research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The synthesis and crystal structure of 2-(chloro­selan­yl)pyridine 1-oxide: the first monomeric organoselenenyl chloride stabilized by an intra­molecular secondary Se⋯O inter­action

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Baku State University, 23 Z. Khalilov St., Baku, AZ-1148, Azerbaijan, bR.E. Alekseev Nizhny Novgorod State Technical University, 24 Minin St., Nizhny Novgorod, 603950, Russian Federation, cN.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Prosp., Nizhny Novgorod, 603950, Russian Federation, dInorganic Chemistry Department, Peoples' Friendship University of Russia, 6 Miklukho-Maklay St., Moscow, 117198, Russian Federation, eNational Research Center "Kurchatov Institute", 1 Acad. Kurchatov Sq., Moscow, 123182, Russian Federation, and fX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St., B–334, Moscow 119991, Russian Federation
*Correspondence e-mail: vnkhrustalev@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 27 November 2016; accepted 27 November 2016; online 30 November 2016)

The title compound, C5H4ClNOSe, is the product of the reaction of sulfuryl chloride and 2-selanyl-1-pyridine 1-oxide in di­chloro­methane. The mol­ecule has an almost planar geometry (r.m.s. deviation = 0.012 Å), and its mol­ecular structure is stabilized by an intra­molecular secondary Se⋯O inter­action of 2.353 (3) Å, closing a four-membered N—C—Se⋯O ring. The title compound represents the first monomeric organoselenenyl chloride stabilized intra­molecularly by an inter­action of this type. The non-valent attractive Se⋯O inter­action results in a substantial distortion of the geometry of the ipso-carbon atom. The endo-cyclic N—C—Se [102.1 (3)°] and exo-cyclic C—C—Se [136.9 (3)°] bond angles deviate significantly from the ideal value of 120° for an sp2-hybridized carbon atom, the former bond angle being much smaller than the latter. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds, forming zigzag chains propagating along [010]. The chains, which stack along the a-axis direction, are linked by offset ππ inter­actions [inter­centroid distance = 3.960 (3) Å], forming corrugated sheets parallel to the ab plane.

1. Chemical context

Organoselenenyl halides RSeX (X = Cl, Br) play an important role in modern organic synthesis and are used as reagents for the functionalization of many classes of compounds, including organoselenium compounds with a broad spectrum of biologi­cal activities (Ranganathan et al., 2004[Ranganathan, S., Muraleedharan, K. M., Vaish, N. K. & Jayaraman, N. (2004). Tetrahedron, 60, 5273-5308.]; Selvakumar et al., 2010[Selvakumar, K., Singh, H. B. & Butcher, R. J. (2010). Chem. Eur. J. 16, 10576-10591.], 2011[Selvakumar, K., Singh, V. P., Shah, P. & Singh, H. B. (2011). Main Group Chem. 10, 141-152.]; Ninomiya et al., 2011[Ninomiya, M., Garud, D. R. & Koketsu, M. (2011). Coord. Chem. Rev. 255, 2968-2990.]; Singh & Wirth, 2011[Singh, F. V. & Wirth, T. (2011). In: Organoselenium Chemistry, edited by T. Wirth, pp. 321-360. Weinheim: Wiley-VCH.]; Zade & Singh, 2014[Zade, S. S. & Singh, H. B. (2014). InThe chemistry of organic selenium and tellurium compounds, Vol. 4, edited by Z. Rappoport, J. F. Liebman, I. Marek, S. Patai, pp. 1-180. New York: Wiley.]; Elsherbini et al., 2016[Elsherbini, M., Hamama, W. S. & Zoorob, H. H. (2016). Coord. Chem. Rev. 312, 149-177.]). An essential aspect of the chemistry of selenenyl halides is the factors responsible for the stability of these reagents (Coles, 2006[Coles, M. P. (2006). Curr. Org. Chem. 10, 1993-2005.]; Mukherjee et al., 2010[Mukherjee, A. J., Zade, S. S., Singh, B. H. & Sunoj, R. B. (2010). Chem. Rev. 110, 4357-4416.]; Nakanishi et al., 2013[Nakanishi, W., Hayashi, S., Hashimoto, M., Arca, M., Aragoni, M. C. & Lippolis, V. (2013). Organic selenium and tellurium. New York: John Wiley & Sons, Ltd.]; Takaluoma et al., 2015[Takaluoma, E. M., Takaluoma, T. T., Oilunkaniemi, R. & Laitinen, R. S. (2015). Z. Anorg. Allg. Chem. 641, 772-779.]). Recently, we have developed a new effective method for the stabilization of heteroarenselenenyl and -tellurenyl chlorides by the transformation of them to T-shaped zwitterionic adducts with hydro­chloric acid (Khrustalev et al., 2012[Khrustalev, V. N., Ismaylova, S. R., Aysin, R. R., Matsulevich, Zh. V., Osmanov, V. K., Peregudov, A. S. & Borisov, A. V. (2012). Eur. J. Inorg. Chem. pp. 5456-5460.], 2014[Khrustalev, V. N., Matsulevich, Zh. V., Lukiyanova, J. M., Aysin, R. R., Peregudov, A. S., Leites, L. A. & Borisov, A. V. (2014). Eur. J. Inorg. Chem. pp. 3582-3586.], 2016[Khrustalev, V. N., Matsulevich, Zh. V., Aysin, R. R., Lukiyanova, J. M., Fukin, G. K., Zubavichus, Y. V., Askerov, R. K., Maharramov, A. M. & Borisov, A. V. (2016). Struct. Chem. 27, 1733-1741.]). Moreover, we have established another stabilization method of heteroarenselenenyl and -tellurenyl chlorides by inter­molecular secondary Ch⋯N (Ch = Se, Te) inter­actions with the formation of dimers (Borisov et al., 2010a[Borisov, A. V., Matsulevich, Zh. V., Fukin, G. K. & Baranov, E. V. (2010a). Russ. Chem. Bull. 59, 581-583.],b[Borisov, A. V., Matsulevich, Zh. V. & Osmanov, V. K. (2010b). Chem. Heterocycl. Compd, 46, 775-776.],c[Borisov, A. V., Matsulevich, Z. V., Osmanov, V. K., Borisova, G. N. & Fukin, G. K. (2010c). In: Heterocyclic compounds: synthesis, properties and applications edited by K. Nylund, & P. Johansson, pp. 211-218. New York: Nova Science Publishers Inc.]; Khrustalev et al., 2016[Khrustalev, V. N., Matsulevich, Zh. V., Aysin, R. R., Lukiyanova, J. M., Fukin, G. K., Zubavichus, Y. V., Askerov, R. K., Maharramov, A. M. & Borisov, A. V. (2016). Struct. Chem. 27, 1733-1741.]). Herein, we report on the synthesis and structural characterization of the first monomeric 2-(chloro­selan­yl)pyridine 1-oxide stabilized by an intra­molecular secondary Se⋯O inter­action.

[Scheme 1]

2. Structural commentary

The title compound, Fig. 1[link], is the product of the reaction of sulfuryl chloride and 2-selanyl-1-pyridine 1-oxide in di­chloro­methane. It has an almost planar geometry (r.m.s. deviation = 0.012 Å), and its mol­ecular structure is stabilized by an intra­molecular secondary Se1⋯O1 inter­action of 2.353 (3) Å, closing the four-membered N1—C2—Se1⋯O1 ring (Fig. 1[link]). The non-valent attractive Se1⋯O1 inter­action results in the substantial distortion of the geometry of the ipso-C2 carbon atom. The endo-cyclic N1—C2—Se1 [102.1 (3)°] and exo-cyclic C3—C2—Se1 [136.9 (3)°] bond angles deviate significantly from the ideal value of 120° for an sp2-hybridized carbon atom, the former angle being much smaller than the latter. The title compound represents the first monomeric organoselenenyl chloride stabilized intra­molecularly by an inter­action of this type. Previously, the analogous stabilization of monomeric organoselenenyl chlorides by intra­molecular secondary Se⋯S (Tiecco et al., 2006[Tiecco, M., Testaferri, L., Santi, C., Tomassini, C., Santoro, S., Marini, F., Bagnoli, L., Temperini, A. & Costantino, F. (2006). Eur. J. Org. Chem. pp. 4867-4873.]) and Se⋯N (Panda et al., 1999[Panda, A., Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). Organometallics, 18, 1986-1993.]; Klapötke et al., 2004[Klapötke, T. M., Krumm, B. & Polborn, K. (2004). J. Am. Chem. Soc. 126, 710-711.]; Kulcsar et al., 2007[Kulcsar, M., Beleaga, A., Silvestru, C., Nicolescu, A., Deleanu, C., Todasca, C. & Silvestru, A. (2007). Dalton Trans. pp. 2187-2196.]; Pöllnitz et al., 2011[Pöllnitz, A., Lippolis, V., Arca, M. & Silvestru, A. (2011). J. Organomet. Chem. 696, 2837-2844.]) inter­actions have been reported.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling and displacement ellipsoids drawn at the 50% probability level. The dashed line indicates the intra­molecular secondary attractive Se1⋯O1 inter­action.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds (Table 1[link] and Fig. 2[link]), forming zigzag chains propagating along the b-axis direction. The chains stack along the a-axis direction and are linked by offset ππ inter­actions, forming corrugated sheets parallel to the ab plane [CgCgi,ii = 3.960 (3) Å, Cg is the centroid of the N1/C2–C6 ring, inter­planar distances = 3.590 (2) Å, slippages = 1.671 Å, symmetry codes: (i) x − 1, y, z; (ii) x + 1, y, z].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.34 3.101 (6) 137
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a axis. The intra­molecular secondary Se⋯O inter­actions and the inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines (see Table 1[link]).

4. Synthesis and crystallization

The synthesis of the title compound is illustrated in Fig. 3[link]. It was synthesized according to the procedure described previously by Borisov et al. (2010a[Borisov, A. V., Matsulevich, Zh. V., Fukin, G. K. & Baranov, E. V. (2010a). Russ. Chem. Bull. 59, 581-583.],b[Borisov, A. V., Matsulevich, Zh. V. & Osmanov, V. K. (2010b). Chem. Heterocycl. Compd, 46, 775-776.],c[Borisov, A. V., Matsulevich, Z. V., Osmanov, V. K., Borisova, G. N. & Fukin, G. K. (2010c). In: Heterocyclic compounds: synthesis, properties and applications edited by K. Nylund, & P. Johansson, pp. 211-218. New York: Nova Science Publishers Inc.]). A solution of sulfuryl chloride (0.27 g, 2 mmol) in di­chloro­methane (15 ml) was added to a solution of 2-selanyl-1-pyridine 1-oxide (0.35 g, 2 mmol) in di­chloro­methane (20 ml) at 293 K. After one h it was filtered to give the title compound (yield 0.33 g, 80%). The filtrate was evaporated in vacuo and recrystallization of the residue from di­chloro­methane solution gave an additional 0.06 g (15%) of the title compound. Colourless prismatic crystals of the title compound were obtained after recrystallization of the crude product from di­chloro­methane (m.p. 433–435 K). IR (KBr, cm−1), ν 1617, 1462, 1423, 1254, 1151, 836, 748, 621. 1H NMR (DMSO-d6, 300 MHz, 300 K): δ = 8.28 (d, 1H, 3J = 5.9, H6); 7.52 (d, 1H, 3J = 7.3, H3); 7.43 (dd, 1H, 3J = 7.8, 3J = 7.3, H4); 7.30 (dd, 1H, 3J = 7.8, 3J = 5.9, H5). Analysis calculated for C5H4ClNOSe: C 24.81; H 1.93; N 6.72. Found: 24.43; H 1.83; N 6.65.

[Figure 3]
Figure 3
The synthesis of the title compound; the reaction of 2-selanyl-1-pyridine 1-oxide with sulfuryl chloride in di­chloro­methane.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound H atoms were placed in calculated positions and refined as riding: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C5H4ClNOSe
Mr 208.50
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 3.9601 (8), 7.5102 (15), 22.350 (5)
β (°) 94.32 (3)
V3) 662.8 (2)
Z 4
Radiation type Synchrotron, λ = 0.96990 Å
μ (mm−1) 13.68
Crystal size (mm) 0.05 × 0.03 × 0.03
 
Data collection
Diffractometer Rayonix SX-165 CCD
Absorption correction Multi-scan (SCALA; Evans, 2006[Evans, P. (2006). Acta Cryst. D62, 72-82.])
Tmin, Tmax 0.550, 0.660
No. of measured, independent and observed [I > 2σ(I)] reflections 5526, 1310, 1121
Rint 0.083
(sin θ/λ)max−1) 0.636
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.074, 0.175, 1.01
No. of reflections 1310
No. of parameters 83
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.26, −1.58
Computer programs: Automar (MarXperts, 2015[MarXperts. (2015). Automar. MarXperts GmbH, D-22844 Norderstedt, Germany.]), iMosflm (Battye et al., 2011[Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271-281.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014/6 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: Automar (MarXperts, 2015); cell refinement: iMosflm (Battye et al., 2011); data reduction: iMosflm (Battye et al., 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

2-(Chloroselanyl)pyridine 1-oxide top
Crystal data top
C5H4ClNOSeF(000) = 400
Mr = 208.50Dx = 2.089 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.96990 Å
a = 3.9601 (8) ÅCell parameters from 600 reflections
b = 7.5102 (15) Åθ = 5.0–35.0°
c = 22.350 (5) ŵ = 13.68 mm1
β = 94.32 (3)°T = 100 K
V = 662.8 (2) Å3Prism, colourless
Z = 40.05 × 0.03 × 0.03 mm
Data collection top
Rayonix SX-165 CCD
diffractometer
1121 reflections with I > 2σ(I)
/f scanRint = 0.083
Absorption correction: multi-scan
(SCALA; Evans, 2006)
θmax = 38.1°, θmin = 5.0°
Tmin = 0.550, Tmax = 0.660h = 44
5526 measured reflectionsk = 99
1310 independent reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.074H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.06P)2 + 1.6P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
1310 reflectionsΔρmax = 1.26 e Å3
83 parametersΔρmin = 1.58 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: difference Fourier mapExtinction coefficient: 0.054 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.51523 (13)0.26936 (7)0.34782 (2)0.02716 (17)
Cl10.4514 (3)0.18592 (14)0.44303 (4)0.0331 (3)
O10.6571 (9)0.4577 (4)0.26942 (12)0.0347 (8)
N10.7603 (10)0.5643 (5)0.31523 (14)0.0290 (8)
C20.7093 (11)0.4927 (5)0.36941 (16)0.0266 (9)
C30.7969 (12)0.5838 (6)0.42160 (17)0.0301 (10)
H30.75780.53420.45960.036*
C40.9449 (14)0.7515 (6)0.4172 (2)0.0334 (13)
H41.01150.81730.45240.040*
C50.9941 (12)0.8213 (7)0.36099 (19)0.0343 (12)
H51.09060.93650.35790.041*
C60.9047 (14)0.7257 (5)0.3095 (2)0.0317 (12)
H60.94360.77200.27100.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0427 (4)0.0202 (3)0.0200 (3)0.00320 (19)0.0117 (3)0.00209 (16)
Cl10.0522 (7)0.0277 (5)0.0208 (4)0.0077 (5)0.0122 (4)0.0037 (4)
O10.058 (2)0.0284 (15)0.0190 (12)0.0061 (14)0.0139 (13)0.0045 (12)
N10.044 (2)0.0265 (17)0.0177 (14)0.0022 (16)0.0106 (13)0.0035 (13)
C20.041 (2)0.0217 (19)0.0183 (16)0.0003 (18)0.0111 (15)0.0008 (14)
C30.049 (3)0.028 (2)0.0144 (16)0.0006 (19)0.0089 (16)0.0008 (15)
C40.049 (3)0.027 (2)0.024 (2)0.0035 (19)0.004 (2)0.0028 (15)
C50.051 (3)0.026 (2)0.0267 (19)0.002 (2)0.0033 (19)0.0008 (19)
C60.048 (3)0.0180 (18)0.030 (2)0.0009 (18)0.009 (2)0.0062 (15)
Geometric parameters (Å, º) top
Se1—C21.892 (4)C3—H30.9500
Se1—Cl12.2506 (11)C4—C51.389 (7)
O1—N11.339 (4)C4—H40.9500
N1—C61.350 (6)C5—C61.381 (6)
N1—C21.354 (5)C5—H50.9500
C2—C31.374 (6)C6—H60.9500
C3—C41.395 (6)
C2—Se1—Cl194.48 (11)C5—C4—C3119.6 (4)
O1—N1—C6124.8 (3)C5—C4—H4120.2
O1—N1—C2112.9 (3)C3—C4—H4120.2
C6—N1—C2122.3 (4)C6—C5—C4120.9 (4)
N1—C2—C3121.0 (4)C6—C5—H5119.6
N1—C2—Se1102.1 (3)C4—C5—H5119.6
C3—C2—Se1136.9 (3)N1—C6—C5118.1 (4)
C2—C3—C4118.0 (4)N1—C6—H6120.9
C2—C3—H3121.0C5—C6—H6120.9
C4—C3—H3121.0
O1—N1—C2—C3179.4 (4)Se1—C2—C3—C4178.9 (4)
C6—N1—C2—C31.4 (7)C2—C3—C4—C50.9 (7)
O1—N1—C2—Se10.7 (4)C3—C4—C5—C61.3 (8)
C6—N1—C2—Se1178.5 (4)O1—N1—C6—C5179.2 (4)
Cl1—Se1—C2—N1179.0 (3)C2—N1—C6—C51.7 (7)
Cl1—Se1—C2—C31.0 (5)C4—C5—C6—N11.6 (8)
N1—C2—C3—C41.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.343.101 (6)137
Symmetry code: (i) x+2, y+1/2, z+1/2.
 

Acknowledgements

The work was supported by the Ministry of Education of the Russian Federation (Agreement number 02.a03.21.0008 of June 24, 2016) and the Russian Foundation for Basic Research (Grant No. 14–03-00914).

References

First citationBattye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. (2011). Acta Cryst. D67, 271–281.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBorisov, A. V., Matsulevich, Zh. V., Fukin, G. K. & Baranov, E. V. (2010a). Russ. Chem. Bull. 59, 581–583.  CrossRef CAS Google Scholar
First citationBorisov, A. V., Matsulevich, Zh. V. & Osmanov, V. K. (2010b). Chem. Heterocycl. Compd, 46, 775–776.  CrossRef CAS Google Scholar
First citationBorisov, A. V., Matsulevich, Z. V., Osmanov, V. K., Borisova, G. N. & Fukin, G. K. (2010c). In: Heterocyclic compounds: synthesis, properties and applications edited by K. Nylund, & P. Johansson, pp. 211–218. New York: Nova Science Publishers Inc.  Google Scholar
First citationColes, M. P. (2006). Curr. Org. Chem. 10, 1993–2005.  CrossRef CAS Google Scholar
First citationElsherbini, M., Hamama, W. S. & Zoorob, H. H. (2016). Coord. Chem. Rev. 312, 149–177.  CrossRef CAS Google Scholar
First citationEvans, P. (2006). Acta Cryst. D62, 72–82.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKhrustalev, V. N., Ismaylova, S. R., Aysin, R. R., Matsulevich, Zh. V., Osmanov, V. K., Peregudov, A. S. & Borisov, A. V. (2012). Eur. J. Inorg. Chem. pp. 5456–5460.  CrossRef Google Scholar
First citationKhrustalev, V. N., Matsulevich, Zh. V., Aysin, R. R., Lukiyanova, J. M., Fukin, G. K., Zubavichus, Y. V., Askerov, R. K., Maharramov, A. M. & Borisov, A. V. (2016). Struct. Chem. 27, 1733–1741.  CrossRef CAS Google Scholar
First citationKhrustalev, V. N., Matsulevich, Zh. V., Lukiyanova, J. M., Aysin, R. R., Peregudov, A. S., Leites, L. A. & Borisov, A. V. (2014). Eur. J. Inorg. Chem. pp. 3582–3586.  CrossRef Google Scholar
First citationKlapötke, T. M., Krumm, B. & Polborn, K. (2004). J. Am. Chem. Soc. 126, 710–711.  Google Scholar
First citationKulcsar, M., Beleaga, A., Silvestru, C., Nicolescu, A., Deleanu, C., Todasca, C. & Silvestru, A. (2007). Dalton Trans. pp. 2187–2196.  Web of Science CSD CrossRef Google Scholar
First citationMarXperts. (2015). Automar. MarXperts GmbH, D-22844 Norderstedt, Germany.  Google Scholar
First citationMukherjee, A. J., Zade, S. S., Singh, B. H. & Sunoj, R. B. (2010). Chem. Rev. 110, 4357–4416.  CrossRef CAS Google Scholar
First citationNakanishi, W., Hayashi, S., Hashimoto, M., Arca, M., Aragoni, M. C. & Lippolis, V. (2013). Organic selenium and tellurium. New York: John Wiley & Sons, Ltd.  Google Scholar
First citationNinomiya, M., Garud, D. R. & Koketsu, M. (2011). Coord. Chem. Rev. 255, 2968–2990.  CrossRef CAS Google Scholar
First citationPanda, A., Mugesh, G., Singh, H. B. & Butcher, R. J. (1999). Organometallics, 18, 1986–1993.  Web of Science CSD CrossRef CAS Google Scholar
First citationPöllnitz, A., Lippolis, V., Arca, M. & Silvestru, A. (2011). J. Organomet. Chem. 696, 2837–2844.  Google Scholar
First citationRanganathan, S., Muraleedharan, K. M., Vaish, N. K. & Jayaraman, N. (2004). Tetrahedron, 60, 5273–5308.  CrossRef CAS Google Scholar
First citationSelvakumar, K., Singh, H. B. & Butcher, R. J. (2010). Chem. Eur. J. 16, 10576–10591.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSelvakumar, K., Singh, V. P., Shah, P. & Singh, H. B. (2011). Main Group Chem. 10, 141–152.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSingh, F. V. & Wirth, T. (2011). In: Organoselenium Chemistry, edited by T. Wirth, pp. 321–360. Weinheim: Wiley-VCH.  Google Scholar
First citationTakaluoma, E. M., Takaluoma, T. T., Oilunkaniemi, R. & Laitinen, R. S. (2015). Z. Anorg. Allg. Chem. 641, 772–779.  CrossRef CAS Google Scholar
First citationTiecco, M., Testaferri, L., Santi, C., Tomassini, C., Santoro, S., Marini, F., Bagnoli, L., Temperini, A. & Costantino, F. (2006). Eur. J. Org. Chem. pp. 4867–4873.  CrossRef Google Scholar
First citationZade, S. S. & Singh, H. B. (2014). InThe chemistry of organic selenium and tellurium compounds, Vol. 4, edited by Z. Rappoport, J. F. Liebman, I. Marek, S. Patai, pp. 1–180. New York: Wiley.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds