research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal and mol­ecular structures of two silver(I) amidinates, including an unexpected co-crystal with a lithium amidinate

CROSSMARK_Color_square_no_text.svg

aChemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany
*Correspondence e-mail: frank.edelmann@ovgu.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 October 2016; accepted 5 November 2016; online 15 November 2016)

The silver(I) amidinates bis­[μ-N1,N2-bis­(propan-2-yl)benzamidinato-κ2N1:N2]disilver(I), [Ag2(C13H19N2)2] or [Ag{PhC(NiPr)2}]2 (1), and bis­(μ-N1,N2-di­cyclohexyl-3-cyclo­propyl­propynamidinato-κ2N1:N2)disilver(I), [Ag2(C18H27N2)2] or [Ag{cyclo-C3H5–C≡C–C(NCy)2}]2 (2a), exist as centrosymmetric dimers with a planar Ag2N4C2 ring and a common linear coordination of the metal atoms in the crystalline state. Moiety 2a forms a co-crystal with the related lithium amidinate, namely bis­(μ-N1,N2-di­cyclo­hexyl-3-cyclo­propyl­propynamidinato-κ2N1:N2)disilver(I) bis­(μ-N1,N2-di­cyclo­hexyl-3-cyclo­propyl­propynamidinato-κ3N1,N2:N1)bis­(tetra­hydro­furan-κO)lithium(I) toluene monosolvate, [Ag2(C18H27N2)2][Li2(C18H27N2)2(C4H8O)2]·C7H8 or [Ag{cyclo-C3H5–C≡CC(NCy)2}]2[Li{cyclo-C3H5–C≡C–C(NCy)2}(THF)]2·C7H8, composed as 2a × 2b × toluene. The lithium moiety 2b features a typical ladder-type dimeric structure with a distorted tetra­hedral coordination of the metal atoms. In the silver(I) derivatives 1 and 2a, the amidinate ligand adopts a μ-κN:κN′ coordination, while it is a μ-κN:κN:κN′-coordination in the case of lithium derivative 2b.

1. Chemical context

Anionic N-chelating donor ligands such as amidinates, [RC(NR)2], and guanidinates, [R2NC(NR)2], have gained tremendous importance in various fields of organometallic and coordination chemistry over the past two decades. Formally, amidinate anions are the nitro­gen analogues of the carboxyl­ate anions, while guanidinates are similarly related to the carbamates. However, in contrast to the carboxyl­ates and carbamates, the steric properties of amidinates and guanidinates can be widely tuned through the use of different substituents, both at the outer nitro­gen atoms as well as at the central carbon atom of the NCN unit. Both types of N-chelating ligands are often regarded as `steric cyclo­penta­dienyl equivalents' (Bailey & Pace, 2001[Bailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91-141.]; Collins, 2011[Collins, S. (2011). Coord. Chem. Rev. 255, 118-138.]; Edelmann, 2008[Edelmann, F. T. (2008). Adv. Organomet. Chem. 57, 183-352.], 2013[Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.]). Meanwhile, amidinato and guanidinato complexes are known for virtually every metallic element in the Periodic Table ranging from lithium to uranium (Edelmann, 2008[Edelmann, F. T. (2008). Adv. Organomet. Chem. 57, 183-352.], 2009[Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253-2268.], 2012[Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657-7672.], 2013[Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.]; Trifonov, 2010[Trifonov, A. A. (2010). Coord. Chem. Rev. 254, 1327-1347.]). Alkyl-substituted amidinate and guanidinate complexes of various metals have also been established as ALD and MOCVD precursors for the deposition of thin layers of metals, metal oxides, metal nitrides etc. (Devi, 2013[Devi, A. (2013). Coord. Chem. Rev. 257, 3332-3384.]). The most important starting mat­erials in this field are lithium amidinates and guanidinates. Lithium amidinates are normally prepared in a straightforward manner by addition of lithium alkyls to N,N′-di­organo­carbodi­imides in a 1:1 molar ratio, while lithium guanidinates are formed when lithium-N,N-di­alkyl­amides are added to N,N′-diorganocarbodi­imides (Stalke et al., 1992[Stalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1-C5.]; Aharonovich et al., 2008[Aharonovich, S., Kapon, M., Botoshanski, M. & Eisen, M. S. (2008). Organometallics, 27, 1869-1877.]; Chlupatý et al., 2011[Chlupatý, T., Padělková, A., Lyčka, A. & Růžička, A. (2011). J. Organomet. Chem. 696, 2346-2354.]; Nevoralová et al., 2013[Nevoralová, J., Chlupatý, T., Padělková, A. & Růžička, A. (2013). J. Organomet. Chem. 745-746, 186-189.]; Hong et al., 2013[Hong, J., Zhang, L., Wang, K., Chen, Z., Wu, L. & Zhou, X. (2013). Organometallics, 32, 7312-7322.]). On the other hand, silver(I) amidinates and guanidinates (Archibald et al., 2000[Archibald, S. J., Alcock, N. W., Busch, D. H. & Whitcomb, D. R. (2000). J. Cluster Sci. 11, 261-283.]; Lim et al., 2003[Lim, B. S., Rahtu, A., Park, J.-S. & Gordon, R. G. (2003). Inorg. Chem. 42, 7951-7958.]; Whitehorne et al., 2011[Whitehorne, T. J. J., Coyle, J. P., Mahmood, A., Monillas, W. H., Yap, G. P. A. & Barry, S. T. (2011). Eur. J. Inorg. Chem. pp. 3240-3247.]; Lane et al., 2014[Lane, A. C., Vollmer, M. V., Laber, C. H., Melgarejo, D. Y., Chiarella, G. M., Fackler, J. P. Jr, Yang, X., Baker, G. A. & Walensky, J. R. (2014). Inorg. Chem. 53, 11357-11366.]) are of significant importance as potential precursors for vapor deposition processes (Lim et al., 2003[Lim, B. S., Rahtu, A., Park, J.-S. & Gordon, R. G. (2003). Inorg. Chem. 42, 7951-7958.]; Whitehorne et al., 2011[Whitehorne, T. J. J., Coyle, J. P., Mahmood, A., Monillas, W. H., Yap, G. P. A. & Barry, S. T. (2011). Eur. J. Inorg. Chem. pp. 3240-3247.]), as precursors for silver nanoparticles (Cure et al., 2015[Cure, J., Coppel, Y., Dammak, T., Fazzini, P. F., Mlayah, A., Chaudret, B. & Fau, P. (2015). Langmuir, 31, 1362-1367.]), or as inter­mediates in silver-catalyzed amidination and guanylation reactions (Pereshivko et al., 2011[Pereshivko, O. P., Peshkov, V. A., Ermolat'ev, D. S., Van Hove, S., Van Hecke, K., Van Meervelt, L. & Van der Eycken, E. V. (2011). Synthesis, pp. 1587-1594.]; Okano et al., 2012[Okano, A., James, R. C., Pierce, J. G., Xie, J. & Boger, D. L. (2012). J. Am. Chem. Soc. 134, 8790-8793.]; Li et al., 2015[Li, X., Li, Y.-L., Chen, Y., Zou, Y., Zhuo, X.-B., Wu, Q.-Y., Zhao, Q.-J. & Hu, H.-G. (2015). RSC Adv. 5, 94654-94657.]).

[Scheme 1]

We report here the structural characterization of two silver(I) amidinates, namely [Ag{PhC(NiPr)2}]2 (1), and the unexpected co-crystal (2), composed as [Ag{cyclo-C3H5—C≡C—C(NCy)2}]2 (2a) × [Li{cyclo-C3H5—C≡C—C(NCy)2}(THF)]2 (2b) × toluene (Cy = cyclo­hex­yl).

2. Structural commentary

Silver(I) compound 1 (Fig. 1[link]) and silver moiety 2a (Fig. 2[link]): Both silver(I) complexes exist as centrosymmetric dimers in the crystalline state. Compound 1 crystallizes without any solvent, and the mol­ecular structure of moiety 2a was determined from the co-crystal 2 (2a × 2b × toluene). In both 1 and 2a, each of the two N atoms of the amidinate ligand coordinates to one Ag atom (coordination mode μ-κN:κN′), and the Ag atoms adopt an almost linear coordination [1: N—Ag—N 170.58 (7)°; 2a: N—Ag—N 170.66 (5)°] by two N atoms of two symmetry-related amidinate ligands, leading to centrosymmetric dimers in each case. The Ag—N separations are very similar in both structures [1: 2.0959 (16) and 2.0965 (16) Å, 2a: 2.0908 (15) and 2.0916 (14) Å]. An sp2 hybridization can be assigned to the N atoms since the coordination environment is almost trigonal–planar. The C—N separations within the amidinate NCN fragment are virtually equal [1: twice 1.322 (3) Å, 2a: 1.329 (2) and 1.331 (2) Å], indicating a typical delocalization of the negative charge. Through the mentioned connectivity pattern, a strictly planar C2N4Ag2 eight-membered ring with a short Ag⋯Ag contact is built [1: 2.6604 (3) Å, 2a: 2.6838 (3) Å]. This constitution might be supported by some attractive d10d10 inter­action between the Ag atoms that have been frequently discussed in the literature (for a review, e.g. see: Jansen, 1987[Jansen, M. (1987). Angew. Chem. Int. Ed. Engl. 26, 1098-1110.]). The mol­ecular structures of the here discussed compounds are closely related to those of the most previously described copper(I) and silver(I) amidinates, namely [Cu2{RC(NR′)2}2] (R, R′ = Me, nBu; Li et al., 2005[Li, Z., Barry, S. T. & Gordon, R. G. (2005). Inorg. Chem. 44, 1728-1735.]) and [M2{MeC(NiPr)2}2] (M = Cu, Ag). However, in the case of Ag{MeC(NiPr)2}, also a trimeric structure [Ag3{MeC(NiPr)2}3] was observed (Lim et al., 2003[Lim, B. S., Rahtu, A., Park, J.-S. & Gordon, R. G. (2003). Inorg. Chem. 42, 7951-7958.]). The bond lengths and angles involving the Ag atoms, viz. Ag—N and Ag—Ag distances and N—Ag—N angles, in the compounds discussed herein resemble those observed in the previously reported dimeric silver(I) amidinates. A dimerization or oligomerization under formation of linear N—M—N units is also typical for a broad ensemble of copper(I) and silver(I) complexes with other anionic nitro­gen ligands, e.g. [Cu4(NR2)4] (e.g. R = Me, Gambarotta et al., 1987[Gambarotta, S., Bracci, M., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1987). J. Chem. Soc. Dalton Trans. pp. 1883-1888.]; R = Et, Hope & Power, 1984[Hope, H. & Power, P. P. (1984). Inorg. Chem. 23, 936-937.]; R = SiMe3, James et al., 1998[James, A. M., Laxman, R. K., Fronczek, F. R. & Maverick, A. W. (1998). Inorg. Chem. 37, 3785-3791.]), [Ag4(N(SiMe3)2}4] and [Ag3(N,N,N′,N′-tetra­methyl­piperid­yl)3] (Hitchcock et al., 1996[Hitchcock, P. B., Lappert, M. F. & Pierssens, L. J.-M. (1996). Chem. Commun. pp. 1189-1190.]), [Cu2Tl2(ThioSila)2] and [Ag4(ThioSila)2(THT)2] (ThioSila = {Me2Si(N-C6H4-2-SPh)2}2–, THT = tetra­hydro­thio­phene; Liebing & Merzweiler, 2016[Liebing, P. & Merzweiler, K. (2016). Z. Anorg. Allg. Chem. 642, 500-507.]). The silane di­amide complexes [M4(ThioSila)2] comprise a planar Si2N4M2 ring that is structurally closely related to the C2N4M2 ring in the dimeric amidinate complexes.

[Figure 1]
Figure 1
The mol­ecular structure of compound 1. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code: (′) 2 − x, 2 − y, 1 − z.]
[Figure 2]
Figure 2
The mol­ecular structure of moiety 2a, determined from the co-crystal 2. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code: (′) 2 − x, 2 − y, 1 − z.]

Lithium moiety 2b (Fig. 3[link]): The mol­ecular structure of 2b was determined from the above-mentioned co-crystal 2 (2a × 2b × toluene). Like the silver components 1 and 2a, the lithium moiety exists as a centrosymmetric dimer in the crystalline state. However, the mol­ecular structure of 2b is considerably different, featuring a centrosymmetric Li2N2 four-membered ring formed by μ-bridging coordination of one of the N atoms (N3). The Li—N distances within this ring are 2.033 (4)–2.261 (4) Å and therefore in the expected range. The coordination number of the mentioned N atom N3 is consequently raised to four and an sp3 hybridization fits best to describe the bonding situation. The second N atom of the amidinate ligand (N4) is attached to only one Li atom with a shorter Li—N bond of 2.001 (4) Å, and its coordination environment is trigonal–planar like in the related silver components. Through this μ-κN:κN:κN′-coordination mode of the amidinate ligands, a `ladder' consisting of three four-membered rings is formed. By coordination of a solvent THF mol­ecule, a typical distorted tetra­hedral coordination of the Li atom is completed. Just like in the case of the silver components 1 and 2a, the C—N bond lengths within the amidinate moiety are very similar with 1.321 (2) and 1.335 (2) Å. The structural motif of ladder-type dimers is typical for this class of compounds and has frequently been observed for most of the previously characterized lithium amidinates and guanidinates (Stalke et al., 1992[Stalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1-C5.]; Snaith & Wright, 1995[Snaith, R. & Wright, D. S. (1995). In Lithium Chemistry, A Theoretical and Experimental Overview, edited by A. Sapse & P. von R. Schleyer. New York: Wiley.]; Downard & Chivers, 2001[Downard, A. & Chivers, T. (2001). Eur. J. Inorg. Chem. pp. 2193-2201.], Brown et al., 2008[Brown, D. J., Chisholm, M. H. & Gallucci, J. C. (2008). Dalton Trans. pp. 1615-1624.]).

[Figure 3]
Figure 3
The mol­ecular structure of moiety 2a, determined from the co-crystal 2. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity. [Symmetry code: (′′) 2 − x, 1 − y, −z.]

3. Supra­molecular features

In both of the presented crystal structures, there are no specific inter­molecular inter­actions. In compound 1 (Fig. 4[link]), the closest inter­molecular contacts exist between phenyl groups and isopropyl groups [min. HC⋯CH3 3.79 (1) Å]. In the co-crystal 2 (Fig. 5[link]), four silver amidinate mol­ecules (2a) are situated on the centres of the four unit-cell edges perpendicular to (001) and four lithium amidinate mol­ecules (2b) on the four edges perpendicular to (010). The four remaining unit-cell edges perpendicular to (100) are occupied by four disordered toluene mol­ecules. The closest inter­molecular contacts exist between the cyclo­propyl moieties of the silver complex and the toluene methyl groups [C6⋯C44 3.48 (1) Å], followed by cyclo­propyl-cyclo­propyl contacts between silver amidinate and lithium amidinate mol­ecules [C5⋯C24 3.57 (1) Å].

[Figure 4]
Figure 4
Crystal packing of dimeric silver(I) amidinate mol­ecules in compound 1, viewed in a projection on (100).
[Figure 5]
Figure 5
Crystal packing of silver(I) amidinate (2a), lithium amidinate (2b) and disordered toluene mol­ecules in the co-crystal 2, viewed in a projection on (100).

4. Synthesis and crystallization

[Ag2{PhC(NiPr)2}2] (1) was obtained following a published procedure (Lim et al., 2003[Lim, B. S., Rahtu, A., Park, J.-S. & Gordon, R. G. (2003). Inorg. Chem. 42, 7951-7958.]). Therefore, an in situ prepared solution of the lithium derivative Li{PhC(NiPr)2} (Sroor et al., 2013[Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390-2394.]) in THF was treated with a stoichiometric amount of silver(I) chloride at room temperature (Fig. 6[link]). Afterwards the solvent was removed in vacuo, the residue was extracted with toluene and the insoluble matter filtered off. After addition of an excess of n-pentane to the filtrate, large colorless crystals formed within few days at room temperature. 1H NMR (400.1 MHz, THF-d8, 298 K): δ (p.p.m.) 7.45–7.04 (3×m, 10H, CH Ph), 3.21 (sept, 4H, CH iPr), 1.05 (d, 24H, CH3 iPr). 13C NMR (100.6 MHz, THF-d8, 298 K): δ (p.p.m.) 170.4 (NCN), 141.1 (ipso-C Ph), 128.6 (CH Ph), 127.3 (CH Ph), 126.7 (para-CH Ph), 49.3 (CH iPr), 28.1 (CH3 iPr).

[Figure 6]
Figure 6
Synthesis of silver(I) amidinates from the related lithium derivatives.

Single crystals of the co-crystal (2) with composition [Ag{c-C3H5—C≡C—C(NCy)2}]2 (2a) × [Li{c-C3H5—C≡C—C(NCy)2}(THF)]2 (2b) × toluene were serendipitously obtained in an attempt to prepare the pure silver(I) derivative 2a. The reaction of the in situ prepared lithium compound 2b (Sroor et al., 2013[Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390-2394.]) with silver(I) chloride in THF analogous to the procedure described for compound 1 afforded a small qu­antity of colorless co-crystals of (2). Mp. = 393 K. 1H NMR (400.1 MHz, THF-d8, 298 K): δ (p.p.m.): 3.31–3.40 (m, 4H, CH Cy), 1.55–1.72 (m, 20H, CH2 Cy), 1.34–1.40 (m, 2H, CH c-C3H5), 1.09–1.23 (m, 20H, CH2 Cy), 0.79–0.83 (m, 4H, CH2 c-C3H5), 0.64–0.68 (m, 4H, CH2 c-C3H5). 13C NMR (100.6 MHz, THF-d8, 298 K): δ (p.p.m.) 156.5 (NCN), 96.6 (CH—C≡C), 69.2 (C≡C–-C), 58.8 (CH Cy), 38.8 (CH2, Cy), 26.3 (CH2 Cy), 8.83 (CH2 c-C3H5), 0.37 (CH c-C3H5).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. All H atoms were fixed geom­etrically and refined using a riding model with Uiso(H) = 1.2Ueq(C). C—H distances in CH3 groups were constrained to 0.98 Å, those in CH2 groups to 0.99 Å and those in CH groups to 1.00 Å. All CH3 groups were refined as freely rotating around the C–C vector.

Table 1
Experimental details

  1 2
Crystal data
Chemical formula [Ag2(C13H19N2)2] [Ag2(C18H27N2)2][Li2(C18H27N2)2(C4H8O)2]·C7H8
Mr 622.34 1551.62
Crystal system, space group Orthorhombic, Pbca Triclinic, P[\overline{1}]
Temperature (K) 153 133
a, b, c (Å) 11.7112 (6), 15.9238 (6), 14.8703 (6) 10.5880 (3), 14.5620 (4), 14.9830 (5)
α, β, γ (°) 90, 90, 90 99.871 (2), 102.825 (2), 106.538 (2)
V3) 2773.1 (2) 2090.17 (11)
Z 4 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.43 0.52
Crystal size (mm) 0.23 × 0.21 × 0.09 0.44 × 0.29 × 0.27
 
Data collection
Diffractometer Stoe IPDS 2T Stoe IPDS 2T
Absorption correction Numerical (X-AREA and X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.713, 0.874
No. of measured, independent and observed [I > 2σ(I)] reflections 9641, 3026, 2360 22444, 9099, 8214
Rint 0.030 0.043
(sin θ/λ)max−1) 0.639 0.639
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.047, 0.99 0.028, 0.073, 1.03
No. of reflections 3026 9099
No. of parameters 150 461
No. of restraints 0 12
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.34, −0.29 0.40, −0.61
Computer programs: X-AREA and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXT2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. University of Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

For compound 2, the reflection (100) was partly obstructed by the beam stop and was therefore omitted from the refinement. The Uij components of the C atoms of the THF mol­ecule (C41–C44) were restrained to be similar for atoms closer than 1.7 Å (SIMU restraint in SHELXL; the s.u. applied was 0.01 Å2). The toluene mol­ecule (C41–C44) is located on an inversion center. Consequently, the methyl group (C44) and the para-H atom (H64) are disordered over two positions and were refined with a constrained site occupancy factor of 0.5. The ipso-C and para-C atom (C42A and C42B) were refined to be equal (EXYZ and EADP restraints in SHELXL).

Supporting information


Computing details top

For both compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-AREA and X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

(compound_1) Bis[µ-N1,N2-bis(propan-2-yl)benzamidinato-κ2N1:N2]disilver(I) top
Crystal data top
[Ag2(C13H19N2)2]Dx = 1.491 Mg m3
Mr = 622.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 11797 reflections
a = 11.7112 (6) Åθ = 2.6–29.1°
b = 15.9238 (6) ŵ = 1.43 mm1
c = 14.8703 (6) ÅT = 153 K
V = 2773.1 (2) Å3Plate, colorless
Z = 40.23 × 0.21 × 0.09 mm
F(000) = 1264
Data collection top
Stoe IPDS 2T
diffractometer
3026 independent reflections
Radiation source: fine-focus sealed tube2360 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.030
area detector scansθmax = 27.0°, θmin = 2.6°
Absorption correction: numerical
(X-AREA and X-RED; Stoe & Cie, 2002)
h = 1214
Tmin = 0.713, Tmax = 0.874k = 1720
9641 measured reflectionsl = 1817
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0238P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
3026 reflectionsΔρmax = 0.34 e Å3
150 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: heavy-atom methodExtinction coefficient: 0.00133 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.89250 (17)0.84957 (11)0.52126 (14)0.0180 (4)
C20.84003 (17)0.76359 (12)0.53144 (14)0.0192 (4)
C30.72930 (18)0.75332 (14)0.56240 (15)0.0269 (5)
H10.6848140.8010410.5779860.032*
C40.6834 (2)0.67346 (15)0.57063 (17)0.0339 (6)
H20.6073430.6669060.5916460.041*
C50.7464 (2)0.60378 (15)0.54883 (17)0.0347 (6)
H30.7143120.5492570.5546550.042*
C60.8568 (2)0.61370 (14)0.51837 (17)0.0347 (6)
H40.9010660.5656940.5034960.042*
C70.9036 (2)0.69336 (13)0.50927 (16)0.0279 (5)
H50.9795240.6996450.4877710.034*
C80.9646 (2)0.83508 (14)0.67386 (15)0.0307 (5)
H60.9264640.7791270.6684440.037*
C91.0893 (3)0.82211 (19)0.6933 (2)0.0519 (8)
H71.0977590.7903340.7493370.062*
H91.1269250.8767670.6994610.062*
H81.1243890.7907840.6437820.062*
C100.9090 (3)0.8841 (2)0.7489 (2)0.0657 (10)
H120.9153260.8524420.8052000.079*
H100.8281960.8931250.7346640.079*
H110.9472620.9384370.7555090.079*
C110.8084 (2)0.85689 (12)0.37151 (15)0.0255 (5)
H130.7935860.7959300.3826470.031*
C120.6952 (2)0.90348 (17)0.3702 (2)0.0431 (7)
H150.6488000.8832800.3198160.052*
H160.7092470.9637970.3631930.052*
H140.6545350.8934140.4267920.052*
C130.8693 (3)0.86641 (16)0.28221 (16)0.0398 (6)
H190.8214500.8432870.2341300.048*
H180.9420180.8360570.2841870.048*
H170.8836900.9260430.2705430.048*
N10.95209 (16)0.88054 (10)0.58907 (12)0.0225 (4)
N20.88089 (15)0.88965 (10)0.44393 (12)0.0194 (4)
AG1.04222 (2)0.99411 (2)0.58280 (2)0.01974 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0154 (10)0.0156 (8)0.0229 (10)0.0005 (7)0.0023 (8)0.0010 (7)
C20.0205 (11)0.0201 (9)0.0172 (10)0.0048 (8)0.0028 (8)0.0025 (8)
C30.0226 (13)0.0312 (10)0.0269 (11)0.0027 (9)0.0015 (9)0.0032 (9)
C40.0260 (12)0.0422 (12)0.0334 (14)0.0165 (10)0.0069 (10)0.0108 (11)
C50.0462 (15)0.0267 (10)0.0312 (13)0.0194 (10)0.0126 (12)0.0066 (9)
C60.0454 (15)0.0207 (10)0.0381 (14)0.0038 (10)0.0069 (12)0.0004 (10)
C70.0317 (13)0.0213 (9)0.0308 (13)0.0027 (9)0.0007 (10)0.0003 (9)
C80.0435 (15)0.0276 (10)0.0209 (11)0.0129 (11)0.0057 (11)0.0074 (9)
C90.057 (2)0.0559 (17)0.0424 (17)0.0170 (14)0.0130 (15)0.0194 (14)
C100.068 (2)0.101 (3)0.0281 (15)0.0053 (19)0.0150 (17)0.0124 (19)
C110.0309 (12)0.0185 (9)0.0270 (12)0.0041 (9)0.0118 (10)0.0007 (8)
C120.0332 (14)0.0476 (14)0.0484 (17)0.0024 (12)0.0179 (13)0.0024 (13)
C130.0567 (18)0.0383 (12)0.0243 (12)0.0063 (13)0.0097 (12)0.0104 (10)
N10.0273 (9)0.0213 (7)0.0190 (9)0.0074 (7)0.0039 (8)0.0036 (7)
N20.0213 (9)0.0169 (7)0.0200 (9)0.0028 (7)0.0058 (7)0.0006 (6)
AG0.02505 (8)0.01632 (8)0.01784 (8)0.00466 (6)0.00495 (6)0.00110 (6)
Geometric parameters (Å, º) top
C1—N11.322 (3)C9—H90.9800
C1—N21.322 (3)C9—H80.9800
C1—C21.508 (3)C10—H120.9800
C2—C71.383 (3)C10—H100.9800
C2—C31.386 (3)C10—H110.9800
C3—C41.386 (3)C11—N21.467 (3)
C3—H10.9500C11—C131.514 (4)
C4—C51.371 (4)C11—C121.520 (3)
C4—H20.9500C11—H131.0000
C5—C61.379 (4)C12—H150.9800
C5—H30.9500C12—H160.9800
C6—C71.389 (3)C12—H140.9800
C6—H40.9500C13—H190.9800
C7—H50.9500C13—H180.9800
C8—N11.461 (3)C13—H170.9800
C8—C91.502 (4)N1—AG2.0959 (16)
C8—C101.509 (4)N2—AGi2.0965 (16)
C8—H61.0000AG—N2i2.0965 (16)
C9—H70.9800AG—AGi2.6604 (3)
N1—C1—N2122.53 (17)C8—C10—H12109.5
N1—C1—C2118.50 (18)C8—C10—H10109.5
N2—C1—C2118.92 (18)H12—C10—H10109.5
C7—C2—C3119.2 (2)C8—C10—H11109.5
C7—C2—C1119.38 (19)H12—C10—H11109.5
C3—C2—C1121.45 (19)H10—C10—H11109.5
C2—C3—C4120.0 (2)N2—C11—C13109.64 (19)
C2—C3—H1120.0N2—C11—C12109.90 (19)
C4—C3—H1120.0C13—C11—C12110.5 (2)
C5—C4—C3120.9 (2)N2—C11—H13108.9
C5—C4—H2119.6C13—C11—H13108.9
C3—C4—H2119.6C12—C11—H13108.9
C4—C5—C6119.3 (2)C11—C12—H15109.5
C4—C5—H3120.4C11—C12—H16109.5
C6—C5—H3120.4H15—C12—H16109.5
C5—C6—C7120.5 (2)C11—C12—H14109.5
C5—C6—H4119.8H15—C12—H14109.5
C7—C6—H4119.8H16—C12—H14109.5
C2—C7—C6120.2 (2)C11—C13—H19109.5
C2—C7—H5119.9C11—C13—H18109.5
C6—C7—H5119.9H19—C13—H18109.5
N1—C8—C9109.4 (2)C11—C13—H17109.5
N1—C8—C10109.8 (2)H19—C13—H17109.5
C9—C8—C10110.4 (2)H18—C13—H17109.5
N1—C8—H6109.1C1—N1—C8121.76 (16)
C9—C8—H6109.1C1—N1—AG123.63 (13)
C10—C8—H6109.1C8—N1—AG114.54 (13)
C8—C9—H7109.5C1—N2—C11121.76 (17)
C8—C9—H9109.5C1—N2—AGi123.15 (13)
H7—C9—H9109.5C11—N2—AGi115.04 (12)
C8—C9—H8109.5N1—AG—N2i170.58 (7)
H7—C9—H8109.5N1—AG—AGi85.12 (5)
H9—C9—H8109.5N2i—AG—AGi85.52 (5)
N1—C1—C2—C787.4 (3)N2—C1—N1—AG2.7 (3)
N2—C1—C2—C790.1 (3)C2—C1—N1—AG174.65 (14)
N1—C1—C2—C392.7 (3)C9—C8—N1—C1122.8 (2)
N2—C1—C2—C389.8 (3)C10—C8—N1—C1116.0 (3)
C7—C2—C3—C40.2 (3)C9—C8—N1—AG54.4 (2)
C1—C2—C3—C4179.7 (2)C10—C8—N1—AG66.9 (3)
C2—C3—C4—C50.3 (4)N1—C1—N2—C11176.00 (19)
C3—C4—C5—C60.0 (4)C2—C1—N2—C116.6 (3)
C4—C5—C6—C70.4 (4)N1—C1—N2—AGi1.4 (3)
C3—C2—C7—C60.2 (3)C2—C1—N2—AGi175.99 (14)
C1—C2—C7—C6179.9 (2)C13—C11—N2—C1137.0 (2)
C5—C6—C7—C20.5 (4)C12—C11—N2—C1101.3 (2)
N2—C1—N1—C8179.6 (2)C13—C11—N2—AGi45.4 (2)
C2—C1—N1—C82.2 (3)C12—C11—N2—AGi76.2 (2)
Symmetry code: (i) x+2, y+2, z+1.
(compound_2) Bis(µ-N1,N2-dicyclohexyl-3-cyclopropylpropynamidinato-κ2N1:N2)disilver(I) bis(µ-N1,N2-dicyclohexyl-3-cyclopropylpropynamidinato-κ3N1,N2:N1)bis(tetrahydrofuran- κO)lithium(I) toluene monosolvate top
Crystal data top
[Ag2(C18H27N2)2][Li2(C18H27N2)2(C4H8O)2]·C7H8Z = 1
Mr = 1551.62F(000) = 826
Triclinic, P1Dx = 1.233 Mg m3
a = 10.5880 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 14.5620 (4) ÅCell parameters from 27393 reflections
c = 14.9830 (5) Åθ = 2.1–29.2°
α = 99.871 (2)°µ = 0.52 mm1
β = 102.825 (2)°T = 133 K
γ = 106.538 (2)°Rod, colorless
V = 2090.17 (11) Å30.44 × 0.29 × 0.27 mm
Data collection top
Stoe IPDS 2T
diffractometer
8214 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Detector resolution: 6.67 pixels mm-1θmax = 27.0°, θmin = 2.1°
area detector scansh = 1213
22444 measured reflectionsk = 1818
9099 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.4823P]
where P = (Fo2 + 2Fc2)/3
9099 reflections(Δ/σ)max = 0.003
461 parametersΔρmax = 0.40 e Å3
12 restraintsΔρmin = 0.61 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.72575 (17)0.93982 (12)0.41483 (12)0.0218 (3)
C20.57831 (19)0.90959 (12)0.37327 (13)0.0246 (3)
C30.45722 (19)0.89050 (13)0.34225 (14)0.0288 (4)
C40.3132 (2)0.87385 (16)0.30639 (16)0.0372 (4)
H10.2502640.8042820.2936350.045*
C50.2590 (3)0.9540 (2)0.33985 (19)0.0530 (6)
H30.1662750.9336590.3491560.064*
H20.3254101.0154760.3853310.064*
C60.2683 (3)0.9347 (2)0.24215 (18)0.0517 (6)
H40.3406400.9840160.2266100.062*
H50.1814730.9021830.1904270.062*
C70.68836 (18)0.77293 (12)0.43251 (13)0.0250 (3)
H60.5910760.7717760.4202290.030*
C80.6996 (2)0.70587 (14)0.34709 (15)0.0364 (5)
H80.7968250.7101040.3561460.044*
H70.6702050.7288080.2899720.044*
C90.6106 (3)0.59800 (16)0.3322 (2)0.0523 (7)
H90.5124240.5924660.3155400.063*
H100.6251750.5559150.2788020.063*
C100.6448 (3)0.56124 (16)0.4195 (2)0.0543 (7)
H120.7390520.5581140.4311360.065*
H110.5803770.4934640.4090750.065*
C110.6355 (2)0.62794 (16)0.50555 (18)0.0436 (5)
H130.6656840.6045870.5622430.052*
H140.5385320.6240020.4974930.052*
C120.7243 (2)0.73533 (15)0.52052 (16)0.0361 (4)
H160.7107840.7773030.5745010.043*
H150.8224390.7406150.5363260.043*
C130.73199 (18)1.09818 (12)0.38343 (12)0.0228 (3)
H170.6513301.0580230.3277160.027*
C140.6799 (2)1.14824 (14)0.45820 (14)0.0304 (4)
H180.7581111.1865660.5148220.037*
H190.6144281.0971990.4771800.037*
C150.6084 (2)1.21748 (16)0.42102 (17)0.0398 (5)
H210.5251741.1782180.3680540.048*
H200.5790141.2510290.4718810.048*
C160.7029 (2)1.29438 (15)0.38732 (16)0.0400 (5)
H220.7802271.3390070.4419500.048*
H230.6516931.3347570.3593470.048*
C170.7593 (2)1.24632 (14)0.31411 (15)0.0350 (4)
H250.8267151.2983820.2976050.042*
H240.6832401.2090120.2559440.042*
C180.8288 (2)1.17612 (13)0.35133 (14)0.0293 (4)
H270.8593131.1430320.3008770.035*
H260.9111961.2147230.4051230.035*
C190.94671 (19)0.64290 (12)0.06927 (13)0.0254 (4)
C200.92323 (19)0.72135 (13)0.13212 (13)0.0261 (4)
C210.90549 (19)0.78792 (13)0.17990 (13)0.0255 (4)
C220.88536 (19)0.87128 (13)0.23412 (13)0.0259 (4)
H280.8879590.8711430.3012220.031*
C230.7900 (2)0.91816 (15)0.18509 (15)0.0342 (4)
H300.7441100.8894650.1165860.041*
H290.7341450.9440810.2209530.041*
C240.9408 (2)0.97115 (14)0.21517 (16)0.0355 (4)
H310.9784251.0298870.2697210.043*
H320.9883910.9752630.1653380.043*
C251.03702 (19)0.59030 (12)0.20584 (12)0.0248 (3)
H331.0548540.6609150.2374260.030*
C260.9230 (2)0.52439 (15)0.23685 (15)0.0338 (4)
H340.8406240.5445940.2217420.041*
H350.8977810.4549470.2008540.041*
C270.9664 (2)0.53054 (16)0.34234 (15)0.0401 (5)
H360.9839590.5986690.3786750.048*
H370.8909660.4851090.3588580.048*
C281.0950 (3)0.50317 (16)0.36923 (15)0.0405 (5)
H391.0752960.4331550.3371860.049*
H381.1234470.5104410.4383470.049*
C291.2107 (2)0.56912 (18)0.34099 (15)0.0417 (5)
H411.2916410.5471960.3552100.050*
H401.2375220.6379840.3789250.050*
C301.1689 (2)0.56665 (15)0.23579 (14)0.0324 (4)
H421.2441770.6151360.2219180.039*
H431.1561150.5001180.1980410.039*
C310.8585 (2)0.70279 (15)0.06282 (14)0.0359 (4)
H440.8821370.7655970.0135680.043*
C320.7040 (3)0.6540 (2)0.0967 (2)0.0536 (6)
H450.6696090.6406260.0422840.064*
H460.6802990.5898730.1426880.064*
C330.6331 (4)0.7193 (3)0.1434 (3)0.0720 (9)
H480.5327510.6835880.1677970.086*
H470.6485380.7805940.0957030.086*
C340.6882 (4)0.7455 (3)0.2231 (2)0.0704 (9)
H500.6612900.6847540.2743810.084*
H490.6460670.7916080.2487070.084*
C350.8414 (3)0.7924 (2)0.1931 (2)0.0610 (7)
H510.8679290.8577760.1483750.073*
H520.8730550.8030770.2491460.073*
C360.9122 (3)0.72721 (18)0.14558 (17)0.0465 (5)
H540.8950940.6650480.1926280.056*
H531.0127840.7622880.1224440.056*
C370.6472 (3)0.4020 (2)0.0033 (3)0.0705 (8)
H550.6803750.4686150.0143400.085*
H560.6138280.4073870.0534860.085*
C380.5371 (4)0.3329 (4)0.0867 (3)0.0974 (13)
H580.4454350.3301650.0796800.117*
H570.5463220.3541150.1450220.117*
C390.5549 (4)0.2359 (3)0.0907 (3)0.1037 (14)
H600.5054040.1999910.0515310.124*
H590.5222280.1946480.1565410.124*
C400.7025 (4)0.2623 (2)0.0526 (3)0.0784 (10)
H620.7238190.2148450.0168090.094*
H610.7461140.2605880.1046350.094*
C410.5148 (4)0.9502 (2)0.08088 (19)0.0607 (8)
H650.5234250.9148340.1374030.073*
C42A0.6311 (4)1.0072 (2)0.00946 (18)0.0573 (7)0.5
C42B0.6311 (4)1.0072 (2)0.00946 (18)0.0573 (7)0.5
H640.7199171.0123130.0160200.069*0.5
C430.6154 (4)1.0569 (2)0.07242 (19)0.0604 (7)
H630.6942871.0962250.1233030.072*
C440.7893 (6)1.0222 (4)0.0176 (4)0.0552 (13)0.5
H670.8510231.0310260.0448820.066*0.5
H680.8213431.0808250.0412610.066*0.5
H660.7888930.9637220.0613780.066*0.5
N10.77781 (15)0.87526 (10)0.44791 (10)0.0232 (3)
N20.80123 (15)1.03151 (10)0.41855 (10)0.0228 (3)
N30.99709 (17)0.57779 (11)0.10369 (10)0.0262 (3)
N40.9242 (2)0.63837 (12)0.02199 (11)0.0335 (4)
AG0.98689 (2)0.91010 (2)0.51539 (2)0.02283 (5)
LI0.9428 (4)0.4339 (2)0.0324 (3)0.0376 (8)
O0.75344 (18)0.35921 (12)0.00793 (13)0.0502 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0194 (8)0.0237 (8)0.0225 (8)0.0091 (6)0.0054 (6)0.0037 (6)
C20.0249 (9)0.0215 (8)0.0282 (8)0.0090 (7)0.0071 (7)0.0068 (7)
C30.0243 (9)0.0273 (8)0.0339 (9)0.0084 (7)0.0072 (7)0.0078 (7)
C40.0201 (9)0.0420 (11)0.0444 (12)0.0061 (8)0.0043 (8)0.0117 (9)
C50.0333 (12)0.0762 (17)0.0590 (15)0.0316 (12)0.0130 (11)0.0194 (13)
C60.0328 (12)0.0764 (17)0.0522 (14)0.0245 (12)0.0060 (10)0.0296 (13)
C70.0216 (8)0.0224 (8)0.0331 (9)0.0071 (7)0.0096 (7)0.0103 (7)
C80.0399 (11)0.0230 (9)0.0437 (11)0.0020 (8)0.0210 (9)0.0042 (8)
C90.0569 (15)0.0252 (10)0.0702 (17)0.0004 (10)0.0374 (13)0.0006 (10)
C100.0546 (15)0.0255 (10)0.104 (2)0.0185 (10)0.0504 (15)0.0257 (12)
C110.0429 (13)0.0381 (11)0.0662 (15)0.0175 (10)0.0275 (11)0.0327 (11)
C120.0337 (11)0.0366 (10)0.0427 (11)0.0111 (9)0.0129 (9)0.0206 (9)
C130.0212 (8)0.0217 (8)0.0249 (8)0.0100 (7)0.0025 (6)0.0045 (6)
C140.0336 (10)0.0322 (9)0.0304 (9)0.0182 (8)0.0102 (8)0.0066 (7)
C150.0431 (12)0.0388 (11)0.0472 (12)0.0278 (10)0.0158 (10)0.0080 (9)
C160.0504 (13)0.0281 (9)0.0447 (12)0.0238 (9)0.0084 (10)0.0066 (8)
C170.0446 (12)0.0247 (9)0.0381 (10)0.0161 (8)0.0089 (9)0.0104 (8)
C180.0317 (10)0.0237 (8)0.0372 (10)0.0131 (7)0.0115 (8)0.0106 (7)
C190.0282 (9)0.0203 (8)0.0275 (9)0.0087 (7)0.0095 (7)0.0024 (7)
C200.0314 (10)0.0227 (8)0.0265 (8)0.0105 (7)0.0099 (7)0.0074 (7)
C210.0274 (9)0.0234 (8)0.0273 (9)0.0090 (7)0.0096 (7)0.0072 (7)
C220.0310 (9)0.0234 (8)0.0253 (8)0.0112 (7)0.0117 (7)0.0031 (7)
C230.0333 (10)0.0332 (10)0.0404 (11)0.0183 (8)0.0125 (9)0.0050 (8)
C240.0366 (11)0.0224 (8)0.0512 (12)0.0110 (8)0.0192 (9)0.0080 (8)
C250.0300 (9)0.0204 (8)0.0236 (8)0.0091 (7)0.0085 (7)0.0022 (6)
C260.0302 (10)0.0368 (10)0.0374 (10)0.0110 (8)0.0146 (8)0.0107 (8)
C270.0507 (13)0.0404 (11)0.0387 (11)0.0178 (10)0.0248 (10)0.0140 (9)
C280.0592 (14)0.0392 (11)0.0284 (10)0.0218 (10)0.0138 (10)0.0110 (8)
C290.0391 (12)0.0524 (13)0.0327 (10)0.0189 (10)0.0044 (9)0.0098 (9)
C300.0301 (10)0.0401 (10)0.0289 (9)0.0143 (8)0.0096 (8)0.0078 (8)
C310.0546 (13)0.0294 (9)0.0297 (9)0.0227 (9)0.0119 (9)0.0084 (8)
C320.0553 (16)0.0652 (16)0.0641 (16)0.0338 (13)0.0295 (13)0.0382 (14)
C330.068 (2)0.096 (2)0.085 (2)0.0532 (19)0.0291 (17)0.0537 (19)
C340.077 (2)0.088 (2)0.0618 (17)0.0413 (19)0.0155 (16)0.0424 (17)
C350.084 (2)0.0543 (15)0.0544 (15)0.0230 (15)0.0245 (15)0.0324 (13)
C360.0538 (15)0.0424 (12)0.0468 (13)0.0146 (11)0.0181 (11)0.0183 (10)
C370.0471 (16)0.0643 (18)0.095 (2)0.0133 (14)0.0204 (16)0.0159 (17)
C380.0507 (19)0.154 (4)0.078 (2)0.026 (2)0.0113 (17)0.028 (2)
C390.059 (2)0.096 (3)0.104 (3)0.016 (2)0.014 (2)0.021 (2)
C400.070 (2)0.0409 (14)0.098 (2)0.0083 (14)0.0217 (18)0.0008 (15)
C410.100 (2)0.0539 (15)0.0398 (13)0.0408 (16)0.0238 (15)0.0118 (11)
C42A0.092 (2)0.0514 (14)0.0405 (13)0.0388 (15)0.0191 (14)0.0177 (11)
C42B0.092 (2)0.0514 (14)0.0405 (13)0.0388 (15)0.0191 (14)0.0177 (11)
C430.090 (2)0.0562 (15)0.0389 (13)0.0335 (15)0.0151 (14)0.0113 (11)
C440.059 (3)0.068 (3)0.045 (3)0.026 (3)0.017 (2)0.021 (2)
N10.0202 (7)0.0207 (7)0.0289 (7)0.0077 (6)0.0051 (6)0.0073 (6)
N20.0196 (7)0.0214 (7)0.0281 (7)0.0098 (6)0.0036 (6)0.0070 (6)
N30.0341 (8)0.0220 (7)0.0235 (7)0.0120 (6)0.0087 (6)0.0031 (6)
N40.0515 (11)0.0293 (8)0.0265 (8)0.0233 (8)0.0118 (7)0.0069 (6)
AG0.01875 (7)0.02032 (7)0.02912 (8)0.00771 (5)0.00391 (5)0.00737 (5)
LI0.042 (2)0.0290 (16)0.0412 (19)0.0127 (15)0.0145 (16)0.0037 (14)
O0.0445 (10)0.0380 (8)0.0559 (10)0.0024 (7)0.0143 (8)0.0005 (7)
Geometric parameters (Å, º) top
C1—N11.329 (2)C26—H350.9900
C1—N21.331 (2)C27—C281.515 (3)
C1—C21.450 (2)C27—H360.9900
C2—C31.194 (3)C27—H370.9900
C3—C41.433 (3)C28—C291.517 (3)
C4—C51.501 (3)C28—H390.9900
C4—C61.505 (3)C28—H380.9900
C4—H11.0000C29—C301.531 (3)
C5—C61.473 (4)C29—H410.9900
C5—H30.9900C29—H400.9900
C5—H20.9900C30—H420.9900
C6—H40.9900C30—H430.9900
C6—H50.9900C31—N41.455 (2)
C7—N11.467 (2)C31—C321.512 (4)
C7—C81.520 (3)C31—C361.529 (3)
C7—C121.526 (3)C31—H441.0000
C7—H61.0000C32—C331.536 (3)
C8—C91.533 (3)C32—H450.9900
C8—H80.9900C32—H460.9900
C8—H70.9900C33—C341.501 (4)
C9—C101.506 (4)C33—H480.9900
C9—H90.9900C33—H470.9900
C9—H100.9900C34—C351.497 (5)
C10—C111.516 (4)C34—H500.9900
C10—H120.9900C34—H490.9900
C10—H110.9900C35—C361.540 (4)
C11—C121.526 (3)C35—H510.9900
C11—H130.9900C35—H520.9900
C11—H140.9900C36—H540.9900
C12—H160.9900C36—H530.9900
C12—H150.9900C37—O1.426 (4)
C13—N21.472 (2)C37—C381.479 (5)
C13—C181.521 (3)C37—H550.9900
C13—C141.521 (2)C37—H560.9900
C13—H171.0000C38—C391.470 (6)
C14—C151.530 (3)C38—H580.9900
C14—H180.9900C38—H570.9900
C14—H190.9900C39—C401.450 (5)
C15—C161.513 (3)C39—H600.9900
C15—H210.9900C39—H590.9900
C15—H200.9900C40—O1.419 (3)
C16—C171.522 (3)C40—H620.9900
C16—H220.9900C40—H610.9900
C16—H230.9900C41—C42B1.371 (4)
C17—C181.529 (2)C41—C42A1.371 (4)
C17—H250.9900C41—C43ii1.388 (5)
C17—H240.9900C41—H650.9500
C18—H270.9900C42A—C431.383 (4)
C18—H260.9900C42A—C441.661 (6)
C19—N41.321 (2)C42B—C431.383 (4)
C19—N31.335 (2)C42B—H640.9500
C19—C201.466 (2)C43—C41ii1.388 (5)
C19—LIi2.428 (4)C43—H630.9500
C20—C211.189 (3)C44—H670.9800
C21—C221.437 (2)C44—H680.9800
C22—C231.503 (3)C44—H660.9800
C22—C241.507 (3)N1—AG2.0908 (15)
C22—H281.0000N2—AGiii2.0916 (14)
C23—C241.486 (3)N3—LI2.033 (4)
C23—H300.9900N3—LIi2.261 (4)
C23—H290.9900N4—LIi2.001 (4)
C24—H310.9900AG—N2iii2.0917 (15)
C24—H320.9900AG—AGiii2.6838 (3)
C25—N31.459 (2)LI—O1.906 (4)
C25—C301.523 (3)LI—N4i2.001 (4)
C25—C261.528 (3)LI—N3i2.261 (4)
C25—H331.0000LI—C19i2.428 (4)
C26—C271.524 (3)LI—LIi2.440 (7)
C26—H340.9900
N1—C1—N2123.71 (15)C26—C27—H37109.4
N1—C1—C2118.48 (15)H36—C27—H37108.0
N2—C1—C2117.81 (15)C27—C28—C29110.48 (17)
C3—C2—C1175.75 (19)C27—C28—H39109.6
C2—C3—C4176.6 (2)C29—C28—H39109.6
C3—C4—C5118.31 (19)C27—C28—H38109.6
C3—C4—C6118.78 (19)C29—C28—H38109.6
C5—C4—C658.69 (17)H39—C28—H38108.1
C3—C4—H1116.3C28—C29—C30111.95 (18)
C5—C4—H1116.3C28—C29—H41109.2
C6—C4—H1116.3C30—C29—H41109.2
C6—C5—C460.81 (16)C28—C29—H40109.2
C6—C5—H3117.7C30—C29—H40109.2
C4—C5—H3117.7H41—C29—H40107.9
C6—C5—H2117.7C25—C30—C29112.68 (16)
C4—C5—H2117.7C25—C30—H42109.1
H3—C5—H2114.8C29—C30—H42109.1
C5—C6—C460.50 (16)C25—C30—H43109.1
C5—C6—H4117.7C29—C30—H43109.1
C4—C6—H4117.7H42—C30—H43107.8
C5—C6—H5117.7N4—C31—C32110.88 (18)
C4—C6—H5117.7N4—C31—C36109.39 (18)
H4—C6—H5114.8C32—C31—C36109.73 (19)
N1—C7—C8110.92 (14)N4—C31—H44108.9
N1—C7—C12110.30 (15)C32—C31—H44108.9
C8—C7—C12110.42 (16)C36—C31—H44108.9
N1—C7—H6108.4C31—C32—C33111.7 (2)
C8—C7—H6108.4C31—C32—H45109.3
C12—C7—H6108.4C33—C32—H45109.3
C7—C8—C9111.51 (17)C31—C32—H46109.3
C7—C8—H8109.3C33—C32—H46109.3
C9—C8—H8109.3H45—C32—H46107.9
C7—C8—H7109.3C34—C33—C32110.7 (2)
C9—C8—H7109.3C34—C33—H48109.5
H8—C8—H7108.0C32—C33—H48109.5
C10—C9—C8111.6 (2)C34—C33—H47109.5
C10—C9—H9109.3C32—C33—H47109.5
C8—C9—H9109.3H48—C33—H47108.1
C10—C9—H10109.3C35—C34—C33112.6 (3)
C8—C9—H10109.3C35—C34—H50109.1
H9—C9—H10108.0C33—C34—H50109.1
C9—C10—C11111.62 (18)C35—C34—H49109.1
C9—C10—H12109.3C33—C34—H49109.1
C11—C10—H12109.3H50—C34—H49107.8
C9—C10—H11109.3C34—C35—C36111.3 (2)
C11—C10—H11109.3C34—C35—H51109.4
H12—C10—H11108.0C36—C35—H51109.4
C10—C11—C12111.61 (18)C34—C35—H52109.4
C10—C11—H13109.3C36—C35—H52109.4
C12—C11—H13109.3H51—C35—H52108.0
C10—C11—H14109.3C31—C36—C35111.1 (2)
C12—C11—H14109.3C31—C36—H54109.4
H13—C11—H14108.0C35—C36—H54109.4
C7—C12—C11111.45 (18)C31—C36—H53109.4
C7—C12—H16109.3C35—C36—H53109.4
C11—C12—H16109.3H54—C36—H53108.0
C7—C12—H15109.3O—C37—C38104.5 (3)
C11—C12—H15109.3O—C37—H55110.8
H16—C12—H15108.0C38—C37—H55110.8
N2—C13—C18110.41 (14)O—C37—H56110.8
N2—C13—C14111.62 (14)C38—C37—H56110.8
C18—C13—C14109.78 (15)H55—C37—H56108.9
N2—C13—H17108.3C39—C38—C37105.6 (3)
C18—C13—H17108.3C39—C38—H58110.6
C14—C13—H17108.3C37—C38—H58110.6
C13—C14—C15111.17 (16)C39—C38—H57110.6
C13—C14—H18109.4C37—C38—H57110.6
C15—C14—H18109.4H58—C38—H57108.8
C13—C14—H19109.4C40—C39—C38102.6 (3)
C15—C14—H19109.4C40—C39—H60111.3
H18—C14—H19108.0C38—C39—H60111.3
C16—C15—C14111.29 (18)C40—C39—H59111.3
C16—C15—H21109.4C38—C39—H59111.3
C14—C15—H21109.4H60—C39—H59109.2
C16—C15—H20109.4O—C40—C39108.0 (3)
C14—C15—H20109.4O—C40—H62110.1
H21—C15—H20108.0C39—C40—H62110.1
C15—C16—C17111.32 (17)O—C40—H61110.1
C15—C16—H22109.4C39—C40—H61110.1
C17—C16—H22109.4H62—C40—H61108.4
C15—C16—H23109.4C42B—C41—C43ii121.4 (3)
C17—C16—H23109.4C42A—C41—C43ii121.4 (3)
H22—C16—H23108.0C42A—C41—H65119.3
C16—C17—C18111.25 (17)C43ii—C41—H65119.3
C16—C17—H25109.4C41—C42A—C43118.0 (3)
C18—C17—H25109.4C41—C42A—C44123.4 (3)
C16—C17—H24109.4C43—C42A—C44118.5 (3)
C18—C17—H24109.4C41—C42B—C43118.0 (3)
H25—C17—H24108.0C41—C42B—H64121.0
C13—C18—C17111.56 (16)C43—C42B—H64121.0
C13—C18—H27109.3C42B—C43—C41ii120.6 (3)
C17—C18—H27109.3C42A—C43—C41ii120.6 (3)
C13—C18—H26109.3C42A—C43—H63119.7
C17—C18—H26109.3C41ii—C43—H63119.7
H27—C18—H26108.0C42A—C44—H67109.5
N4—C19—N3118.85 (16)C42A—C44—H68109.5
N4—C19—C20120.31 (16)H67—C44—H68109.5
N3—C19—C20120.77 (16)C42A—C44—H66109.5
N4—C19—LIi55.46 (13)H67—C44—H66109.5
N3—C19—LIi66.70 (13)H68—C44—H66109.5
C20—C19—LIi158.53 (15)C1—N1—C7119.72 (14)
C21—C20—C19176.60 (19)C1—N1—AG122.90 (11)
C20—C21—C22177.03 (19)C7—N1—AG117.28 (11)
C21—C22—C23118.85 (16)C1—N2—C13119.09 (14)
C21—C22—C24118.48 (16)C1—N2—AGiii122.58 (11)
C23—C22—C2459.15 (13)C13—N2—AGiii118.05 (11)
C21—C22—H28116.1C19—N3—C25118.58 (14)
C23—C22—H28116.1C19—N3—LI123.43 (16)
C24—C22—H28116.1C25—N3—LI111.73 (15)
C24—C23—C2260.54 (13)C19—N3—LIi80.46 (14)
C24—C23—H30117.7C25—N3—LIi148.51 (16)
C22—C23—H30117.7LI—N3—LIi69.00 (17)
C24—C23—H29117.7C19—N4—C31119.98 (16)
C22—C23—H29117.7C19—N4—LIi91.58 (16)
H30—C23—H29114.8C31—N4—LIi144.63 (18)
C23—C24—C2260.31 (13)N1—AG—N2iii170.66 (5)
C23—C24—H31117.7N1—AG—AGiii85.27 (4)
C22—C24—H31117.7N2iii—AG—AGiii85.45 (4)
C23—C24—H32117.7O—LI—N4i118.78 (19)
C22—C24—H32117.7O—LI—N3114.34 (19)
H31—C24—H32114.9N4i—LI—N3124.4 (2)
N3—C25—C30109.55 (15)O—LI—N3i110.21 (18)
N3—C25—C26111.24 (15)N4i—LI—N3i64.58 (12)
C30—C25—C26110.27 (15)N3—LI—N3i111.00 (17)
N3—C25—H33108.6O—LI—C19i112.66 (17)
C30—C25—H33108.6N4i—LI—C19i32.96 (8)
C26—C25—H33108.6N3—LI—C19i129.55 (18)
C27—C26—C25112.17 (17)N3i—LI—C19i32.85 (7)
C27—C26—H34109.2O—LI—LIi131.6 (3)
C25—C26—H34109.2N4i—LI—LIi94.2 (2)
C27—C26—H35109.2N3—LI—LIi59.91 (14)
C25—C26—H35109.2N3i—LI—LIi51.08 (14)
H34—C26—H35107.9C19i—LI—LIi75.64 (17)
C28—C27—C26110.99 (17)C40—O—C37109.2 (2)
C28—C27—H36109.4C40—O—LI118.0 (2)
C26—C27—H36109.4C37—O—LI123.21 (19)
C28—C27—H37109.4
C3—C4—C5—C6108.2 (2)C44—C42A—C43—C41ii177.3 (3)
C3—C4—C6—C5107.4 (2)N2—C1—N1—C7174.14 (16)
N1—C7—C8—C9177.97 (19)C2—C1—N1—C76.6 (2)
C12—C7—C8—C955.4 (2)N2—C1—N1—AG2.2 (2)
C7—C8—C9—C1055.3 (3)C2—C1—N1—AG177.07 (12)
C8—C9—C10—C1154.4 (3)C8—C7—N1—C196.9 (2)
C9—C10—C11—C1254.5 (3)C12—C7—N1—C1140.43 (17)
N1—C7—C12—C11178.41 (16)C8—C7—N1—AG79.60 (17)
C8—C7—C12—C1155.5 (2)C12—C7—N1—AG43.06 (18)
C10—C11—C12—C755.2 (3)N1—C1—N2—C13177.37 (16)
N2—C13—C14—C15179.88 (16)C2—C1—N2—C131.9 (2)
C18—C13—C14—C1557.1 (2)N1—C1—N2—AGiii3.6 (2)
C13—C14—C15—C1656.7 (2)C2—C1—N2—AGiii175.62 (12)
C14—C15—C16—C1754.8 (2)C18—C13—N2—C1153.85 (16)
C15—C16—C17—C1854.2 (2)C14—C13—N2—C183.74 (19)
N2—C13—C18—C17179.80 (15)C18—C13—N2—AGiii32.10 (18)
C14—C13—C18—C1756.7 (2)C14—C13—N2—AGiii90.30 (16)
C16—C17—C18—C1355.6 (2)N4—C19—N3—C25172.85 (17)
C21—C22—C23—C24107.76 (19)C20—C19—N3—C254.1 (3)
C21—C22—C24—C23108.4 (2)LIi—C19—N3—C25153.26 (19)
N3—C25—C26—C27175.81 (16)N4—C19—N3—LI37.3 (3)
C30—C25—C26—C2754.1 (2)C20—C19—N3—LI145.79 (19)
C25—C26—C27—C2857.2 (2)LIi—C19—N3—LI56.9 (2)
C26—C27—C28—C2956.8 (2)N4—C19—N3—LIi19.59 (19)
C27—C28—C29—C3055.1 (2)C20—C19—N3—LIi157.33 (19)
N3—C25—C30—C29174.89 (16)C30—C25—N3—C19140.43 (17)
C26—C25—C30—C2952.1 (2)C26—C25—N3—C1997.41 (19)
C28—C29—C30—C2553.6 (2)C30—C25—N3—LI66.4 (2)
N4—C31—C32—C33177.9 (2)C26—C25—N3—LI55.8 (2)
C36—C31—C32—C3356.9 (3)C30—C25—N3—LIi18.6 (3)
C31—C32—C33—C3456.0 (4)C26—C25—N3—LIi140.7 (2)
C32—C33—C34—C3554.5 (4)N3—C19—N4—C31174.79 (18)
C33—C34—C35—C3654.4 (4)C20—C19—N4—C318.3 (3)
N4—C31—C36—C35178.0 (2)LIi—C19—N4—C31163.3 (2)
C32—C31—C36—C3556.1 (3)N3—C19—N4—LIi21.9 (2)
C34—C35—C36—C3155.0 (3)C20—C19—N4—LIi154.99 (18)
O—C37—C38—C3926.4 (4)C32—C31—N4—C1990.0 (2)
C37—C38—C39—C4032.0 (4)C36—C31—N4—C19148.8 (2)
C38—C39—C40—O26.0 (4)C32—C31—N4—LIi119.8 (3)
C43ii—C41—C42A—C430.8 (4)C36—C31—N4—LIi1.3 (4)
C43ii—C41—C42A—C44177.2 (3)C39—C40—O—C3710.2 (4)
C43ii—C41—C42B—C430.8 (4)C39—C40—O—LI157.6 (3)
C41—C42B—C43—C41ii0.8 (4)C38—C37—O—C4010.2 (4)
C41—C42A—C43—C41ii0.8 (4)C38—C37—O—LI135.2 (3)
Symmetry codes: (i) x+2, y+1, z; (ii) x+1, y+2, z; (iii) x+2, y+2, z+1.
 

Acknowledgements

This work was supported financially by the Otto-von-Guericke-Universität Magdeburg. SW holds a PhD studentship from the China Scholarship Council (CSC).

References

First citationAharonovich, S., Kapon, M., Botoshanski, M. & Eisen, M. S. (2008). Organometallics, 27, 1869–1877.  Web of Science CSD CrossRef CAS Google Scholar
First citationArchibald, S. J., Alcock, N. W., Busch, D. H. & Whitcomb, D. R. (2000). J. Cluster Sci. 11, 261–283.  Web of Science CSD CrossRef CAS Google Scholar
First citationBailey, P. J. & Pace, S. (2001). Coord. Chem. Rev. 214, 91–141.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. University of Bonn, Germany.  Google Scholar
First citationBrown, D. J., Chisholm, M. H. & Gallucci, J. C. (2008). Dalton Trans. pp. 1615–1624.  Web of Science CSD CrossRef Google Scholar
First citationChlupatý, T., Padělková, A., Lyčka, A. & Růžička, A. (2011). J. Organomet. Chem. 696, 2346–2354.  Google Scholar
First citationCollins, S. (2011). Coord. Chem. Rev. 255, 118–138.  Web of Science CrossRef CAS Google Scholar
First citationCure, J., Coppel, Y., Dammak, T., Fazzini, P. F., Mlayah, A., Chaudret, B. & Fau, P. (2015). Langmuir, 31, 1362–1367.  Web of Science CrossRef CAS Google Scholar
First citationDevi, A. (2013). Coord. Chem. Rev. 257, 3332–3384.  Web of Science CrossRef CAS Google Scholar
First citationDownard, A. & Chivers, T. (2001). Eur. J. Inorg. Chem. pp. 2193–2201.  CrossRef Google Scholar
First citationEdelmann, F. T. (2008). Adv. Organomet. Chem. 57, 183–352.  CAS Google Scholar
First citationEdelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253–2268.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEdelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657–7672.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEdelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55–374.  CAS Google Scholar
First citationGambarotta, S., Bracci, M., Floriani, C., Chiesi-Villa, A. & Guastini, C. (1987). J. Chem. Soc. Dalton Trans. pp. 1883–1888.  CSD CrossRef Web of Science Google Scholar
First citationHitchcock, P. B., Lappert, M. F. & Pierssens, L. J.-M. (1996). Chem. Commun. pp. 1189–1190.  CSD CrossRef Web of Science Google Scholar
First citationHong, J., Zhang, L., Wang, K., Chen, Z., Wu, L. & Zhou, X. (2013). Organometallics, 32, 7312–7322.  Web of Science CSD CrossRef CAS Google Scholar
First citationHope, H. & Power, P. P. (1984). Inorg. Chem. 23, 936–937.  CSD CrossRef CAS Web of Science Google Scholar
First citationJames, A. M., Laxman, R. K., Fronczek, F. R. & Maverick, A. W. (1998). Inorg. Chem. 37, 3785–3791.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJansen, M. (1987). Angew. Chem. Int. Ed. Engl. 26, 1098–1110.  CrossRef Web of Science Google Scholar
First citationLane, A. C., Vollmer, M. V., Laber, C. H., Melgarejo, D. Y., Chiarella, G. M., Fackler, J. P. Jr, Yang, X., Baker, G. A. & Walensky, J. R. (2014). Inorg. Chem. 53, 11357–11366.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Z., Barry, S. T. & Gordon, R. G. (2005). Inorg. Chem. 44, 1728–1735.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X., Li, Y.-L., Chen, Y., Zou, Y., Zhuo, X.-B., Wu, Q.-Y., Zhao, Q.-J. & Hu, H.-G. (2015). RSC Adv. 5, 94654–94657.  Web of Science CrossRef CAS Google Scholar
First citationLiebing, P. & Merzweiler, K. (2016). Z. Anorg. Allg. Chem. 642, 500–507.  Web of Science CrossRef CAS Google Scholar
First citationLim, B. S., Rahtu, A., Park, J.-S. & Gordon, R. G. (2003). Inorg. Chem. 42, 7951–7958.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNevoralová, J., Chlupatý, T., Padělková, A. & Růžička, A. (2013). J. Organomet. Chem. 745–746, 186–189.  Google Scholar
First citationOkano, A., James, R. C., Pierce, J. G., Xie, J. & Boger, D. L. (2012). J. Am. Chem. Soc. 134, 8790–8793.  Web of Science CrossRef CAS Google Scholar
First citationPereshivko, O. P., Peshkov, V. A., Ermolat'ev, D. S., Van Hove, S., Van Hecke, K., Van Meervelt, L. & Van der Eycken, E. V. (2011). Synthesis, pp. 1587–1594.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSnaith, R. & Wright, D. S. (1995). In Lithium Chemistry, A Theoretical and Experimental Overview, edited by A. Sapse & P. von R. Schleyer. New York: Wiley.  Google Scholar
First citationSroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390–2394.  Web of Science CSD CrossRef CAS Google Scholar
First citationStalke, D., Wedler, M. & Edelmann, F. T. (1992). J. Organomet. Chem. 431, C1–C5.  CSD CrossRef CAS Web of Science Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTrifonov, A. A. (2010). Coord. Chem. Rev. 254, 1327–1347.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWhitehorne, T. J. J., Coyle, J. P., Mahmood, A., Monillas, W. H., Yap, G. P. A. & Barry, S. T. (2011). Eur. J. Inorg. Chem. pp. 3240–3247.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds