9—H9⋯O2 0.93 2.47 3.054 (2) 121
C2—H2⋯O5i 0.93 2.50 3.281 (3) 142
C17—H17⋯O8ii 0.93 2.59 3.481 (5) 161
C18—H18⋯O2iii 0.93 2.51 3.384 (5) 157
C26—H26C⋯O4iv 0.96 2.50 3.265 (4) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (3)[link]

Cg3 and Cg4 are the centroids of rings C1–C6 and C7–C12, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1 0.93 2.34 2.924 (4) 121
C9—H9⋯O2 0.93 2.34 2.926 (3) 121
C2—H2⋯O3i 0.93 2.57 3.464 (4) 160
C17—H17⋯Cg4ii 0.93 2.81 3.683 (3) 156
C22—H22⋯Cg3iii 0.93 2.95 3.722 (3) 141
Symmetry codes: (i) x-1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

In compound (2), the di­meth­oxy­nitro­phenyl ring makes a dihedral angle of 76.63 (8)° with the carbazole moiety. The nitro group in (2) is (+) syn-periplanar to the phenyl ring (atoms C20–C25), as indicated by the values of the torsion angles C24—C25—N2—O6 = 21.4 (3)° and C20—C25—N2—O5 = 19.9 (3)°. The torsion angles C22—C23—O8—C27 = −174.6 (2)° and C23—C22—O7—C26 = 175.9 (2)° indicate that the two meth­oxy substituents at C23 and C22 are almost coplanar with the phenyl ring.

In compound (3), the phenyl ring attached at C12 is oriented at a dihedral angle of 78.39 (11)° to the carbazole unit.

3. Supra­molecular features

In the crystal of compound (1), mol­ecules are linked via C4—H4⋯O2 and C4′—H4′⋯O1′ hydrogen bonds, generating two [R_{2}^{2}](12) inversion dimers (Table 1[link] and Fig. 4[link]). The crystal packing also features C—H⋯π (Table 1[link]) and ππ inter­actions leading to supra­molecular three-dimensional aggregation. The ππ inter­actions involve inversion related A mol­ecules with an inter­centroid distance Cg4⋯Cg4i = 3.703 (2) Å [where Cg4 is the centroid of ring C7–C12; symmetry code: (i) −x + 2, −y + 1, −z + 1], and inversion related B mol­ecules, with an inter­centroid distance Cg20⋯Cg20ii = 3.684 (2) Å [where Cg20 is the centroid of ring C7′–C12′; symmetry code: (ii) −x + 1, −y + 1, −z].

[Figure 4]
Figure 4
The crystal packing of compound (1), viewed along the a-axis, showing the formation of centrosymmetric A—A dimers, with descriptor [R_{2}^{2}](12). The dashed lines indicate the inter­molecular C—H⋯O hydrogen bonds (Table 1[link]) and H atoms not involved in hydrogen bonding, and the phenyl ring of the phenyl­sulfonate groups, have been excluded for clarity.

In the crystal of compound (2), neighbouring mol­ecules are linked by C18—H18⋯O2iii and C26—H26C⋯O4iv hydrogen bonds forming [R_{4}^{4}](40) ring motifs resulting in the formation of sheets parallel to the bc plane (Table 2[link] and Fig. 5[link]). Mol­ecules are also linked via C2—H2⋯O5i hydrogen bonds which form [R_{2}^{2}](24) inversion dimers. These dimers are further crosslinked by C17—H17⋯O8ii hydrogen bonds (Table 2[link]), forming sheets parallel to plane ([\overline{1}]02); as shown in Fig. 6[link]. The sum of these inter­actions is the formation of a three-dimensional hydrogen-bonded framework.

[Figure 5]
Figure 5
The crystal packing of compound (2), viewed along the a axis, showing the formation of [R_{4}^{4}](40) graph-set ring motifs, resulting in the formation of sheets parallel to the bc plane. The dashed lines indicate the C—H⋯O hydrogen bonds (Table 2[link]), and H atoms not involved in the hydrogen bonding have been excluded for clarity.
[Figure 6]
Figure 6
The crystal packing of compound (2), viewed normal to plane ([\overline{2}]04), showing the formation of [R_{2}^{2}](24) graph-set ring motifs, resulting in the formation of sheets parallel to plane ([\overline{2}]04). The dashed lines indicate the inter­molecular C—H⋯O hydrogen bonds (Table 2[link]), and H atoms not involved in the hydrogen bonding have been excluded for clarity.

In the crystal of compound (3), mol­ecules are linked through C2—H2⋯O3i hydrogen bonds (Table 3[link]), that generate infinite one-dimensional C(9) chains running parallel to the a axis (Fig. 7[link]). The chains are further crosslinked by C17—H17⋯Cg4ii and C22—H22⋯Cg3iii inter­actions (Table 3[link]), which results in the formation corrugated sheets parallel to the ab plane.

[Figure 7]
Figure 7
The crystal packing of compound (3), viewed along the b axis, showing the C—H⋯O hydrogen bonds (dashed lines; Table 3[link]), which generate C(9) chains running parallel to the a axis. H atoms not involved in the hydrogen bonding, and the phenyl­sulfonate groups, have been excluded for clarity.

4. Database survey

A search of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed two closely related structures including the parent compound 7H-1-benzofuro[2,3-b]carbazole (Panchatcharam et al., 2011a[Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2011a). Acta Cryst. E67, o2797.]). This carbazole–benzo­furan fused penta­cyclic unit crystallizes in the space group Pca21. However, compound 7-phenyl­sufonyl-7H-benzo­furan­[2,3-b]carbazole (Panchatcharam et al., 2011b[Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2011b). Acta Cryst. E67, o2829.]) is the closest analogue to the title compounds (1) and (3), and crystallizes in the space group P21/c. The presence of an ethyl or phenyl substituent attached to the carbazole unit does not cause much variation in the structural parameters. The packing of the title compounds are consolidated by C–H⋯O inter­actions, but the related compounds exhibit only C—H⋯π and ππ inter­actions.

A similar search conducted for compound (2) gave 10 hits of compounds having a phenyl ring attached to a 7-phenyl­sulfonyl-7H-benzo­furan­[2,3-b]carbazole skeleton. The closest analogues to compound (2) are 2-(4,5-dimeth­oxy-2-nitro­phen­yl)-4-meth­oxy-3-methyl-9-phenyl­sulfonyl-9H-carbazole (Narayanan et al., 2014a[Narayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014a). Acta Cryst. E70, o336-o337.]) and 2-(4,5-dimeth­oxy-2-nitro­phen­yl)-4-meth­oxy-9-phenyl­sufonyl-9Hcarbazole-3-carbaldehyde (Narayanan et al., 2014b[Narayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014b). Acta Cryst. E70, o424-o425.]). Both crystallize in the space group Pca21, and differ from compound (2) only in the groups attached to the substituted phenyl ring of the carbazole moiety.

5. Synthesis and crystallization

For the preparation of compound (1), a solution of [1-(phenyl­sulfon­yl)-3-propionyl-1H-indol-2-yl]methyl pivalate (0.1 g, 2.34 mmol), anhydrous SnCl4 (0.07 g, 2.81 mmol) and benzo­furan (0.033 g, 2.81 mmol) in dry DCE (10 ml) was stirred at room temperature under a nitro­gen atmosphere for 3 h. After the completion of the reaction (monitored by thin-layer chromatography, TLC), it was poured into ice water (100 ml), the organic layer was separated and the aqueous layer was extracted with DCM (2 × 20 ml). The combined extract was washed with water (3 × 50 ml) and dried (Na2SO4). Removal of solvent followed by column chromatographic purification (silica gel; hexa­ne–ethyl acetate, 8:2 v/v) led to the isolation of compound (1) as a colourless solid (yield 0.064 g, 64%; m.p. 483–485 K).

For the preparation of compound (2), to a solution of 4-meth­oxy­carbazole-3-carbaldehydes (0.82 g, 1.5 mmol) in dry DCM (20 ml), 1 M solution of BBr3 (1.65 ml, 1.65 mmol) in DCM was added at 273 K. After completion of the reaction (monitored by TLC), it was poured into ice water (50 ml) containing HCl (5 ml). The organic layer was separated and the aqueous layer was then extracted with DCM (2 × 10 ml). The combined organic layer was washed water (2 × 30 ml) and dried (Na2SO4). Removal of the solvent followed by trituration of the crude product with MeOH (10 ml) gave compound (2) as a pale-yellow solid (yield 0.73 g, 92%; m.p. 467–469 K).

For the preparation of compound (3), a solution of [3-benzoyl-1-(phenyl­sulfon­yl)-1H-indol-2-yl]methyl pivalate (0.1 g, 2.11 mmol), anhydrous SnCl4 (0.066 g, 2.52 mmol) and benzo­furan (0.03 g, 2.52 mmol) in dry DCE (10 ml) was stirred at room temperature under a nitro­gen atmosphere for 3 h. After the completion of the reaction (monitored by TLC), it was poured into ice water (100 ml), the organic layer was separated and the aqueous layer was extracted with DCM (2 × 20 ml). The combined extract was washed with water (3 × 50 ml) and dried (Na2SO4). Removal of solvent followed by column chromatographic purification (silica gel; hexa­ne–ethyl acetate, 8:2 v/v) gave compound (3) as a colourless solid (yield 0.07 g, 70%; m.p. 491–493 K). Colourless block-like crystals were obtained by slow evaporation of a solution of (1) and (3) in ethyl acetate. Yellow block-like crystals were obtained by slow evaporation of a solution of (2) in methanol.

6. Refinement

Crystal data, data collection and structure refinement details for compounds (1), (2) and (3) are summarized in Table 4[link]. The H atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H = 0.93–0.97 Å, with Uiso(H)= 1.5Ueq(hy­droxy O and methyl C) and 1.2Ueq(C) for other H atoms. The methyl groups were allowed to rotate, but not to tip, to best fit the electron density.

Table 4
Experimental details

  (1) (2) (3)
Crystal data
Chemical formula C26H19NO3S C27H20N2O8S C30H19NO3S
Mr 425.48 532.51 473.52
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c Orthorhombic, P212121
Temperature (K) 296 296 296
a, b, c (Å) 8.3037 (2), 14.3468 (3), 18.4068 (5) 11.2133 (3), 14.5811 (4), 15.1509 (4) 10.6461 (10), 11.8994 (11), 18.2418 (16)
α, β, γ (°) 70.594 (1), 78.139 (1), 85.356 (1) 90, 102.320 (1), 90 90, 90, 90
V3) 2023.90 (8) 2420.16 (11) 2310.9 (4)
Z 4 4 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.19 0.19 0.17
Crystal size (mm) 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.936, 0.954 0.935, 0.953 0.941, 0.957
No. of measured, independent and observed [I > 2σ(I)] reflections 32388, 8968, 7032 42635, 6535, 4517 29269, 5055, 3194
Rint 0.022 0.025 0.061
(sin θ/λ)max−1) 0.643 0.690 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.01 0.047, 0.150, 1.00 0.042, 0.101, 1.00
No. of reflections 8968 6535 5055
No. of parameters 561 345 316
No. of restraints 0 0 1
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.67, −0.37 0.33, −0.46 0.16, −0.25
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2189 Friedel pairs
Absolute structure parameter 0.08 (9)
Computer programs: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

(1) 12-Ethyl-7-phenylsulfonyl-7H-benzofuro[2,3-b]carbazole top
Crystal data top
C26H19NO3SZ = 4
Mr = 425.48F(000) = 888
Triclinic, P1Dx = 1.396 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3037 (2) ÅCell parameters from 8968 reflections
b = 14.3468 (3) Åθ = 1.5–27.2°
c = 18.4068 (5) ŵ = 0.19 mm1
α = 70.594 (1)°T = 296 K
β = 78.139 (1)°Block, colourless
γ = 85.356 (1)°0.35 × 0.30 × 0.25 mm
V = 2023.90 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8968 independent reflections
Radiation source: fine-focus sealed tube7032 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω & φ scansθmax = 27.2°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.936, Tmax = 0.954k = 1813
32388 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.955P]
where P = (Fo2 + 2Fc2)/3
8968 reflections(Δ/σ)max < 0.001
561 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7000 (3)0.23489 (15)0.65728 (12)0.0518 (5)
H10.65020.27700.68460.062*
C1'0.3087 (3)0.35673 (16)0.15171 (12)0.0468 (5)
H1'0.28110.42080.17990.056*
C20.6984 (3)0.13356 (17)0.69399 (14)0.0619 (6)
H20.64740.10770.74630.074*
C2'0.3273 (3)0.28301 (18)0.18562 (13)0.0558 (6)
H2'0.31120.29770.23680.067*
C3'0.3696 (3)0.18749 (17)0.14461 (14)0.0561 (6)
H3'0.38280.13930.16900.067*
C30.7715 (3)0.07018 (16)0.65380 (14)0.0603 (6)
H30.76850.00240.67960.072*
C4'0.3926 (3)0.16229 (15)0.06827 (13)0.0481 (5)
H4'0.42150.09820.04080.058*
C40.8488 (3)0.10544 (14)0.57628 (13)0.0507 (5)
H40.89850.06280.54940.061*
C5'0.3710 (2)0.23655 (14)0.03417 (11)0.0375 (4)
C50.8495 (2)0.20709 (13)0.53989 (11)0.0395 (4)
C6'0.3317 (2)0.33431 (13)0.07473 (10)0.0355 (4)
C60.7773 (2)0.27308 (13)0.57885 (11)0.0390 (4)
C7'0.3200 (2)0.39194 (13)0.02196 (10)0.0316 (4)
C70.8033 (2)0.37338 (13)0.52354 (10)0.0351 (4)
C80.8888 (2)0.36459 (12)0.45138 (10)0.0329 (4)
C8'0.3470 (2)0.32578 (12)0.05125 (10)0.0319 (4)
C90.9360 (2)0.44497 (13)0.38509 (10)0.0354 (4)
H90.99380.43880.33790.043*
C9'0.3411 (2)0.35445 (13)0.11646 (10)0.0351 (4)
H9'0.35930.31080.16440.042*
C10'0.3060 (2)0.45326 (13)0.10416 (10)0.0331 (4)
C100.8897 (2)0.53486 (12)0.39514 (10)0.0337 (4)
C110.8055 (2)0.54828 (13)0.46460 (10)0.0345 (4)
C11'0.2811 (2)0.52240 (12)0.03310 (10)0.0312 (4)
C12'0.2920 (2)0.49311 (12)0.03285 (10)0.0311 (4)
C120.7653 (2)0.46682 (13)0.53194 (11)0.0382 (4)
C13'0.2429 (2)0.61493 (13)0.04986 (11)0.0356 (4)
C130.7802 (2)0.65476 (13)0.44577 (11)0.0393 (4)
C14'0.2500 (2)0.59338 (13)0.12880 (11)0.0391 (4)
C140.8538 (2)0.69530 (13)0.36753 (11)0.0395 (4)
C15'0.2182 (3)0.66080 (16)0.16837 (13)0.0537 (5)
H15'0.22450.64330.22110.064*
C150.8558 (3)0.79472 (14)0.32618 (13)0.0501 (5)
H150.90800.81910.27390.060*
C160.7764 (4)0.85641 (15)0.36614 (14)0.0643 (7)
H160.77350.92410.34030.077*
C16'0.1766 (3)0.75549 (17)0.12644 (14)0.0639 (7)
H16'0.15430.80340.15110.077*
C170.7011 (4)0.81913 (16)0.44405 (15)0.0712 (8)
H170.64840.86230.46970.085*
C17'0.1677 (3)0.78012 (16)0.04815 (15)0.0648 (7)
H17'0.13950.84450.02100.078*
C180.7025 (3)0.71908 (16)0.48456 (13)0.0567 (6)
H180.65200.69510.53710.068*
C18'0.1997 (3)0.71123 (15)0.00921 (13)0.0496 (5)
H18'0.19250.72890.04340.060*
C19'0.2730 (2)0.56711 (13)0.11114 (10)0.0359 (4)
H19A0.34240.54690.15270.043*
H19B0.31000.63110.11450.043*
C190.6875 (3)0.48089 (15)0.60964 (12)0.0453 (5)
H19C0.72440.42820.65200.054*
H19D0.72260.54320.61080.054*
C20'0.0955 (3)0.57674 (17)0.12336 (13)0.0525 (5)
H20A0.06000.51430.12250.079*
H20B0.08870.62560.17310.079*
H20C0.02620.59640.08220.079*
C200.5034 (3)0.48049 (19)0.62191 (15)0.0628 (6)
H20D0.46660.53380.58090.094*
H20E0.45720.48860.67170.094*
H20F0.46850.41880.62100.094*
C210.7629 (2)0.19838 (14)0.37307 (11)0.0411 (4)
C21'0.1572 (2)0.09554 (13)0.13654 (11)0.0376 (4)
C22'0.1101 (3)0.02676 (15)0.10739 (13)0.0489 (5)
H22'0.18820.00430.07880.059*
C220.6784 (3)0.28012 (17)0.33250 (13)0.0511 (5)
H220.72430.34260.31430.061*
C230.5248 (3)0.2671 (2)0.31958 (15)0.0630 (6)
H230.46610.32110.29290.076*
C23'0.0548 (3)0.00497 (18)0.12142 (15)0.0598 (6)
H23'0.08800.04170.10270.072*
C24'0.1696 (3)0.05186 (18)0.16283 (15)0.0622 (6)
H24'0.28040.03720.17150.075*
C240.4587 (3)0.1738 (2)0.34630 (16)0.0686 (7)
H240.35580.16530.33710.082*
C25'0.1225 (3)0.12049 (18)0.19168 (14)0.0595 (6)
H25'0.20140.15190.21960.071*
C250.5434 (3)0.0934 (2)0.38642 (16)0.0681 (7)
H250.49740.03100.40410.082*
C26'0.0421 (3)0.14267 (15)0.17911 (12)0.0488 (5)
H26'0.07500.18840.19890.059*
C260.6966 (3)0.10474 (17)0.40068 (14)0.0545 (5)
H260.75400.05060.42820.065*
N10.9229 (2)0.26237 (11)0.46133 (9)0.0378 (3)
N1'0.38545 (19)0.23058 (11)0.04342 (9)0.0366 (3)
O11.04367 (18)0.28737 (10)0.32125 (9)0.0513 (4)
O1'0.46157 (18)0.05262 (10)0.09012 (9)0.0534 (4)
O2'0.40205 (19)0.14614 (10)0.18312 (9)0.0520 (4)
O21.03320 (18)0.12012 (10)0.41762 (10)0.0551 (4)
O3'0.29021 (17)0.49510 (9)0.16273 (7)0.0414 (3)
O30.92329 (17)0.62339 (9)0.33564 (7)0.0411 (3)
S10.95872 (6)0.21460 (3)0.38890 (3)0.04001 (13)
S1'0.36624 (6)0.12527 (3)0.11770 (3)0.03903 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0642 (14)0.0404 (11)0.0413 (11)0.0003 (10)0.0025 (10)0.0054 (9)
C1'0.0568 (12)0.0498 (11)0.0361 (10)0.0062 (9)0.0102 (9)0.0147 (9)
C20.0790 (17)0.0445 (12)0.0454 (12)0.0047 (11)0.0017 (11)0.0024 (10)
C2'0.0675 (15)0.0655 (15)0.0409 (11)0.0130 (11)0.0092 (10)0.0237 (11)
C3'0.0646 (14)0.0575 (13)0.0536 (13)0.0127 (11)0.0009 (11)0.0322 (11)
C30.0820 (17)0.0326 (10)0.0551 (14)0.0020 (10)0.0134 (12)0.0011 (10)
C4'0.0541 (12)0.0416 (11)0.0498 (12)0.0054 (9)0.0018 (10)0.0201 (9)
C40.0675 (14)0.0319 (10)0.0512 (12)0.0036 (9)0.0141 (10)0.0105 (9)
C5'0.0358 (9)0.0397 (10)0.0380 (10)0.0059 (7)0.0034 (8)0.0147 (8)
C50.0461 (11)0.0326 (9)0.0381 (10)0.0009 (8)0.0118 (8)0.0069 (8)
C6'0.0317 (9)0.0410 (10)0.0339 (9)0.0064 (7)0.0030 (7)0.0127 (8)
C60.0447 (10)0.0331 (9)0.0365 (10)0.0006 (8)0.0097 (8)0.0064 (8)
C7'0.0280 (8)0.0362 (9)0.0296 (8)0.0034 (7)0.0052 (7)0.0089 (7)
C70.0395 (10)0.0325 (9)0.0318 (9)0.0000 (7)0.0083 (7)0.0077 (7)
C80.0349 (9)0.0299 (8)0.0364 (9)0.0006 (7)0.0101 (7)0.0122 (7)
C8'0.0287 (8)0.0295 (8)0.0360 (9)0.0027 (6)0.0066 (7)0.0076 (7)
C90.0381 (9)0.0358 (9)0.0329 (9)0.0002 (7)0.0054 (7)0.0127 (7)
C9'0.0392 (9)0.0324 (9)0.0323 (9)0.0025 (7)0.0117 (7)0.0052 (7)
C10'0.0332 (9)0.0363 (9)0.0310 (9)0.0038 (7)0.0081 (7)0.0105 (7)
C100.0362 (9)0.0317 (9)0.0318 (9)0.0040 (7)0.0076 (7)0.0068 (7)
C110.0405 (10)0.0316 (9)0.0331 (9)0.0006 (7)0.0093 (7)0.0115 (7)
C11'0.0271 (8)0.0317 (8)0.0323 (9)0.0029 (6)0.0051 (7)0.0067 (7)
C12'0.0262 (8)0.0338 (8)0.0301 (8)0.0033 (6)0.0046 (7)0.0059 (7)
C120.0456 (10)0.0351 (9)0.0326 (9)0.0003 (8)0.0071 (8)0.0098 (8)
C13'0.0331 (9)0.0354 (9)0.0358 (9)0.0028 (7)0.0034 (7)0.0097 (7)
C130.0501 (11)0.0308 (9)0.0358 (10)0.0010 (8)0.0088 (8)0.0086 (7)
C14'0.0438 (10)0.0340 (9)0.0371 (10)0.0027 (8)0.0052 (8)0.0093 (8)
C140.0485 (11)0.0341 (9)0.0377 (10)0.0002 (8)0.0126 (8)0.0115 (8)
C15'0.0736 (15)0.0469 (12)0.0424 (11)0.0001 (10)0.0061 (10)0.0199 (10)
C150.0706 (14)0.0350 (10)0.0415 (11)0.0050 (9)0.0123 (10)0.0062 (9)
C160.106 (2)0.0285 (10)0.0549 (14)0.0030 (11)0.0158 (13)0.0090 (10)
C16'0.0921 (19)0.0433 (12)0.0568 (14)0.0079 (12)0.0032 (13)0.0253 (11)
C170.116 (2)0.0370 (12)0.0573 (15)0.0125 (13)0.0063 (14)0.0199 (11)
C17'0.0923 (19)0.0353 (11)0.0606 (15)0.0141 (11)0.0116 (13)0.0126 (10)
C180.0833 (17)0.0397 (11)0.0430 (12)0.0056 (11)0.0025 (11)0.0152 (9)
C18'0.0629 (13)0.0377 (10)0.0436 (11)0.0062 (9)0.0104 (10)0.0085 (9)
C19'0.0340 (9)0.0389 (9)0.0301 (9)0.0037 (7)0.0047 (7)0.0050 (7)
C190.0513 (12)0.0428 (10)0.0399 (10)0.0003 (9)0.0102 (9)0.0104 (9)
C20'0.0413 (11)0.0633 (14)0.0463 (12)0.0031 (10)0.0127 (9)0.0072 (10)
C200.0562 (14)0.0605 (14)0.0663 (15)0.0004 (11)0.0108 (12)0.0138 (12)
C210.0450 (11)0.0447 (10)0.0381 (10)0.0006 (8)0.0028 (8)0.0224 (9)
C21'0.0449 (10)0.0280 (8)0.0351 (9)0.0010 (7)0.0104 (8)0.0023 (7)
C22'0.0543 (12)0.0393 (10)0.0532 (12)0.0039 (9)0.0105 (10)0.0140 (9)
C220.0563 (13)0.0547 (12)0.0462 (12)0.0050 (10)0.0114 (10)0.0218 (10)
C230.0580 (14)0.0840 (18)0.0567 (14)0.0142 (13)0.0197 (11)0.0339 (13)
C23'0.0594 (14)0.0546 (13)0.0662 (15)0.0148 (11)0.0174 (12)0.0141 (12)
C24'0.0467 (13)0.0615 (14)0.0648 (15)0.0098 (11)0.0130 (11)0.0011 (12)
C240.0477 (13)0.108 (2)0.0646 (16)0.0109 (14)0.0066 (12)0.0463 (16)
C25'0.0515 (13)0.0601 (14)0.0533 (13)0.0051 (11)0.0016 (10)0.0086 (11)
C250.0609 (15)0.0781 (18)0.0716 (17)0.0225 (13)0.0026 (13)0.0333 (15)
C26'0.0559 (13)0.0429 (11)0.0442 (11)0.0001 (9)0.0064 (9)0.0117 (9)
C260.0582 (13)0.0507 (12)0.0570 (13)0.0068 (10)0.0061 (11)0.0221 (11)
N10.0467 (9)0.0292 (7)0.0376 (8)0.0022 (6)0.0092 (7)0.0107 (6)
N1'0.0413 (8)0.0304 (7)0.0376 (8)0.0015 (6)0.0080 (7)0.0098 (6)
O10.0518 (8)0.0470 (8)0.0513 (8)0.0048 (6)0.0090 (7)0.0211 (7)
O1'0.0515 (9)0.0375 (7)0.0717 (10)0.0136 (6)0.0170 (7)0.0185 (7)
O2'0.0694 (10)0.0401 (7)0.0503 (8)0.0021 (7)0.0325 (7)0.0077 (6)
O20.0536 (9)0.0398 (8)0.0729 (10)0.0133 (6)0.0095 (8)0.0241 (7)
O3'0.0576 (8)0.0352 (7)0.0335 (7)0.0001 (6)0.0126 (6)0.0117 (5)
O30.0530 (8)0.0315 (6)0.0334 (7)0.0025 (6)0.0019 (6)0.0067 (5)
S10.0404 (3)0.0345 (2)0.0461 (3)0.00394 (19)0.0029 (2)0.0185 (2)
S1'0.0431 (3)0.0288 (2)0.0450 (3)0.00405 (18)0.0160 (2)0.00813 (19)
Geometric parameters (Å, º) top
C1—C21.385 (3)C15'—H15'0.9300
C1—C61.395 (3)C15—C161.378 (3)
C1—H10.9300C15—H150.9300
C1'—C2'1.380 (3)C16—C171.382 (3)
C1'—C6'1.395 (3)C16—H160.9300
C1'—H1'0.9300C16'—C17'1.381 (3)
C2—C31.384 (3)C16'—H16'0.9300
C2—H20.9300C17—C181.381 (3)
C2'—C3'1.384 (3)C17—H170.9300
C2'—H2'0.9300C17'—C18'1.382 (3)
C3'—C4'1.380 (3)C17'—H17'0.9300
C3'—H3'0.9300C18—H180.9300
C3—C41.378 (3)C18'—H18'0.9300
C3—H30.9300C19'—C20'1.525 (3)
C4'—C5'1.389 (3)C19'—H19A0.9700
C4'—H4'0.9300C19'—H19B0.9700
C4—C51.388 (3)C19—C201.499 (3)
C4—H40.9300C19—H19C0.9700
C5'—C6'1.401 (3)C19—H19D0.9700
C5'—N1'1.431 (2)C20'—H20A0.9600
C5—C61.397 (3)C20'—H20B0.9600
C5—N11.430 (2)C20'—H20C0.9600
C6'—C7'1.455 (2)C20—H20D0.9600
C6—C71.463 (2)C20—H20E0.9600
C7'—C12'1.405 (2)C20—H20F0.9600
C7'—C8'1.417 (2)C21—C261.385 (3)
C7—C121.403 (2)C21—C221.388 (3)
C7—C81.412 (2)C21—S11.756 (2)
C8—C91.383 (2)C21'—C22'1.384 (3)
C8—N11.428 (2)C21'—C26'1.388 (3)
C8'—C9'1.383 (2)C21'—S1'1.757 (2)
C8'—N1'1.424 (2)C22'—C23'1.382 (3)
C9—C101.376 (2)C22'—H22'0.9300
C9—H90.9300C22—C231.383 (3)
C9'—C10'1.376 (2)C22—H220.9300
C9'—H9'0.9300C23—C241.379 (4)
C10'—O3'1.378 (2)C23—H230.9300
C10'—C11'1.398 (2)C23'—C24'1.371 (4)
C10—O31.378 (2)C23'—H23'0.9300
C10—C111.391 (2)C24'—C25'1.378 (4)
C11—C121.394 (2)C24'—H24'0.9300
C11—C131.457 (2)C24—C251.374 (4)
C11'—C12'1.395 (2)C24—H240.9300
C11'—C13'1.457 (2)C25'—C26'1.383 (3)
C12'—C19'1.509 (2)C25'—H25'0.9300
C12—C191.515 (3)C25—C261.384 (3)
C13'—C18'1.393 (3)C25—H250.9300
C13'—C14'1.394 (3)C26'—H26'0.9300
C13—C141.388 (3)C26—H260.9300
C13—C181.389 (3)N1—S11.6573 (16)
C14'—C15'1.372 (3)N1'—S1'1.6596 (15)
C14'—O3'1.383 (2)O1—S11.4257 (15)
C14—C151.375 (3)O1'—S1'1.4225 (14)
C14—O31.381 (2)O2'—S1'1.4245 (15)
C15'—C16'1.377 (3)O2—S11.4219 (14)
C2—C1—C6119.2 (2)C15'—C16'—H16'119.6
C2—C1—H1120.4C17'—C16'—H16'119.6
C6—C1—H1120.4C18—C17—C16121.4 (2)
C2'—C1'—C6'119.4 (2)C18—C17—H17119.3
C2'—C1'—H1'120.3C16—C17—H17119.3
C6'—C1'—H1'120.3C16'—C17'—C18'121.5 (2)
C3—C2—C1120.9 (2)C16'—C17'—H17'119.2
C3—C2—H2119.6C18'—C17'—H17'119.2
C1—C2—H2119.6C17—C18—C13119.1 (2)
C1'—C2'—C3'121.0 (2)C17—C18—H18120.5
C1'—C2'—H2'119.5C13—C18—H18120.5
C3'—C2'—H2'119.5C17'—C18'—C13'119.1 (2)
C4'—C3'—C2'121.3 (2)C17'—C18'—H18'120.4
C4'—C3'—H3'119.3C13'—C18'—H18'120.4
C2'—C3'—H3'119.3C12'—C19'—C20'112.29 (15)
C4—C3—C2121.40 (19)C12'—C19'—H19A109.1
C4—C3—H3119.3C20'—C19'—H19A109.1
C2—C3—H3119.3C12'—C19'—H19B109.1
C3'—C4'—C5'117.3 (2)C20'—C19'—H19B109.1
C3'—C4'—H4'121.3H19A—C19'—H19B107.9
C5'—C4'—H4'121.3C20—C19—C12111.13 (18)
C3—C4—C5117.4 (2)C20—C19—H19C109.4
C3—C4—H4121.3C12—C19—H19C109.4
C5—C4—H4121.3C20—C19—H19D109.4
C4'—C5'—C6'122.65 (18)C12—C19—H19D109.4
C4'—C5'—N1'128.82 (18)H19C—C19—H19D108.0
C6'—C5'—N1'108.53 (15)C19'—C20'—H20A109.5
C4—C5—C6122.67 (18)C19'—C20'—H20B109.5
C4—C5—N1128.59 (18)H20A—C20'—H20B109.5
C6—C5—N1108.72 (15)C19'—C20'—H20C109.5
C1'—C6'—C5'118.27 (17)H20A—C20'—H20C109.5
C1'—C6'—C7'133.70 (18)H20B—C20'—H20C109.5
C5'—C6'—C7'108.01 (15)C19—C20—H20D109.5
C1—C6—C5118.48 (17)C19—C20—H20E109.5
C1—C6—C7133.59 (18)H20D—C20—H20E109.5
C5—C6—C7107.93 (16)C19—C20—H20F109.5
C12'—C7'—C8'120.72 (16)H20D—C20—H20F109.5
C12'—C7'—C6'132.15 (16)H20E—C20—H20F109.5
C8'—C7'—C6'107.11 (15)C26—C21—C22121.4 (2)
C12—C7—C8120.56 (16)C26—C21—S1119.59 (17)
C12—C7—C6132.36 (17)C22—C21—S1118.97 (16)
C8—C7—C6107.03 (15)C22'—C21'—C26'121.2 (2)
C9—C8—C7123.32 (16)C22'—C21'—S1'119.35 (16)
C9—C8—N1127.96 (16)C26'—C21'—S1'119.49 (15)
C7—C8—N1108.64 (15)C23'—C22'—C21'119.0 (2)
C9'—C8'—C7'123.27 (16)C23'—C22'—H22'120.5
C9'—C8'—N1'128.19 (16)C21'—C22'—H22'120.5
C7'—C8'—N1'108.50 (15)C23—C22—C21118.9 (2)
C10—C9—C8114.04 (16)C23—C22—H22120.6
C10—C9—H9123.0C21—C22—H22120.6
C8—C9—H9123.0C24—C23—C22120.0 (2)
C10'—C9'—C8'114.04 (16)C24—C23—H23120.0
C10'—C9'—H9'123.0C22—C23—H23120.0
C8'—C9'—H9'123.0C24'—C23'—C22'120.3 (2)
C9'—C10'—O3'122.56 (15)C24'—C23'—H23'119.9
C9'—C10'—C11'125.35 (16)C22'—C23'—H23'119.9
O3'—C10'—C11'112.09 (15)C23'—C24'—C25'120.7 (2)
C9—C10—O3122.68 (16)C23'—C24'—H24'119.6
C9—C10—C11125.31 (16)C25'—C24'—H24'119.6
O3—C10—C11112.01 (15)C25—C24—C23120.7 (2)
C10—C11—C12120.03 (16)C25—C24—H24119.7
C10—C11—C13105.15 (15)C23—C24—H24119.7
C12—C11—C13134.82 (17)C24'—C25'—C26'120.1 (2)
C12'—C11'—C10'120.06 (16)C24'—C25'—H25'120.0
C12'—C11'—C13'134.90 (16)C26'—C25'—H25'120.0
C10'—C11'—C13'105.02 (15)C24—C25—C26120.4 (2)
C11'—C12'—C7'116.44 (15)C24—C25—H25119.8
C11'—C12'—C19'121.11 (16)C26—C25—H25119.8
C7'—C12'—C19'122.45 (16)C25'—C26'—C21'118.9 (2)
C11—C12—C7116.57 (16)C25'—C26'—H26'120.6
C11—C12—C19120.53 (16)C21'—C26'—H26'120.6
C7—C12—C19122.89 (16)C25—C26—C21118.6 (2)
C18'—C13'—C14'117.35 (17)C25—C26—H26120.7
C18'—C13'—C11'136.85 (18)C21—C26—H26120.7
C14'—C13'—C11'105.77 (15)C8—N1—C5107.60 (14)
C14—C13—C18117.63 (17)C8—N1—S1124.36 (12)
C14—C13—C11105.65 (16)C5—N1—S1122.50 (12)
C18—C13—C11136.71 (18)C8'—N1'—C5'107.70 (14)
C15'—C14'—O3'124.13 (18)C8'—N1'—S1'124.55 (13)
C15'—C14'—C13'124.26 (18)C5'—N1'—S1'122.61 (12)
O3'—C14'—C13'111.60 (16)C10'—O3'—C14'105.49 (13)
C15—C14—O3123.90 (18)C10—O3—C14105.43 (14)
C15—C14—C13124.36 (18)O2—S1—O1119.55 (9)
O3—C14—C13111.74 (15)O2—S1—N1106.87 (9)
C14'—C15'—C16'117.0 (2)O1—S1—N1107.03 (8)
C14'—C15'—H15'121.5O2—S1—C21108.71 (9)
C16'—C15'—H15'121.5O1—S1—C21108.85 (10)
C14—C15—C16116.6 (2)N1—S1—C21104.86 (8)
C14—C15—H15121.7O1'—S1'—O2'119.46 (9)
C16—C15—H15121.7O1'—S1'—N1'107.03 (9)
C15—C16—C17121.0 (2)O2'—S1'—N1'106.76 (8)
C15—C16—H16119.5O1'—S1'—C21'108.59 (9)
C17—C16—H16119.5O2'—S1'—C21'109.19 (9)
C15'—C16'—C17'120.7 (2)N1'—S1'—C21'104.82 (8)
C6—C1—C2—C30.3 (4)C18—C13—C14—O3178.70 (19)
C6'—C1'—C2'—C3'0.5 (3)C11—C13—C14—O30.0 (2)
C1'—C2'—C3'—C4'0.8 (4)O3'—C14'—C15'—C16'178.7 (2)
C1—C2—C3—C40.2 (4)C13'—C14'—C15'—C16'0.1 (3)
C2'—C3'—C4'—C5'0.2 (3)O3—C14—C15—C16178.0 (2)
C2—C3—C4—C50.4 (4)C13—C14—C15—C161.0 (3)
C3'—C4'—C5'—C6'1.6 (3)C14—C15—C16—C170.8 (4)
C3'—C4'—C5'—N1'179.34 (19)C14'—C15'—C16'—C17'0.1 (4)
C3—C4—C5—C60.6 (3)C15—C16—C17—C180.0 (5)
C3—C4—C5—N1178.7 (2)C15'—C16'—C17'—C18'0.1 (4)
C2'—C1'—C6'—C5'0.8 (3)C16—C17—C18—C130.5 (4)
C2'—C1'—C6'—C7'179.0 (2)C14—C13—C18—C170.3 (4)
C4'—C5'—C6'—C1'1.9 (3)C11—C13—C18—C17177.8 (2)
N1'—C5'—C6'—C1'178.86 (16)C16'—C17'—C18'—C13'0.4 (4)
C4'—C5'—C6'—C7'179.43 (17)C14'—C13'—C18'—C17'0.5 (3)
N1'—C5'—C6'—C7'0.2 (2)C11'—C13'—C18'—C17'178.1 (2)
C2—C1—C6—C50.5 (3)C11'—C12'—C19'—C20'91.9 (2)
C2—C1—C6—C7179.2 (2)C7'—C12'—C19'—C20'87.6 (2)
C4—C5—C6—C10.7 (3)C11—C12—C19—C2092.2 (2)
N1—C5—C6—C1179.08 (18)C7—C12—C19—C2088.9 (2)
C4—C5—C6—C7179.08 (19)C26'—C21'—C22'—C23'0.2 (3)
N1—C5—C6—C70.7 (2)S1'—C21'—C22'—C23'178.99 (16)
C1'—C6'—C7'—C12'5.1 (3)C26—C21—C22—C230.1 (3)
C5'—C6'—C7'—C12'176.55 (18)S1—C21—C22—C23179.50 (16)
C1'—C6'—C7'—C8'176.2 (2)C21—C22—C23—C240.5 (3)
C5'—C6'—C7'—C8'2.18 (19)C21'—C22'—C23'—C24'0.8 (3)
C1—C6—C7—C123.5 (4)C22'—C23'—C24'—C25'0.6 (4)
C5—C6—C7—C12176.2 (2)C22—C23—C24—C250.6 (4)
C1—C6—C7—C8179.1 (2)C23'—C24'—C25'—C26'0.1 (4)
C5—C6—C7—C81.2 (2)C23—C24—C25—C260.0 (4)
C12—C7—C8—C91.8 (3)C24'—C25'—C26'—C21'0.7 (3)
C6—C7—C8—C9179.51 (17)C22'—C21'—C26'—C25'0.5 (3)
C12—C7—C8—N1175.14 (16)S1'—C21'—C26'—C25'178.27 (16)
C6—C7—C8—N12.6 (2)C24—C25—C26—C210.6 (4)
C12'—C7'—C8'—C9'2.7 (3)C22—C21—C26—C250.6 (3)
C6'—C7'—C8'—C9'178.41 (16)S1—C21—C26—C25178.94 (18)
C12'—C7'—C8'—N1'175.16 (15)C9—C8—N1—C5179.77 (18)
C6'—C7'—C8'—N1'3.75 (19)C7—C8—N1—C53.0 (2)
C7—C8—C9—C101.0 (3)C9—C8—N1—S126.1 (3)
N1—C8—C9—C10177.35 (17)C7—C8—N1—S1157.12 (13)
C7'—C8'—C9'—C10'0.2 (3)C4—C5—N1—C8179.5 (2)
N1'—C8'—C9'—C10'177.62 (16)C6—C5—N1—C82.3 (2)
C8'—C9'—C10'—O3'178.07 (15)C4—C5—N1—S124.8 (3)
C8'—C9'—C10'—C11'1.4 (3)C6—C5—N1—S1156.96 (14)
C8—C9—C10—O3179.04 (16)C9'—C8'—N1'—C5'178.38 (17)
C8—C9—C10—C111.0 (3)C7'—C8'—N1'—C5'3.91 (19)
C9—C10—C11—C121.8 (3)C9'—C8'—N1'—S1'23.4 (3)
O3—C10—C11—C12178.11 (16)C7'—C8'—N1'—S1'158.95 (13)
C9—C10—C11—C13178.23 (17)C4'—C5'—N1'—C8'178.32 (19)
O3—C10—C11—C131.8 (2)C6'—C5'—N1'—C8'2.53 (19)
C9'—C10'—C11'—C12'0.4 (3)C4'—C5'—N1'—S1'22.7 (3)
O3'—C10'—C11'—C12'179.87 (15)C6'—C5'—N1'—S1'158.16 (13)
C9'—C10'—C11'—C13'178.22 (17)C9'—C10'—O3'—C14'178.07 (17)
O3'—C10'—C11'—C13'1.29 (19)C11'—C10'—O3'—C14'1.46 (19)
C10'—C11'—C12'—C7'3.2 (2)C15'—C14'—O3'—C10'177.89 (19)
C13'—C11'—C12'—C7'174.88 (18)C13'—C14'—O3'—C10'1.0 (2)
C10'—C11'—C12'—C19'177.26 (15)C9—C10—O3—C14178.21 (17)
C13'—C11'—C12'—C19'4.7 (3)C11—C10—O3—C141.9 (2)
C8'—C7'—C12'—C11'4.3 (2)C15—C14—O3—C10178.02 (19)
C6'—C7'—C12'—C11'177.12 (17)C13—C14—O3—C101.1 (2)
C8'—C7'—C12'—C19'176.17 (15)C8—N1—S1—O2163.27 (15)
C6'—C7'—C12'—C19'2.4 (3)C5—N1—S1—O246.32 (17)
C10—C11—C12—C74.5 (3)C8—N1—S1—O134.08 (17)
C13—C11—C12—C7175.6 (2)C5—N1—S1—O1175.50 (15)
C10—C11—C12—C19174.46 (17)C8—N1—S1—C2181.44 (16)
C13—C11—C12—C195.5 (3)C5—N1—S1—C2168.98 (16)
C8—C7—C12—C114.5 (3)C26—C21—S1—O210.56 (19)
C6—C7—C12—C11178.43 (19)C22—C21—S1—O2169.02 (15)
C8—C7—C12—C19174.43 (17)C26—C21—S1—O1142.30 (16)
C6—C7—C12—C192.6 (3)C22—C21—S1—O137.27 (18)
C12'—C11'—C13'—C18'1.1 (4)C26—C21—S1—N1103.44 (17)
C10'—C11'—C13'—C18'177.2 (2)C22—C21—S1—N176.98 (17)
C12'—C11'—C13'—C14'178.86 (19)C8'—N1'—S1'—O1'162.49 (14)
C10'—C11'—C13'—C14'0.59 (19)C5'—N1'—S1'—O1'46.03 (16)
C10—C11—C13—C141.1 (2)C8'—N1'—S1'—O2'33.47 (17)
C12—C11—C13—C14178.9 (2)C5'—N1'—S1'—O2'175.04 (14)
C10—C11—C13—C18177.2 (3)C8'—N1'—S1'—C21'82.31 (16)
C12—C11—C13—C182.8 (4)C5'—N1'—S1'—C21'69.18 (16)
C18'—C13'—C14'—C15'0.4 (3)C22'—C21'—S1'—O1'14.57 (18)
C11'—C13'—C14'—C15'178.65 (19)C26'—C21'—S1'—O1'166.59 (15)
C18'—C13'—C14'—O3'178.54 (17)C22'—C21'—S1'—O2'146.37 (15)
C11'—C13'—C14'—O3'0.3 (2)C26'—C21'—S1'—O2'34.79 (17)
C18—C13—C14—C150.4 (3)C22'—C21'—S1'—N1'99.55 (16)
C11—C13—C14—C15179.11 (19)C26'—C21'—S1'—N1'79.29 (16)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg4, Cg6, Cg17 and Cg20 are the centoids of rings O3/C10/C11/C13/C14, C7–C12, C21–C26, O3'/C10'/C11'/C13'/C14' and C7'–C12', respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O20.932.352.954 (3)122
C4—H4···O10.932.362.966 (3)122
C9—H9···O10.932.292.881 (2)121
C9—H9···O20.932.282.875 (2)121
C4—H4···O2i0.932.533.277 (3)137
C20—H20A···Cg17ii0.962.823.449 (3)124
C20—H20C···Cg20ii0.962.793.427 (3)125
C20—H20D···Cg4iii0.962.833.464 (3)124
C20—H20C···Cg1iii0.962.853.478 (3)124
C25—H25···Cg6iv0.932.903.762 (3)155
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z.
(2) 2-(4,5-Dimethoxy-2-nitrophenyl)-4-hydroxy-9-phenylsulfonyl-9H-carbazole-3-carbaldehyde top
Crystal data top
C27H20N2O8SF(000) = 1104
Mr = 532.51Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6535 reflections
a = 11.2133 (3) Åθ = 2.3–29.4°
b = 14.5811 (4) ŵ = 0.19 mm1
c = 15.1509 (4) ÅT = 296 K
β = 102.320 (1)°Block, colourless
V = 2420.16 (11) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6535 independent reflections
Radiation source: fine-focus sealed tube4517 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω & φ scansθmax = 29.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1513
Tmin = 0.935, Tmax = 0.953k = 1920
42635 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.068P)2 + 1.0361P]
where P = (Fo2 + 2Fc2)/3
6535 reflections(Δ/σ)max < 0.001
345 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6804 (3)0.56057 (17)0.45636 (16)0.0713 (6)
H10.65350.60070.49570.086*
C20.8008 (3)0.5346 (2)0.4706 (2)0.0874 (9)
H20.85590.55770.52040.105*
C30.8422 (3)0.4750 (2)0.4128 (2)0.0891 (8)
H30.92450.45950.42420.107*
C40.7646 (2)0.43809 (19)0.33878 (18)0.0713 (6)
H40.79230.39770.30010.086*
C50.64295 (18)0.46384 (15)0.32434 (13)0.0534 (5)
C60.5994 (2)0.52489 (14)0.38090 (13)0.0549 (5)
C70.47098 (19)0.53781 (13)0.34519 (13)0.0494 (4)
C80.43752 (17)0.48471 (12)0.26750 (12)0.0447 (4)
C90.31852 (17)0.47932 (12)0.21721 (12)0.0456 (4)
H90.29920.44330.16550.055*
C100.23043 (18)0.52915 (12)0.24661 (13)0.0478 (4)
C110.2616 (2)0.58639 (13)0.32419 (14)0.0543 (5)
C120.3826 (2)0.59004 (13)0.37285 (13)0.0557 (5)
C130.1699 (3)0.63906 (17)0.35558 (17)0.0733 (7)
H130.08930.63450.32400.088*
C140.45277 (18)0.27073 (13)0.25225 (14)0.0514 (4)
C150.3416 (2)0.23769 (17)0.2092 (2)0.0797 (7)
H150.30970.25090.14870.096*
C160.2785 (3)0.1842 (2)0.2586 (4)0.1212 (15)
H160.20320.15960.23080.145*
C170.3251 (5)0.1667 (2)0.3478 (4)0.1320 (19)
H170.28090.13110.38040.158*
C180.4361 (4)0.2011 (3)0.3895 (3)0.1163 (13)
H180.46670.18920.45050.140*
C190.5023 (3)0.2529 (2)0.34196 (18)0.0833 (8)
H190.57880.27560.36940.100*
C200.10327 (17)0.52421 (13)0.19144 (13)0.0485 (4)
C210.06126 (19)0.59499 (13)0.13086 (14)0.0535 (5)
H210.10940.64700.13140.064*
C220.04914 (18)0.59032 (14)0.07036 (14)0.0526 (5)
C230.12246 (18)0.51187 (15)0.06833 (13)0.0523 (5)
C240.08426 (19)0.44225 (14)0.12820 (14)0.0546 (5)
H240.13260.39050.12830.066*
C250.02706 (18)0.44943 (13)0.18874 (13)0.0504 (4)
C260.0294 (3)0.73900 (18)0.0125 (2)0.0880 (8)
H26A0.01780.76520.07180.132*
H26B0.07440.78110.03090.132*
H26C0.04860.72710.00170.132*
C270.3111 (3)0.4409 (2)0.0050 (2)0.0998 (11)
H27A0.27380.38450.00740.150*
H27B0.38310.45180.04100.150*
H27C0.33280.43700.06280.150*
N10.54318 (14)0.43996 (11)0.25235 (11)0.0480 (4)
N20.05889 (18)0.37377 (13)0.25278 (15)0.0636 (5)
O10.65435 (13)0.31079 (11)0.20126 (11)0.0646 (4)
O20.46032 (15)0.36250 (12)0.10740 (9)0.0624 (4)
O30.41687 (18)0.64230 (12)0.44680 (11)0.0771 (5)
H3A0.35750.67000.45670.116*
O40.1928 (2)0.68940 (14)0.42164 (13)0.0960 (6)
O50.1327 (2)0.38570 (13)0.32219 (12)0.0859 (6)
O60.0090 (2)0.30090 (13)0.23384 (19)0.1202 (9)
O70.09553 (15)0.65540 (11)0.00978 (11)0.0679 (4)
O80.22814 (14)0.51372 (12)0.00565 (11)0.0660 (4)
S10.53315 (4)0.34260 (3)0.19364 (3)0.04694 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0855 (17)0.0674 (14)0.0553 (12)0.0180 (12)0.0023 (11)0.0065 (10)
C20.0765 (18)0.095 (2)0.0761 (17)0.0219 (15)0.0172 (14)0.0047 (15)
C30.0605 (15)0.107 (2)0.0890 (19)0.0087 (15)0.0084 (14)0.0067 (17)
C40.0517 (12)0.0842 (17)0.0736 (15)0.0044 (11)0.0037 (11)0.0054 (13)
C50.0510 (11)0.0575 (11)0.0500 (10)0.0113 (9)0.0067 (8)0.0014 (9)
C60.0637 (12)0.0503 (10)0.0491 (10)0.0145 (9)0.0081 (9)0.0002 (8)
C70.0634 (12)0.0407 (9)0.0457 (9)0.0081 (8)0.0151 (8)0.0036 (7)
C80.0517 (10)0.0404 (9)0.0445 (9)0.0055 (7)0.0157 (8)0.0031 (7)
C90.0505 (10)0.0422 (9)0.0458 (9)0.0029 (7)0.0138 (8)0.0055 (7)
C100.0563 (11)0.0393 (9)0.0520 (10)0.0005 (8)0.0206 (8)0.0002 (7)
C110.0712 (13)0.0420 (9)0.0557 (11)0.0045 (9)0.0268 (10)0.0036 (8)
C120.0802 (14)0.0406 (9)0.0481 (10)0.0052 (9)0.0176 (10)0.0067 (8)
C130.0913 (18)0.0641 (14)0.0723 (15)0.0170 (12)0.0346 (13)0.0068 (11)
C140.0555 (11)0.0454 (9)0.0568 (11)0.0013 (8)0.0201 (9)0.0033 (8)
C150.0688 (15)0.0590 (14)0.110 (2)0.0134 (12)0.0169 (14)0.0089 (14)
C160.081 (2)0.074 (2)0.220 (5)0.0199 (16)0.056 (3)0.011 (3)
C170.145 (4)0.072 (2)0.218 (5)0.004 (2)0.127 (4)0.038 (3)
C180.171 (4)0.100 (2)0.098 (2)0.005 (3)0.073 (3)0.0353 (19)
C190.107 (2)0.0841 (18)0.0604 (14)0.0114 (16)0.0204 (14)0.0180 (13)
C200.0506 (10)0.0433 (9)0.0573 (11)0.0046 (8)0.0243 (8)0.0006 (8)
C210.0561 (11)0.0452 (10)0.0658 (12)0.0020 (8)0.0279 (10)0.0046 (9)
C220.0547 (11)0.0524 (10)0.0589 (11)0.0114 (9)0.0301 (9)0.0077 (9)
C230.0489 (10)0.0616 (12)0.0526 (10)0.0066 (9)0.0247 (8)0.0034 (9)
C240.0531 (11)0.0535 (11)0.0623 (12)0.0032 (9)0.0236 (9)0.0028 (9)
C250.0547 (11)0.0444 (10)0.0564 (11)0.0037 (8)0.0217 (9)0.0037 (8)
C260.108 (2)0.0609 (14)0.097 (2)0.0041 (14)0.0266 (17)0.0282 (14)
C270.0640 (16)0.125 (3)0.105 (2)0.0266 (16)0.0042 (15)0.041 (2)
N10.0430 (8)0.0530 (9)0.0485 (8)0.0045 (7)0.0110 (6)0.0055 (7)
N20.0637 (11)0.0504 (10)0.0770 (13)0.0043 (8)0.0156 (10)0.0102 (9)
O10.0527 (8)0.0739 (10)0.0719 (10)0.0082 (7)0.0235 (7)0.0076 (8)
O20.0753 (10)0.0752 (10)0.0372 (7)0.0096 (8)0.0127 (6)0.0036 (6)
O30.1079 (14)0.0637 (10)0.0587 (9)0.0009 (9)0.0157 (9)0.0251 (7)
O40.1246 (17)0.0882 (13)0.0835 (12)0.0285 (12)0.0407 (12)0.0271 (10)
O50.1136 (15)0.0743 (11)0.0630 (10)0.0168 (10)0.0036 (10)0.0174 (9)
O60.1217 (17)0.0587 (11)0.152 (2)0.0302 (11)0.0351 (15)0.0344 (12)
O70.0683 (10)0.0655 (9)0.0742 (10)0.0102 (7)0.0246 (8)0.0226 (8)
O80.0533 (8)0.0826 (11)0.0638 (9)0.0019 (8)0.0168 (7)0.0140 (8)
S10.0484 (3)0.0542 (3)0.0409 (2)0.00208 (19)0.01574 (18)0.00321 (18)
Geometric parameters (Å, º) top
C1—C21.374 (4)C16—H160.9300
C1—C61.400 (3)C17—C181.365 (6)
C1—H10.9300C17—H170.9300
C2—C31.382 (4)C18—C191.368 (4)
C2—H20.9300C18—H180.9300
C3—C41.374 (4)C19—H190.9300
C3—H30.9300C20—C251.381 (3)
C4—C51.386 (3)C20—C211.395 (3)
C4—H40.9300C21—C221.376 (3)
C5—C61.394 (3)C21—H210.9300
C5—N11.429 (2)C22—O71.345 (2)
C6—C71.439 (3)C22—C231.405 (3)
C7—C121.384 (3)C23—O81.352 (3)
C7—C81.392 (3)C23—C241.368 (3)
C8—C91.390 (3)C24—C251.386 (3)
C8—N11.414 (2)C24—H240.9300
C9—C101.375 (3)C25—N21.462 (3)
C9—H90.9300C26—O71.423 (3)
C10—C111.423 (3)C26—H26A0.9600
C10—C201.493 (3)C26—H26B0.9600
C11—C121.400 (3)C26—H26C0.9600
C11—C131.443 (3)C27—O81.410 (3)
C12—O31.342 (2)C27—H27A0.9600
C13—O41.224 (3)C27—H27B0.9600
C13—H130.9300C27—H27C0.9600
C14—C151.365 (3)N1—S11.6663 (16)
C14—C191.379 (3)N2—O51.204 (2)
C14—S11.744 (2)N2—O61.207 (3)
C15—C161.377 (5)O1—S11.4172 (15)
C15—H150.9300O2—S11.4154 (14)
C16—C171.365 (6)O3—H3A0.8200
C2—C1—C6118.0 (3)C17—C18—C19120.2 (4)
C2—C1—H1121.0C17—C18—H18119.9
C6—C1—H1121.0C19—C18—H18119.9
C1—C2—C3121.7 (2)C18—C19—C14118.3 (3)
C1—C2—H2119.1C18—C19—H19120.9
C3—C2—H2119.1C14—C19—H19120.9
C4—C3—C2121.6 (3)C25—C20—C21116.42 (19)
C4—C3—H3119.2C25—C20—C10124.47 (17)
C2—C3—H3119.2C21—C20—C10118.75 (17)
C3—C4—C5117.0 (3)C22—C21—C20122.10 (19)
C3—C4—H4121.5C22—C21—H21118.9
C5—C4—H4121.5C20—C21—H21118.9
C4—C5—C6122.5 (2)O7—C22—C21125.56 (19)
C4—C5—N1129.7 (2)O7—C22—C23114.83 (19)
C6—C5—N1107.75 (18)C21—C22—C23119.60 (18)
C5—C6—C1119.2 (2)O8—C23—C24125.75 (19)
C5—C6—C7107.83 (17)O8—C23—C22114.86 (18)
C1—C6—C7133.0 (2)C24—C23—C22119.4 (2)
C12—C7—C8118.74 (19)C23—C24—C25119.54 (19)
C12—C7—C6133.03 (18)C23—C24—H24120.2
C8—C7—C6108.22 (17)C25—C24—H24120.2
C9—C8—C7123.28 (17)C20—C25—C24122.93 (18)
C9—C8—N1128.65 (16)C20—C25—N2120.95 (19)
C7—C8—N1108.07 (16)C24—C25—N2116.09 (18)
C10—C9—C8117.68 (17)O7—C26—H26A109.5
C10—C9—H9121.2O7—C26—H26B109.5
C8—C9—H9121.2H26A—C26—H26B109.5
C9—C10—C11120.71 (19)O7—C26—H26C109.5
C9—C10—C20117.36 (17)H26A—C26—H26C109.5
C11—C10—C20121.86 (17)H26B—C26—H26C109.5
C12—C11—C10119.81 (18)O8—C27—H27A109.5
C12—C11—C13119.0 (2)O8—C27—H27B109.5
C10—C11—C13121.2 (2)H27A—C27—H27B109.5
O3—C12—C7118.0 (2)O8—C27—H27C109.5
O3—C12—C11122.32 (19)H27A—C27—H27C109.5
C7—C12—C11119.72 (17)H27B—C27—H27C109.5
O4—C13—C11123.3 (3)C8—N1—C5108.08 (15)
O4—C13—H13118.4C8—N1—S1121.10 (12)
C11—C13—H13118.4C5—N1—S1124.59 (14)
C15—C14—C19122.6 (2)O5—N2—O6122.2 (2)
C15—C14—S1119.18 (19)O5—N2—C25119.70 (18)
C19—C14—S1118.15 (18)O6—N2—C25118.1 (2)
C14—C15—C16117.6 (3)C12—O3—H3A109.5
C14—C15—H15121.2C22—O7—C26117.48 (19)
C16—C15—H15121.2C23—O8—C27117.93 (19)
C17—C16—C15120.7 (4)O2—S1—O1119.78 (9)
C17—C16—H16119.7O2—S1—N1106.14 (9)
C15—C16—H16119.7O1—S1—N1106.32 (9)
C18—C17—C16120.6 (3)O2—S1—C14109.52 (10)
C18—C17—H17119.7O1—S1—C14110.66 (10)
C16—C17—H17119.7N1—S1—C14102.92 (9)
C6—C1—C2—C30.0 (4)C9—C10—C20—C2199.0 (2)
C1—C2—C3—C40.7 (5)C11—C10—C20—C2178.0 (2)
C2—C3—C4—C50.5 (4)C25—C20—C21—C221.1 (3)
C3—C4—C5—C60.5 (4)C10—C20—C21—C22172.28 (17)
C3—C4—C5—N1177.3 (2)C20—C21—C22—O7179.71 (17)
C4—C5—C6—C11.3 (3)C20—C21—C22—C230.5 (3)
N1—C5—C6—C1178.70 (18)O7—C22—C23—O80.2 (2)
C4—C5—C6—C7178.6 (2)C21—C22—C23—O8179.13 (17)
N1—C5—C6—C71.2 (2)O7—C22—C23—C24179.03 (17)
C2—C1—C6—C51.0 (3)C21—C22—C23—C241.7 (3)
C2—C1—C6—C7178.9 (2)O8—C23—C24—C25179.69 (18)
C5—C6—C7—C12179.9 (2)C22—C23—C24—C251.2 (3)
C1—C6—C7—C120.0 (4)C21—C20—C25—C241.6 (3)
C5—C6—C7—C80.0 (2)C10—C20—C25—C24171.36 (18)
C1—C6—C7—C8179.9 (2)C21—C20—C25—N2176.43 (17)
C12—C7—C8—C91.9 (3)C10—C20—C25—N210.6 (3)
C6—C7—C8—C9178.26 (17)C23—C24—C25—C200.5 (3)
C12—C7—C8—N1178.64 (16)C23—C24—C25—N2177.65 (18)
C6—C7—C8—N11.3 (2)C9—C8—N1—C5177.46 (18)
C7—C8—C9—C100.1 (3)C7—C8—N1—C52.0 (2)
N1—C8—C9—C10179.28 (17)C9—C8—N1—S124.0 (3)
C8—C9—C10—C112.0 (3)C7—C8—N1—S1155.45 (13)
C8—C9—C10—C20179.03 (16)C4—C5—N1—C8179.2 (2)
C9—C10—C11—C121.9 (3)C6—C5—N1—C82.0 (2)
C20—C10—C11—C12178.83 (18)C4—C5—N1—S128.5 (3)
C9—C10—C11—C13179.94 (19)C6—C5—N1—S1154.29 (14)
C20—C10—C11—C133.1 (3)C20—C25—N2—O519.9 (3)
C8—C7—C12—O3178.63 (18)C24—C25—N2—O5158.3 (2)
C6—C7—C12—O31.2 (3)C20—C25—N2—O6160.5 (2)
C8—C7—C12—C111.9 (3)C24—C25—N2—O621.3 (3)
C6—C7—C12—C11178.2 (2)C21—C22—O7—C264.8 (3)
C10—C11—C12—O3179.54 (18)C23—C22—O7—C26176.0 (2)
C13—C11—C12—O31.4 (3)C24—C23—O8—C274.6 (3)
C10—C11—C12—C70.1 (3)C22—C23—O8—C27174.6 (2)
C13—C11—C12—C7178.08 (19)C8—N1—S1—O258.73 (16)
C12—C11—C13—O42.2 (4)C5—N1—S1—O2152.36 (15)
C10—C11—C13—O4179.6 (2)C8—N1—S1—O1172.69 (14)
C19—C14—C15—C160.4 (4)C5—N1—S1—O123.78 (18)
S1—C14—C15—C16177.4 (2)C8—N1—S1—C1456.31 (16)
C14—C15—C16—C171.3 (5)C5—N1—S1—C1492.60 (16)
C15—C16—C17—C180.8 (6)C15—C14—S1—O25.3 (2)
C16—C17—C18—C190.6 (6)C19—C14—S1—O2171.91 (19)
C17—C18—C19—C141.4 (5)C15—C14—S1—O1128.93 (19)
C15—C14—C19—C180.9 (4)C19—C14—S1—O153.9 (2)
S1—C14—C19—C18176.1 (2)C15—C14—S1—N1117.83 (18)
C9—C10—C20—C2573.8 (2)C19—C14—S1—N159.3 (2)
C11—C10—C20—C25109.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.821.832.554 (3)146
C4—H4···O10.932.292.866 (3)119
C9—H9···O20.932.473.054 (2)121
C2—H2···O5i0.932.503.281 (3)142
C17—H17···O8ii0.932.593.481 (5)161
C18—H18···O2iii0.932.513.384 (5)157
C26—H26C···O4iv0.962.503.265 (4)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y+3/2, z1/2.
(3) 12-Phenyl-7-phenylsulfonyl-7H-benzofuro[2,3-b]carbazole top
Crystal data top
C30H19NO3SF(000) = 984
Mr = 473.52Dx = 1.361 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5055 reflections
a = 10.6461 (10) Åθ = 2.2–27.1°
b = 11.8994 (11) ŵ = 0.17 mm1
c = 18.2418 (16) ÅT = 296 K
V = 2310.9 (4) Å3Block, colourless
Z = 40.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5055 independent reflections
Radiation source: fine-focus sealed tube3194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω & φ scansθmax = 27.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.941, Tmax = 0.957k = 1515
29269 measured reflectionsl = 2322
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0488P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
5055 reflectionsΔρmax = 0.16 e Å3
316 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 2189 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0093 (3)0.6577 (2)0.59295 (16)0.0546 (7)
H10.02020.71070.62980.066*
C20.1114 (3)0.6067 (3)0.56158 (18)0.0668 (9)
H20.19170.62460.57790.080*
C30.0964 (3)0.5288 (3)0.50594 (18)0.0697 (9)
H30.16720.49590.48520.084*
C40.0190 (3)0.4993 (2)0.48087 (16)0.0628 (8)
H40.02820.44720.44330.075*
C50.1227 (3)0.5493 (2)0.51323 (14)0.0485 (7)
C60.1098 (3)0.6296 (2)0.56937 (14)0.0419 (6)
C70.2349 (2)0.6687 (2)0.58813 (13)0.0398 (6)
C80.3212 (3)0.6114 (2)0.54335 (12)0.0427 (6)
C90.4492 (3)0.6300 (2)0.54535 (14)0.0510 (7)
H90.50540.59180.51530.061*
C100.4868 (3)0.7095 (2)0.59553 (14)0.0455 (7)
C110.4059 (3)0.7687 (2)0.64193 (13)0.0413 (6)
C120.2773 (3)0.7488 (2)0.63911 (12)0.0404 (6)
C130.4852 (3)0.8433 (2)0.68342 (14)0.0452 (7)
C140.6070 (3)0.8217 (2)0.66050 (15)0.0513 (7)
C150.7122 (3)0.8755 (3)0.68680 (18)0.0633 (9)
H150.79250.85820.67020.076*
C160.6910 (3)0.9561 (3)0.73888 (18)0.0681 (9)
H160.75910.99490.75840.082*
C170.5714 (3)0.9816 (3)0.76328 (16)0.0626 (8)
H170.56071.03760.79830.075*
C180.4674 (3)0.9256 (2)0.73661 (14)0.0554 (7)
H180.38730.94250.75380.067*
C190.1912 (2)0.8073 (2)0.69074 (13)0.0405 (6)
C200.1210 (3)0.9003 (2)0.66997 (15)0.0507 (7)
H200.12550.92700.62210.061*
C210.0447 (3)0.9532 (2)0.72040 (17)0.0592 (8)
H210.00211.01530.70580.071*
C220.0362 (3)0.9174 (3)0.78952 (15)0.0619 (8)
H220.01530.95460.82270.074*
C230.1041 (3)0.8252 (3)0.81136 (16)0.0708 (9)
H230.09780.79950.85940.085*
C240.1812 (3)0.7709 (2)0.76269 (13)0.0562 (8)
H240.22740.70890.77810.067*
C250.3170 (3)0.3277 (2)0.54143 (14)0.0493 (7)
C260.4280 (3)0.3073 (3)0.57863 (18)0.0666 (9)
H260.50240.34170.56410.080*
C270.4265 (4)0.2342 (3)0.6382 (2)0.0808 (11)
H270.50000.21990.66410.097*
C280.3177 (5)0.1840 (3)0.6584 (2)0.0906 (12)
H280.31760.13420.69770.109*
C290.2091 (4)0.2050 (3)0.6224 (2)0.0904 (12)
H290.13520.17070.63770.108*
C300.2075 (3)0.2761 (3)0.56366 (18)0.0686 (9)
H300.13270.28970.53880.082*
N10.2531 (2)0.53725 (18)0.49596 (11)0.0497 (6)
O10.2250 (2)0.37314 (17)0.41398 (10)0.0763 (7)
O20.4380 (2)0.43983 (18)0.44385 (11)0.0795 (7)
O30.60967 (18)0.73994 (16)0.60631 (10)0.0573 (5)
S10.31294 (8)0.41674 (6)0.46577 (4)0.0583 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0488 (19)0.0502 (17)0.0649 (19)0.0022 (15)0.0009 (16)0.0002 (15)
C20.0497 (19)0.0610 (19)0.090 (2)0.0060 (17)0.0077 (18)0.0020 (18)
C30.060 (2)0.0595 (19)0.089 (2)0.0023 (17)0.0197 (18)0.0047 (19)
C40.079 (2)0.0473 (17)0.0623 (19)0.0004 (17)0.0142 (18)0.0081 (15)
C50.0597 (19)0.0395 (15)0.0463 (15)0.0038 (15)0.0043 (14)0.0030 (13)
C60.0483 (17)0.0370 (13)0.0404 (14)0.0004 (13)0.0020 (13)0.0078 (12)
C70.0504 (17)0.0337 (14)0.0353 (14)0.0036 (12)0.0024 (12)0.0028 (12)
C80.0583 (18)0.0354 (14)0.0345 (13)0.0007 (14)0.0085 (14)0.0028 (11)
C90.060 (2)0.0431 (15)0.0499 (17)0.0039 (14)0.0170 (15)0.0010 (14)
C100.0444 (18)0.0460 (16)0.0462 (15)0.0007 (13)0.0047 (14)0.0045 (13)
C110.0469 (18)0.0361 (13)0.0409 (14)0.0024 (13)0.0024 (13)0.0047 (12)
C120.0542 (18)0.0341 (13)0.0327 (13)0.0069 (13)0.0028 (12)0.0026 (11)
C130.0516 (19)0.0437 (16)0.0404 (15)0.0000 (14)0.0002 (13)0.0060 (13)
C140.057 (2)0.0433 (16)0.0539 (17)0.0014 (16)0.0010 (16)0.0037 (14)
C150.053 (2)0.060 (2)0.076 (2)0.0077 (17)0.0024 (17)0.0049 (18)
C160.069 (2)0.057 (2)0.079 (2)0.0150 (19)0.0148 (19)0.0028 (18)
C170.080 (2)0.0466 (17)0.0614 (18)0.0068 (17)0.0117 (18)0.0040 (15)
C180.063 (2)0.0449 (16)0.0587 (17)0.0014 (15)0.0005 (15)0.0022 (15)
C190.0445 (16)0.0357 (13)0.0413 (14)0.0019 (13)0.0014 (13)0.0010 (11)
C200.0557 (17)0.0481 (16)0.0482 (15)0.0028 (16)0.0013 (14)0.0050 (14)
C210.0557 (18)0.0439 (17)0.078 (2)0.0151 (15)0.0026 (17)0.0054 (16)
C220.070 (2)0.0649 (19)0.0505 (17)0.0154 (18)0.0111 (15)0.0121 (16)
C230.085 (2)0.083 (2)0.0438 (16)0.021 (2)0.0115 (17)0.0046 (16)
C240.068 (2)0.0584 (18)0.0420 (15)0.0161 (17)0.0077 (15)0.0045 (13)
C250.0552 (18)0.0403 (14)0.0523 (16)0.0042 (14)0.0050 (16)0.0114 (13)
C260.060 (2)0.065 (2)0.074 (2)0.0094 (16)0.0077 (18)0.0208 (19)
C270.102 (3)0.067 (2)0.073 (2)0.034 (2)0.034 (2)0.019 (2)
C280.131 (4)0.060 (2)0.081 (2)0.022 (3)0.004 (3)0.007 (2)
C290.097 (3)0.066 (2)0.108 (3)0.005 (2)0.012 (3)0.027 (2)
C300.068 (2)0.0540 (18)0.084 (2)0.0061 (17)0.0014 (18)0.0101 (17)
N10.0652 (16)0.0427 (13)0.0412 (12)0.0012 (12)0.0038 (11)0.0069 (10)
O10.1128 (18)0.0644 (14)0.0517 (12)0.0049 (12)0.0123 (12)0.0223 (11)
O20.0867 (16)0.0718 (15)0.0801 (14)0.0049 (12)0.0470 (12)0.0182 (12)
O30.0487 (12)0.0556 (12)0.0675 (12)0.0014 (11)0.0091 (10)0.0024 (11)
S10.0794 (6)0.0499 (4)0.0455 (4)0.0012 (4)0.0136 (4)0.0115 (4)
Geometric parameters (Å, º) top
C1—C21.370 (4)C16—H160.9300
C1—C61.379 (4)C17—C181.381 (4)
C1—H10.9300C17—H170.9300
C2—C31.383 (4)C18—H180.9300
C2—H20.9300C19—C241.386 (3)
C3—C41.358 (4)C19—C201.388 (3)
C3—H30.9300C20—C211.379 (4)
C4—C51.386 (4)C20—H200.9300
C4—H40.9300C21—C221.334 (4)
C5—C61.407 (4)C21—H210.9300
C5—N11.431 (4)C22—C231.373 (4)
C6—C71.452 (4)C22—H220.9300
C7—C81.406 (3)C23—C241.371 (4)
C7—C121.406 (3)C23—H230.9300
C8—C91.381 (4)C24—H240.9300
C8—N11.432 (3)C25—C301.379 (4)
C9—C101.376 (4)C25—C261.385 (4)
C9—H90.9300C25—S11.740 (3)
C10—O31.372 (3)C26—C271.392 (5)
C10—C111.398 (3)C26—H260.9300
C11—C121.391 (4)C27—C281.354 (5)
C11—C131.440 (4)C27—H270.9300
C12—C191.487 (3)C28—C291.352 (5)
C13—C141.386 (4)C28—H280.9300
C13—C181.392 (4)C29—C301.365 (4)
C14—C151.376 (4)C29—H290.9300
C14—O31.387 (3)C30—H300.9300
C15—C161.369 (4)N1—S11.663 (2)
C15—H150.9300O1—S11.427 (2)
C16—C171.383 (4)O2—S11.417 (2)
C2—C1—C6119.5 (3)C16—C17—H17119.4
C2—C1—H1120.3C17—C18—C13118.4 (3)
C6—C1—H1120.3C17—C18—H18120.8
C1—C2—C3120.7 (3)C13—C18—H18120.8
C1—C2—H2119.6C24—C19—C20117.8 (2)
C3—C2—H2119.6C24—C19—C12120.0 (2)
C4—C3—C2121.7 (3)C20—C19—C12122.1 (2)
C4—C3—H3119.1C21—C20—C19119.9 (2)
C2—C3—H3119.1C21—C20—H20120.0
C3—C4—C5117.7 (3)C19—C20—H20120.0
C3—C4—H4121.1C22—C21—C20121.6 (3)
C5—C4—H4121.1C22—C21—H21119.2
C4—C5—C6121.6 (3)C20—C21—H21119.2
C4—C5—N1129.5 (3)C21—C22—C23119.6 (3)
C6—C5—N1108.8 (2)C21—C22—H22120.2
C1—C6—C5118.7 (3)C23—C22—H22120.2
C1—C6—C7133.8 (2)C24—C23—C22120.3 (3)
C5—C6—C7107.4 (2)C24—C23—H23119.9
C8—C7—C12120.3 (2)C22—C23—H23119.9
C8—C7—C6107.9 (2)C23—C24—C19120.8 (3)
C12—C7—C6131.9 (2)C23—C24—H24119.6
C9—C8—C7123.5 (2)C19—C24—H24119.6
C9—C8—N1127.9 (2)C30—C25—C26120.0 (3)
C7—C8—N1108.6 (2)C30—C25—S1118.9 (2)
C10—C9—C8114.5 (2)C26—C25—S1121.1 (2)
C10—C9—H9122.8C25—C26—C27118.8 (3)
C8—C9—H9122.8C25—C26—H26120.6
O3—C10—C9123.7 (2)C27—C26—H26120.6
O3—C10—C11111.6 (2)C28—C27—C26119.9 (3)
C9—C10—C11124.8 (3)C28—C27—H27120.1
C12—C11—C10119.9 (2)C26—C27—H27120.1
C12—C11—C13134.6 (2)C29—C28—C27121.2 (4)
C10—C11—C13105.5 (2)C29—C28—H28119.4
C11—C12—C7117.1 (2)C27—C28—H28119.4
C11—C12—C19120.3 (2)C28—C29—C30120.4 (4)
C7—C12—C19122.6 (2)C28—C29—H29119.8
C14—C13—C18117.9 (3)C30—C29—H29119.8
C14—C13—C11106.0 (2)C29—C30—C25119.7 (3)
C18—C13—C11136.1 (3)C29—C30—H30120.1
C15—C14—C13124.7 (3)C25—C30—H30120.1
C15—C14—O3123.9 (3)C5—N1—C8107.3 (2)
C13—C14—O3111.3 (3)C5—N1—S1122.09 (19)
C16—C15—C14115.7 (3)C8—N1—S1122.47 (18)
C16—C15—H15122.1C10—O3—C14105.5 (2)
C14—C15—H15122.1O2—S1—O1119.98 (13)
C15—C16—C17121.9 (3)O2—S1—N1106.63 (13)
C15—C16—H16119.0O1—S1—N1106.34 (13)
C17—C16—H16119.0O2—S1—C25108.57 (14)
C18—C17—C16121.3 (3)O1—S1—C25108.66 (13)
C18—C17—H17119.4N1—S1—C25105.76 (11)
C6—C1—C2—C30.9 (4)C16—C17—C18—C130.9 (4)
C1—C2—C3—C40.6 (5)C14—C13—C18—C170.4 (4)
C2—C3—C4—C50.4 (4)C11—C13—C18—C17179.1 (3)
C3—C4—C5—C61.1 (4)C11—C12—C19—C2477.7 (3)
C3—C4—C5—N1177.3 (3)C7—C12—C19—C2499.5 (3)
C2—C1—C6—C50.2 (4)C11—C12—C19—C20100.7 (3)
C2—C1—C6—C7177.5 (3)C7—C12—C19—C2082.1 (3)
C4—C5—C6—C10.8 (4)C24—C19—C20—C210.0 (4)
N1—C5—C6—C1177.7 (2)C12—C19—C20—C21178.5 (2)
C4—C5—C6—C7177.2 (2)C19—C20—C21—C220.2 (4)
N1—C5—C6—C70.2 (3)C20—C21—C22—C230.5 (5)
C1—C6—C7—C8177.7 (3)C21—C22—C23—C240.7 (5)
C5—C6—C7—C80.2 (3)C22—C23—C24—C190.6 (5)
C1—C6—C7—C121.5 (5)C20—C19—C24—C230.2 (4)
C5—C6—C7—C12179.0 (2)C12—C19—C24—C23178.7 (3)
C12—C7—C8—C90.9 (4)C30—C25—C26—C270.0 (4)
C6—C7—C8—C9178.4 (2)S1—C25—C26—C27179.2 (2)
C12—C7—C8—N1178.8 (2)C25—C26—C27—C280.5 (5)
C6—C7—C8—N10.5 (3)C26—C27—C28—C291.2 (5)
C7—C8—C9—C100.4 (4)C27—C28—C29—C301.2 (6)
N1—C8—C9—C10177.9 (2)C28—C29—C30—C250.6 (5)
C8—C9—C10—O3179.7 (2)C26—C25—C30—C290.0 (4)
C8—C9—C10—C110.1 (4)S1—C25—C30—C29179.2 (2)
O3—C10—C11—C12179.8 (2)C4—C5—N1—C8177.2 (3)
C9—C10—C11—C120.1 (4)C6—C5—N1—C80.6 (3)
O3—C10—C11—C131.3 (3)C4—C5—N1—S133.7 (4)
C9—C10—C11—C13179.0 (2)C6—C5—N1—S1149.69 (18)
C10—C11—C12—C70.4 (3)C9—C8—N1—C5178.4 (2)
C13—C11—C12—C7178.1 (2)C7—C8—N1—C50.7 (3)
C10—C11—C12—C19177.0 (2)C9—C8—N1—S132.6 (3)
C13—C11—C12—C194.5 (4)C7—C8—N1—S1149.66 (18)
C8—C7—C12—C110.9 (3)C9—C10—O3—C14179.7 (2)
C6—C7—C12—C11178.3 (2)C11—C10—O3—C140.7 (3)
C8—C7—C12—C19176.5 (2)C15—C14—O3—C10179.2 (3)
C6—C7—C12—C194.4 (4)C13—C14—O3—C100.3 (3)
C12—C11—C13—C14179.9 (3)C5—N1—S1—O2171.21 (19)
C10—C11—C13—C141.4 (3)C8—N1—S1—O244.3 (2)
C12—C11—C13—C180.5 (5)C5—N1—S1—O142.1 (2)
C10—C11—C13—C18178.1 (3)C8—N1—S1—O1173.43 (19)
C18—C13—C14—C150.4 (4)C5—N1—S1—C2573.3 (2)
C11—C13—C14—C15180.0 (3)C8—N1—S1—C2571.2 (2)
C18—C13—C14—O3178.6 (2)C30—C25—S1—O2167.4 (2)
C11—C13—C14—O31.1 (3)C26—C25—S1—O211.8 (3)
C13—C14—C15—C160.5 (4)C30—C25—S1—O135.4 (3)
O3—C14—C15—C16178.3 (2)C26—C25—S1—O1143.8 (2)
C14—C15—C16—C170.1 (5)C30—C25—S1—N178.5 (2)
C15—C16—C17—C180.8 (5)C26—C25—S1—N1102.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of rings C1–C6 and C7–C12, respectively.
D—H···AD—HH···AD···AD—H···A
C4—H4···O10.932.342.924 (4)121
C9—H9···O20.932.342.926 (3)121
C2—H2···O3i0.932.573.464 (4)160
C17—H17···Cg4ii0.932.813.683 (3)156
C22—H22···Cg3iii0.932.953.722 (3)141
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1/2, z+3/2; (iii) x, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Dr Babu Varghese, Senior Scientific Officer, SAIF, IIT Madras, Chennai, India, for the data collections.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiaz, J. L., Villacampa, B., Lopez-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240–2251.  Web of Science CrossRef CAS Google Scholar
First citationDijken, A. V., Bastiaansen, J. J. A. M., Kiggen, N. M. M., Langeveld, B. M. W., Rothe, C., Monkman, A., Bach, I., Stössel, P. & Brunner, K. (2004). J. Am. Chem. Soc. 126, 7718–7727.  Web of Science PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHu, L., Li, Z., Li, Y., Qu, J., Ling, Y.-H., Jiang, J. & Boykin, D. W. (2006). J. Med. Chem. 49, 6273–6282.  Web of Science CrossRef PubMed CAS Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K.-H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNarayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014a). Acta Cryst. E70, o336–o337.  CSD CrossRef IUCr Journals Google Scholar
First citationNarayanan, P., Sethusankar, K., Saravanan, V. & Mohanakrishnan, A. K. (2014b). Acta Cryst. E70, o424–o425.  CSD CrossRef IUCr Journals Google Scholar
First citationPanchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2011a). Acta Cryst. E67, o2797.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPanchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K., Chakkaravarthi, G. & Manivannan, V. (2011b). Acta Cryst. E67, o2829.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPindur, U. & Lemster, T. (1997). In Recent Research Developments in Organic and Bioorganic Chemistry, Vol. 1, edited by S. G. Pandalai, pp. 33–54. Trivandrum India: Transworld Research Network.  Google Scholar
First citationPrudhomme, M. (2003). Eur. J. Med. Chem. 38, 123–140.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2003). J. Agric. Food Chem. 51, 6461–6467.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds