research communications
The synthesis and
of 2-(chloroselanyl)pyridine 1-oxide: the first monomeric organoselenenyl chloride stabilized by an intramolecular secondary Se⋯O interactionaDepartment of Chemistry, Baku State University, 23 Z. Khalilov St., Baku, AZ-1148, Azerbaijan, bR.E. Alekseev Nizhny Novgorod State Technical University, 24 Minin St., Nizhny Novgorod, 603950, Russian Federation, cN.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Prosp., Nizhny Novgorod, 603950, Russian Federation, dInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow, 117198, Russian Federation, eNational Research Center "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow, 123182, Russian Federation, and fX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B–334, Moscow 119991, Russian Federation
*Correspondence e-mail: vnkhrustalev@gmail.com
The title compound, C5H4ClNOSe, is the product of the reaction of sulfuryl chloride and 2-selanyl-1-pyridine 1-oxide in dichloromethane. The molecule has an almost planar geometry (r.m.s. deviation = 0.012 Å), and its molecular structure is stabilized by an intramolecular secondary Se⋯O interaction of 2.353 (3) Å, closing a four-membered N—C—Se⋯O ring. The title compound represents the first monomeric organoselenenyl chloride stabilized intramolecularly by an interaction of this type. The non-valent attractive Se⋯O interaction results in a substantial distortion of the geometry of the ipso-carbon atom. The endo-cyclic N—C—Se [102.1 (3)°] and exo-cyclic C—C—Se [136.9 (3)°] bond angles deviate significantly from the ideal value of 120° for an sp2-hybridized carbon atom, the former bond angle being much smaller than the latter. In the crystal, molecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains propagating along [010]. The chains, which stack along the a-axis direction, are linked by offset π–π interactions [intercentroid distance = 3.960 (3) Å], forming corrugated sheets parallel to the ab plane.
Keywords: crystal structure; synchrotron radiation; organoselenenyl chloride; intramolecular stabilization; secondary interactions.
CCDC reference: 1519449
1. Chemical context
Organoselenenyl halides RSeX (X = Cl, Br) play an important role in modern organic synthesis and are used as reagents for the functionalization of many classes of compounds, including organoselenium compounds with a broad spectrum of biological activities (Ranganathan et al., 2004; Selvakumar et al., 2010, 2011; Ninomiya et al., 2011; Singh & Wirth, 2011; Zade & Singh, 2014; Elsherbini et al., 2016). An essential aspect of the chemistry of selenenyl halides is the factors responsible for the stability of these reagents (Coles, 2006; Mukherjee et al., 2010; Nakanishi et al., 2013; Takaluoma et al., 2015). Recently, we have developed a new effective method for the stabilization of heteroarenselenenyl and -tellurenyl chlorides by the transformation of them to T-shaped zwitterionic adducts with hydrochloric acid (Khrustalev et al., 2012, 2014, 2016). Moreover, we have established another stabilization method of heteroarenselenenyl and -tellurenyl chlorides by intermolecular secondary Ch⋯N (Ch = Se, Te) interactions with the formation of dimers (Borisov et al., 2010a,b,c; Khrustalev et al., 2016). Herein, we report on the synthesis and structural characterization of the first monomeric 2-(chloroselanyl)pyridine 1-oxide stabilized by an intramolecular secondary Se⋯O interaction.
2. Structural commentary
The title compound, Fig. 1, is the product of the reaction of sulfuryl chloride and 2-selanyl-1-pyridine 1-oxide in dichloromethane. It has an almost planar geometry (r.m.s. deviation = 0.012 Å), and its molecular structure is stabilized by an intramolecular secondary Se1⋯O1 interaction of 2.353 (3) Å, closing the four-membered N1—C2—Se1⋯O1 ring (Fig. 1). The non-valent attractive Se1⋯O1 interaction results in the substantial distortion of the geometry of the ipso-C2 carbon atom. The endo-cyclic N1—C2—Se1 [102.1 (3)°] and exo-cyclic C3—C2—Se1 [136.9 (3)°] bond angles deviate significantly from the ideal value of 120° for an sp2-hybridized carbon atom, the former angle being much smaller than the latter. The title compound represents the first monomeric organoselenenyl chloride stabilized intramolecularly by an interaction of this type. Previously, the analogous stabilization of monomeric organoselenenyl chlorides by intramolecular secondary Se⋯S (Tiecco et al., 2006) and Se⋯N (Panda et al., 1999; Klapötke et al., 2004; Kulcsar et al., 2007; Pöllnitz et al., 2011) interactions have been reported.
3. Supramolecular features
In the crystal, molecules are linked by C—H⋯O hydrogen bonds (Table 1 and Fig. 2), forming zigzag chains propagating along the b-axis direction. The chains stack along the a-axis direction and are linked by offset π–π interactions, forming corrugated sheets parallel to the ab plane [Cg⋯Cgi,ii = 3.960 (3) Å, Cg is the centroid of the N1/C2–C6 ring, interplanar distances = 3.590 (2) Å, slippages = 1.671 Å, symmetry codes: (i) x − 1, y, z; (ii) x + 1, y, z].
4. Synthesis and crystallization
The synthesis of the title compound is illustrated in Fig. 3. It was synthesized according to the procedure described previously by Borisov et al. (2010a,b,c). A solution of sulfuryl chloride (0.27 g, 2 mmol) in dichloromethane (15 ml) was added to a solution of 2-selanyl-1-pyridine 1-oxide (0.35 g, 2 mmol) in dichloromethane (20 ml) at 293 K. After one h it was filtered to give the title compound (yield 0.33 g, 80%). The filtrate was evaporated in vacuo and recrystallization of the residue from dichloromethane solution gave an additional 0.06 g (15%) of the title compound. Colourless prismatic crystals of the title compound were obtained after recrystallization of the crude product from dichloromethane (m.p. 433–435 K). IR (KBr, cm−1), ν 1617, 1462, 1423, 1254, 1151, 836, 748, 621. 1H NMR (DMSO-d6, 300 MHz, 300 K): δ = 8.28 (d, 1H, 3J = 5.9, H6); 7.52 (d, 1H, 3J = 7.3, H3); 7.43 (dd, 1H, 3J = 7.8, 3J = 7.3, H4); 7.30 (dd, 1H, 3J = 7.8, 3J = 5.9, H5). Analysis calculated for C5H4ClNOSe: C 24.81; H 1.93; N 6.72. Found: 24.43; H 1.83; N 6.65.
5. Refinement
Crystal data, data collection and structure . The C-bound H atoms were placed in calculated positions and refined as riding: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1519449
https://doi.org/10.1107/S2056989016018946/su5337sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016018946/su5337Isup2.hkl
Data collection: Automar (MarXperts, 2015); cell
iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C5H4ClNOSe | F(000) = 400 |
Mr = 208.50 | Dx = 2.089 Mg m−3 |
Monoclinic, P21/c | Synchrotron radiation, λ = 0.96990 Å |
a = 3.9601 (8) Å | Cell parameters from 600 reflections |
b = 7.5102 (15) Å | θ = 5.0–35.0° |
c = 22.350 (5) Å | µ = 13.68 mm−1 |
β = 94.32 (3)° | T = 100 K |
V = 662.8 (2) Å3 | Prism, colourless |
Z = 4 | 0.05 × 0.03 × 0.03 mm |
Rayonix SX-165 CCD diffractometer | 1121 reflections with I > 2σ(I) |
/f scan | Rint = 0.083 |
Absorption correction: multi-scan (SCALA; Evans, 2006) | θmax = 38.1°, θmin = 5.0° |
Tmin = 0.550, Tmax = 0.660 | h = −4→4 |
5526 measured reflections | k = −9→9 |
1310 independent reflections | l = −28→28 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.074 | H-atom parameters constrained |
wR(F2) = 0.175 | w = 1/[σ2(Fo2) + (0.06P)2 + 1.6P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
1310 reflections | Δρmax = 1.26 e Å−3 |
83 parameters | Δρmin = −1.58 e Å−3 |
0 restraints | Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: difference Fourier map | Extinction coefficient: 0.054 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.51523 (13) | 0.26936 (7) | 0.34782 (2) | 0.02716 (17) | |
Cl1 | 0.4514 (3) | 0.18592 (14) | 0.44303 (4) | 0.0331 (3) | |
O1 | 0.6571 (9) | 0.4577 (4) | 0.26942 (12) | 0.0347 (8) | |
N1 | 0.7603 (10) | 0.5643 (5) | 0.31523 (14) | 0.0290 (8) | |
C2 | 0.7093 (11) | 0.4927 (5) | 0.36941 (16) | 0.0266 (9) | |
C3 | 0.7969 (12) | 0.5838 (6) | 0.42160 (17) | 0.0301 (10) | |
H3 | 0.7578 | 0.5342 | 0.4596 | 0.036* | |
C4 | 0.9449 (14) | 0.7515 (6) | 0.4172 (2) | 0.0334 (13) | |
H4 | 1.0115 | 0.8173 | 0.4524 | 0.040* | |
C5 | 0.9941 (12) | 0.8213 (7) | 0.36099 (19) | 0.0343 (12) | |
H5 | 1.0906 | 0.9365 | 0.3579 | 0.041* | |
C6 | 0.9047 (14) | 0.7257 (5) | 0.3095 (2) | 0.0317 (12) | |
H6 | 0.9436 | 0.7720 | 0.2710 | 0.038* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.0427 (4) | 0.0202 (3) | 0.0200 (3) | −0.00320 (19) | 0.0117 (3) | −0.00209 (16) |
Cl1 | 0.0522 (7) | 0.0277 (5) | 0.0208 (4) | −0.0077 (5) | 0.0122 (4) | 0.0037 (4) |
O1 | 0.058 (2) | 0.0284 (15) | 0.0190 (12) | −0.0061 (14) | 0.0139 (13) | −0.0045 (12) |
N1 | 0.044 (2) | 0.0265 (17) | 0.0177 (14) | 0.0022 (16) | 0.0106 (13) | −0.0035 (13) |
C2 | 0.041 (2) | 0.0217 (19) | 0.0183 (16) | 0.0003 (18) | 0.0111 (15) | −0.0008 (14) |
C3 | 0.049 (3) | 0.028 (2) | 0.0144 (16) | −0.0006 (19) | 0.0089 (16) | 0.0008 (15) |
C4 | 0.049 (3) | 0.027 (2) | 0.024 (2) | −0.0035 (19) | 0.004 (2) | −0.0028 (15) |
C5 | 0.051 (3) | 0.026 (2) | 0.0267 (19) | −0.002 (2) | 0.0033 (19) | −0.0008 (19) |
C6 | 0.048 (3) | 0.0180 (18) | 0.030 (2) | 0.0009 (18) | 0.009 (2) | 0.0062 (15) |
Se1—C2 | 1.892 (4) | C3—H3 | 0.9500 |
Se1—Cl1 | 2.2506 (11) | C4—C5 | 1.389 (7) |
O1—N1 | 1.339 (4) | C4—H4 | 0.9500 |
N1—C6 | 1.350 (6) | C5—C6 | 1.381 (6) |
N1—C2 | 1.354 (5) | C5—H5 | 0.9500 |
C2—C3 | 1.374 (6) | C6—H6 | 0.9500 |
C3—C4 | 1.395 (6) | ||
C2—Se1—Cl1 | 94.48 (11) | C5—C4—C3 | 119.6 (4) |
O1—N1—C6 | 124.8 (3) | C5—C4—H4 | 120.2 |
O1—N1—C2 | 112.9 (3) | C3—C4—H4 | 120.2 |
C6—N1—C2 | 122.3 (4) | C6—C5—C4 | 120.9 (4) |
N1—C2—C3 | 121.0 (4) | C6—C5—H5 | 119.6 |
N1—C2—Se1 | 102.1 (3) | C4—C5—H5 | 119.6 |
C3—C2—Se1 | 136.9 (3) | N1—C6—C5 | 118.1 (4) |
C2—C3—C4 | 118.0 (4) | N1—C6—H6 | 120.9 |
C2—C3—H3 | 121.0 | C5—C6—H6 | 120.9 |
C4—C3—H3 | 121.0 | ||
O1—N1—C2—C3 | −179.4 (4) | Se1—C2—C3—C4 | 178.9 (4) |
C6—N1—C2—C3 | 1.4 (7) | C2—C3—C4—C5 | 0.9 (7) |
O1—N1—C2—Se1 | 0.7 (4) | C3—C4—C5—C6 | −1.3 (8) |
C6—N1—C2—Se1 | −178.5 (4) | O1—N1—C6—C5 | 179.2 (4) |
Cl1—Se1—C2—N1 | −179.0 (3) | C2—N1—C6—C5 | −1.7 (7) |
Cl1—Se1—C2—C3 | 1.0 (5) | C4—C5—C6—N1 | 1.6 (8) |
N1—C2—C3—C4 | −1.0 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···O1i | 0.95 | 2.34 | 3.101 (6) | 137 |
Symmetry code: (i) −x+2, y+1/2, −z+1/2. |
Acknowledgements
The work was supported by the Ministry of Education of the Russian Federation (Agreement number 02.a03.21.0008 of June 24, 2016) and the Russian Foundation for Basic Research (Grant No. 14–03-00914).
References
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281. Web of Science CrossRef CAS IUCr Journals Google Scholar
Borisov, A. V., Matsulevich, Zh. V., Fukin, G. K. & Baranov, E. V. (2010a). Russ. Chem. Bull. 59, 581–583. CrossRef CAS Google Scholar
Borisov, A. V., Matsulevich, Zh. V. & Osmanov, V. K. (2010b). Chem. Heterocycl. Compd, 46, 775–776. CrossRef CAS Google Scholar
Borisov, A. V., Matsulevich, Z. V., Osmanov, V. K., Borisova, G. N. & Fukin, G. K. (2010c). In: Heterocyclic compounds: synthesis, properties and applications edited by K. Nylund, & P. Johansson, pp. 211–218. New York: Nova Science Publishers Inc. Google Scholar
Coles, M. P. (2006). Curr. Org. Chem. 10, 1993–2005. CrossRef CAS Google Scholar
Elsherbini, M., Hamama, W. S. & Zoorob, H. H. (2016). Coord. Chem. Rev. 312, 149–177. CrossRef CAS Google Scholar
Evans, P. (2006). Acta Cryst. D62, 72–82. Web of Science CrossRef CAS IUCr Journals Google Scholar
Khrustalev, V. N., Ismaylova, S. R., Aysin, R. R., Matsulevich, Zh. V., Osmanov, V. K., Peregudov, A. S. & Borisov, A. V. (2012). Eur. J. Inorg. Chem. pp. 5456–5460. CrossRef Google Scholar
Khrustalev, V. N., Matsulevich, Zh. V., Aysin, R. R., Lukiyanova, J. M., Fukin, G. K., Zubavichus, Y. V., Askerov, R. K., Maharramov, A. M. & Borisov, A. V. (2016). Struct. Chem. 27, 1733–1741. CrossRef CAS Google Scholar
Khrustalev, V. N., Matsulevich, Zh. V., Lukiyanova, J. M., Aysin, R. R., Peregudov, A. S., Leites, L. A. & Borisov, A. V. (2014). Eur. J. Inorg. Chem. pp. 3582–3586. CrossRef Google Scholar
Klapötke, T. M., Krumm, B. & Polborn, K. (2004). J. Am. Chem. Soc. 126, 710–711. Google Scholar
Kulcsar, M., Beleaga, A., Silvestru, C., Nicolescu, A., Deleanu, C., Todasca, C. & Silvestru, A. (2007). Dalton Trans. pp. 2187–2196. Web of Science CSD CrossRef Google Scholar
MarXperts. (2015). Automar. MarXperts GmbH, D-22844 Norderstedt, Germany. Google Scholar
Mukherjee, A. J., Zade, S. S., Singh, B. H. & Sunoj, R. B. (2010). Chem. Rev. 110, 4357–4416. CrossRef CAS Google Scholar
Nakanishi, W., Hayashi, S., Hashimoto, M., Arca, M., Aragoni, M. C. & Lippolis, V. (2013). Organic selenium and tellurium. New York: John Wiley & Sons, Ltd. Google Scholar
Ninomiya, M., Garud, D. R. & Koketsu, M. (2011). Coord. Chem. Rev. 255, 2968–2990. CrossRef CAS Google Scholar
Panda, A., Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). Organometallics, 18, 1986–1993. Web of Science CSD CrossRef CAS Google Scholar
Pöllnitz, A., Lippolis, V., Arca, M. & Silvestru, A. (2011). J. Organomet. Chem. 696, 2837–2844. Google Scholar
Ranganathan, S., Muraleedharan, K. M., Vaish, N. K. & Jayaraman, N. (2004). Tetrahedron, 60, 5273–5308. CrossRef CAS Google Scholar
Selvakumar, K., Singh, H. B. & Butcher, R. J. (2010). Chem. Eur. J. 16, 10576–10591. Web of Science CSD CrossRef CAS PubMed Google Scholar
Selvakumar, K., Singh, V. P., Shah, P. & Singh, H. B. (2011). Main Group Chem. 10, 141–152. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Singh, F. V. & Wirth, T. (2011). In: Organoselenium Chemistry, edited by T. Wirth, pp. 321–360. Weinheim: Wiley-VCH. Google Scholar
Takaluoma, E. M., Takaluoma, T. T., Oilunkaniemi, R. & Laitinen, R. S. (2015). Z. Anorg. Allg. Chem. 641, 772–779. CrossRef CAS Google Scholar
Tiecco, M., Testaferri, L., Santi, C., Tomassini, C., Santoro, S., Marini, F., Bagnoli, L., Temperini, A. & Costantino, F. (2006). Eur. J. Org. Chem. pp. 4867–4873. CrossRef Google Scholar
Zade, S. S. & Singh, H. B. (2014). InThe chemistry of organic selenium and tellurium compounds, Vol. 4, edited by Z. Rappoport, J. F. Liebman, I. Marek, S. Patai, pp. 1–180. New York: Wiley. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.