research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of fac-[2-(4-methyl-5-phenyl­pyridin-2-yl)phenyl-κ2C1,N]bis­­[2-(pyridin-2-yl)phenyl-κ2C1,N]iridium(III)

CROSSMARK_Color_square_no_text.svg

aDivision of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea, bDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 47011, Republic of Korea, and cResearch Institute of Natural Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr, kangy@kangwon.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 25 October 2016; accepted 4 November 2016; online 8 November 2016)

In the title compound, [Ir(C11H8N)2(C18H14N)], the IrIII ion adopts a distorted octa­hedral coordination environment defined by three C,N-chelating ligands, one stemming from a 2-(4-phenyl-5-methyl­pyridin-2-yl)phenyl ligand and two from 2-(pyridin-2-yl)phenyl ligands, arranged in a facial manner. The IrIII ion lies almost in the equatorial plane [deviation = 0.0069 (15) Å]. In the crystal, inter­molecular ππ stacking inter­actions, as well as inter­molecular C—H⋯π inter­actions, are present, leading to a three-dimensional network.

1. Chemical context

Cyclo­metallated iridium(III) complexes with the chelating ligand 2-phenyl­pyridine (C[^\wedge]N) are of great inter­est in phospho­rescence organic light-emitting diodes (OLEDs) due to their high quantum efficiency and easy tuning emission energy (Kang et al., 2013[Kang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C. 1, 441-450.]). In general, iridium(III) complexes with chelating C[^\wedge]N ligands can be divided into two groups, homoleptic and heteroleptic complexes, according to the coordination environment of the central IrIII atom. The structural characteristics involving other chemical/electronic properties for both homoleptic Ir(C[^\wedge]N)3 and heteroleptic Ir(C[^\wedge]N)2(L[^\wedge]X) complexes, where L[^\wedge]X is a monoanionic O[^\wedge]O or N[^\wedge]O ligand, have been well explored over the past two decades (Chi & Chou, 2010[Chi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638-655.]). However, reports of the mol­ecular and crystal structures of heteroleptic IrIII compounds with the same chelating modes, viz. Ir(C[^\wedge]N)2(C[^\wedge]N)′, are very scarce compared to those for Ir(C[^\wedge]N)2(L[^\wedge]X) (Jung et al., 2012[Jung, N., Lee, E., Kim, J., Park, H., Park, K.-M. & Kang, Y. (2012). Bull. Korean Chem. Soc. 33, 183-188.]; Natori et al., 2013[Natori, I., Natori, S., Kanasashi, A., Tsuchiya, K. & Ogino, K. (2013). Polym. J. 45, 601-605.]). Herein, we describe the structure of the title IrIII complex, fac-{2-[(4-phenyl-5-meth­yl)pyridine-2-yl]phenyl-κ2C1,N}bis­[2-(pyridine-2-yl)phenyl-κ2C1,N]iridium(III), which was synthesized by the reaction of [(C[^\wedge]N)2Ir(μ-Cl)]2 and 4-methyl-2,5-di­phenyl­pyridine in the presence of AgI.

2. Structural commentary

In the title compound, the asymmetric unit comprises of one IrIII ion, two 2-phenyl­pyridine ligands, and one 4-methyl-2,5-di­phenyl­pyridine ligand (Fig. 1[link]). The IrIII ion is six-coordin­ated by the three C,N-bidentate ligands, giving rise to a distorted octa­hedral coordination environment with bond angles falling in the range 79.27 (12) to 97.37 (13)°. As shown in Table 1[link], the Ir—C and Ir—N bond lengths in the title compound are within the ranges reported for similar IrIII compounds (Jung et al., 2012[Jung, N., Lee, E., Kim, J., Park, H., Park, K.-M. & Kang, Y. (2012). Bull. Korean Chem. Soc. 33, 183-188.]). The pyridyl N atoms of the three ligands are arranged in a fac-configuration around the octa­hedrally coordinated IrIII ion. The equatorial plane is defined by the N1/N3/C14/C11 atoms, the mean deviation from the least-squares plane being 0.081 Å. The IrIII ion lies almost in the equatorial plane with a deviation of 0.0069 (15) Å. Within the 2-(pyridine-2-yl)phenyl ligands, the dihedral angles between the aromatic rings are 5.6 (2) (between rings N1/C1–C5 and C6–C11) and 5.9 (2)° (between rings N3/C30–C34 and C35–C40). Within the 2-[(4-phenyl-5-meth­yl)pyridine-2-yl]phenyl ligand, the dihedral angles between the central pyridine ring and the phenyl rings at either end are 1.3 (2) and 43.84 (12)° for the C13–C18 and C22–C27 rings, respectively.

[Scheme 1]

Table 1
Selected geometric parameters (Å, °)

Ir1—C14 2.006 (3) Ir1—N1 2.117 (3)
Ir1—C36 2.010 (3) Ir1—N2 2.122 (3)
Ir1—C11 2.010 (3) Ir1—N3 2.125 (3)
       
C14—Ir1—C36 94.78 (13) C11—Ir1—N2 88.63 (11)
C14—Ir1—C11 97.37 (13) N1—Ir1—N2 96.33 (11)
C36—Ir1—C11 95.40 (13) C14—Ir1—N3 86.75 (11)
C14—Ir1—N1 174.67 (11) C36—Ir1—N3 79.51 (13)
C36—Ir1—N1 89.78 (12) C11—Ir1—N3 173.73 (12)
C11—Ir1—N1 79.41 (12) N1—Ir1—N3 96.81 (10)
C14—Ir1—N2 79.27 (12) N2—Ir1—N3 96.80 (11)
C36—Ir1—N2 173.22 (11)    
[Figure 1]
Figure 1
View of the mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

Inter­molecular ππ stacking inter­actions [Cg1⋯Cg1i = 3.838 (2) Å; Cg1 is the centroid of the C22–C27 ring; symmetry code: (i) −x, −y + 2, −z] occur in the crystal structure of the title compound (Fig. 2[link]). In addition, weak inter­molecular C—H⋯π inter­actions (Table 2[link]) contribute to the stabilization of the crystal structure.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C22–C27 and N1/C1–C5 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29ACg1i 0.98 2.89 3.589 (4) 136
C39—H39⋯Cg2ii 0.95 2.89 3.796 (5) 160
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing plot of the mol­ecular components in the title compound. Red and black dashed lines represent inter­molecular ππ stacking inter­actions and C—H⋯π inter­actions, respectively. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Synthesis and crystallization

The ligand 4-methyl-2,5-di­phenyl­pyridine was synthesized according to a literature procedure (Zhou et al., 2013[Zhou, Q., Zhang, B., Su, L., Jiang, T., Chen, R., Du, T., Ye, Y., Shen, J., Dai, G., Han, D. & Jiang, H. (2013). Tetrahedron, 69, 10996-11003.]). The title IrIII complex was also prepared according to a literature protocol (Jung et al., 2012[Jung, N., Lee, E., Kim, J., Park, H., Park, K.-M. & Kang, Y. (2012). Bull. Korean Chem. Soc. 33, 183-188.]). Crystals of the title complex were obtained by allowing a di­chloro­methane/hexane solution to evaporate slowly at room temperature.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. A reflection affected by the beamstop (100) was omitted from the final refinement. All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å for Csp2–H, and 0.98 Å for methyl H atoms. For all H atoms, Uiso(H) = 1.2Ueq of the parent atom.

Table 3
Experimental details

Crystal data
Chemical formula [Ir(C11H8N)2(C18H14N)]
Mr 744.87
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 19.8293 (3), 8.6464 (1), 18.1551 (3)
β (°) 106.715 (1)
V3) 2981.21 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 4.51
Crystal size (mm) 0.30 × 0.25 × 0.17
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.521, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 27408, 6855, 6080
Rint 0.033
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.062, 1.02
No. of reflections 6855
No. of parameters 397
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.77, −0.71
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

fac-[2-(4-Methyl-5-phenylpyridin-2-yl)phenyl-κ2C1,N]bis[2-(pyridin-2-yl)phenyl-κ2C1,N]iridium(III) top
Crystal data top
[Ir(C11H8N)2(C18H14N)]F(000) = 1472
Mr = 744.87Dx = 1.660 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.8293 (3) ÅCell parameters from 9925 reflections
b = 8.6464 (1) Åθ = 2.3–27.5°
c = 18.1551 (3) ŵ = 4.51 mm1
β = 106.715 (1)°T = 173 K
V = 2981.21 (8) Å3Block, yellow
Z = 40.30 × 0.25 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
6080 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
θmax = 27.6°, θmin = 2.2°
Tmin = 0.521, Tmax = 0.746h = 2525
27408 measured reflectionsk = 1111
6855 independent reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0283P)2 + 4.5659P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6855 reflectionsΔρmax = 1.77 e Å3
397 parametersΔρmin = 0.71 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir10.29220 (2)0.64276 (2)0.04767 (2)0.02005 (5)
N10.29261 (14)0.8427 (3)0.11505 (15)0.0229 (6)
N20.19761 (13)0.6951 (3)0.03909 (15)0.0221 (5)
N30.36253 (15)0.7274 (3)0.01184 (16)0.0278 (6)
C10.32224 (19)0.9782 (4)0.10758 (19)0.0292 (7)
H10.34480.98850.06820.035*
C20.3217 (2)1.1028 (4)0.1537 (2)0.0364 (8)
H20.34271.19790.14590.044*
C30.2901 (2)1.0878 (5)0.2118 (2)0.0390 (9)
H30.28961.17210.24520.047*
C40.2595 (2)0.9492 (4)0.2208 (2)0.0343 (8)
H40.23790.93710.26080.041*
C50.25996 (17)0.8260 (4)0.17116 (19)0.0246 (7)
C60.22626 (17)0.6753 (4)0.17108 (19)0.0241 (7)
C70.18657 (19)0.6405 (4)0.2211 (2)0.0301 (8)
H70.18260.71420.25850.036*
C80.15301 (19)0.4997 (5)0.2166 (2)0.0350 (8)
H80.12570.47620.25050.042*
C90.1596 (2)0.3924 (4)0.1620 (2)0.0342 (8)
H90.13710.29470.15890.041*
C100.19868 (18)0.4272 (4)0.1123 (2)0.0299 (7)
H100.20200.35250.07510.036*
C110.23371 (16)0.5691 (4)0.11465 (17)0.0231 (6)
C120.17645 (17)0.5849 (4)0.09425 (18)0.0244 (7)
C130.22309 (17)0.4510 (4)0.08479 (18)0.0233 (6)
C140.28203 (16)0.4536 (4)0.01860 (18)0.0233 (7)
C150.32853 (18)0.3276 (4)0.0099 (2)0.0275 (7)
H150.36890.32470.03360.033*
C160.31741 (19)0.2077 (4)0.0626 (2)0.0310 (8)
H160.35040.12530.05500.037*
C170.2591 (2)0.2069 (4)0.1257 (2)0.0312 (8)
H170.25150.12370.16130.037*
C180.21153 (19)0.3280 (4)0.13697 (19)0.0280 (7)
H180.17090.32760.18030.034*
C190.11442 (18)0.6060 (4)0.1549 (2)0.0294 (8)
H190.10040.53010.19420.035*
C200.07314 (17)0.7395 (4)0.15741 (18)0.0259 (7)
C210.09467 (17)0.8491 (4)0.09800 (19)0.0239 (7)
C220.05436 (17)0.9901 (4)0.09133 (17)0.0249 (7)
C230.08800 (19)1.1305 (4)0.0697 (2)0.0306 (8)
H230.13741.13750.06140.037*
C240.0506 (2)1.2615 (5)0.0599 (2)0.0373 (9)
H240.07461.35650.04480.045*
C250.0211 (2)1.2533 (5)0.0722 (2)0.0394 (9)
H250.04681.34280.06610.047*
C260.0557 (2)1.1141 (5)0.0935 (2)0.0367 (9)
H260.10521.10820.10220.044*
C270.01834 (18)0.9837 (5)0.10215 (19)0.0305 (8)
H270.04240.88820.11560.037*
C280.15737 (17)0.8197 (4)0.04181 (18)0.0234 (7)
H280.17290.89430.00210.028*
C290.00979 (19)0.7602 (5)0.2259 (2)0.0345 (8)
H29A0.00480.67010.25970.041*
H29B0.03240.77070.20850.041*
H29C0.01570.85350.25400.041*
C300.3439 (2)0.7941 (4)0.0815 (2)0.0360 (8)
H300.29530.81090.10620.043*
C310.3921 (3)0.8394 (5)0.1188 (3)0.0489 (11)
H310.37730.88620.16820.059*
C320.4622 (3)0.8150 (6)0.0825 (3)0.0596 (14)
H320.49680.84550.10660.072*
C330.4820 (2)0.7464 (6)0.0116 (3)0.0534 (12)
H330.53050.73040.01380.064*
C340.43158 (19)0.7001 (4)0.0236 (2)0.0338 (8)
C350.44516 (19)0.6172 (4)0.0971 (2)0.0337 (8)
C360.38503 (17)0.5785 (4)0.12033 (19)0.0261 (7)
C370.3974 (2)0.4950 (4)0.1889 (2)0.0350 (8)
H370.35840.46910.20720.042*
C380.4639 (2)0.4488 (5)0.2311 (2)0.0471 (11)
H380.47010.39160.27720.057*
C390.5216 (2)0.4860 (6)0.2059 (3)0.0525 (12)
H390.56740.45270.23440.063*
C400.5128 (2)0.5708 (5)0.1401 (3)0.0483 (11)
H400.55260.59820.12360.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01823 (7)0.02267 (7)0.01843 (7)0.00119 (5)0.00394 (5)0.00203 (5)
N10.0223 (14)0.0243 (14)0.0211 (13)0.0011 (11)0.0049 (11)0.0029 (11)
N20.0186 (13)0.0271 (14)0.0206 (13)0.0020 (11)0.0055 (11)0.0004 (11)
N30.0306 (15)0.0247 (15)0.0309 (15)0.0012 (12)0.0137 (13)0.0080 (12)
C10.0325 (18)0.0304 (18)0.0254 (17)0.0015 (15)0.0093 (15)0.0016 (14)
C20.046 (2)0.0267 (18)0.037 (2)0.0028 (16)0.0114 (18)0.0050 (15)
C30.050 (2)0.032 (2)0.036 (2)0.0037 (18)0.0148 (18)0.0109 (16)
C40.042 (2)0.036 (2)0.0280 (18)0.0034 (17)0.0148 (16)0.0065 (15)
C50.0205 (16)0.0303 (18)0.0212 (16)0.0049 (13)0.0032 (13)0.0002 (13)
C60.0200 (16)0.0286 (17)0.0225 (16)0.0055 (13)0.0041 (13)0.0016 (13)
C70.0276 (18)0.038 (2)0.0260 (17)0.0079 (15)0.0090 (14)0.0017 (14)
C80.0306 (19)0.045 (2)0.0321 (19)0.0012 (17)0.0142 (16)0.0092 (16)
C90.0301 (19)0.033 (2)0.040 (2)0.0039 (15)0.0112 (16)0.0051 (16)
C100.0278 (17)0.0333 (19)0.0283 (17)0.0003 (15)0.0076 (14)0.0035 (15)
C110.0201 (15)0.0285 (17)0.0193 (15)0.0060 (14)0.0034 (12)0.0048 (13)
C120.0264 (16)0.0287 (17)0.0194 (15)0.0038 (14)0.0084 (13)0.0006 (13)
C130.0246 (16)0.0254 (17)0.0211 (15)0.0030 (13)0.0084 (13)0.0005 (12)
C140.0214 (15)0.0269 (17)0.0233 (16)0.0027 (13)0.0093 (13)0.0009 (13)
C150.0264 (17)0.0321 (19)0.0236 (17)0.0010 (14)0.0068 (14)0.0015 (13)
C160.037 (2)0.0231 (17)0.036 (2)0.0037 (15)0.0158 (16)0.0016 (15)
C170.043 (2)0.0247 (17)0.0277 (18)0.0050 (16)0.0133 (16)0.0093 (14)
C180.0310 (18)0.0303 (18)0.0228 (17)0.0074 (14)0.0080 (14)0.0036 (13)
C190.0266 (18)0.0332 (19)0.0254 (17)0.0091 (14)0.0027 (14)0.0098 (14)
C200.0232 (16)0.0369 (19)0.0178 (15)0.0037 (14)0.0063 (13)0.0024 (13)
C210.0198 (15)0.0308 (18)0.0214 (16)0.0021 (13)0.0063 (13)0.0040 (13)
C220.0209 (16)0.0358 (19)0.0167 (15)0.0039 (14)0.0034 (12)0.0048 (13)
C230.0271 (18)0.036 (2)0.0272 (18)0.0018 (15)0.0056 (15)0.0054 (14)
C240.045 (2)0.035 (2)0.031 (2)0.0041 (17)0.0082 (17)0.0058 (15)
C250.044 (2)0.043 (2)0.031 (2)0.0192 (19)0.0109 (17)0.0076 (17)
C260.0248 (18)0.058 (3)0.0265 (18)0.0140 (17)0.0066 (15)0.0092 (17)
C270.0216 (17)0.043 (2)0.0251 (17)0.0008 (15)0.0045 (14)0.0063 (15)
C280.0242 (16)0.0267 (17)0.0190 (15)0.0016 (13)0.0057 (13)0.0016 (12)
C290.0263 (18)0.049 (2)0.0240 (18)0.0034 (16)0.0005 (14)0.0027 (15)
C300.046 (2)0.0297 (19)0.038 (2)0.0017 (17)0.0203 (18)0.0042 (16)
C310.069 (3)0.038 (2)0.053 (3)0.006 (2)0.039 (3)0.0018 (19)
C320.062 (3)0.059 (3)0.077 (4)0.012 (2)0.051 (3)0.006 (3)
C330.034 (2)0.061 (3)0.072 (3)0.007 (2)0.026 (2)0.012 (2)
C340.0279 (18)0.0304 (19)0.046 (2)0.0045 (15)0.0156 (17)0.0129 (17)
C350.0236 (17)0.034 (2)0.041 (2)0.0006 (14)0.0042 (16)0.0131 (15)
C360.0227 (16)0.0233 (16)0.0291 (17)0.0023 (14)0.0021 (13)0.0104 (14)
C370.036 (2)0.034 (2)0.0280 (19)0.0060 (16)0.0020 (15)0.0055 (15)
C380.045 (2)0.045 (2)0.036 (2)0.011 (2)0.0133 (18)0.0080 (18)
C390.029 (2)0.056 (3)0.054 (3)0.012 (2)0.0163 (19)0.012 (2)
C400.0219 (19)0.054 (3)0.063 (3)0.0017 (19)0.0020 (18)0.017 (2)
Geometric parameters (Å, º) top
Ir1—C142.006 (3)C18—H180.9500
Ir1—C362.010 (3)C19—C201.408 (5)
Ir1—C112.010 (3)C19—H190.9500
Ir1—N12.117 (3)C20—C211.407 (5)
Ir1—N22.122 (3)C20—C291.502 (5)
Ir1—N32.125 (3)C21—C281.386 (5)
N1—C11.335 (4)C21—C221.482 (5)
N1—C51.363 (4)C22—C231.386 (5)
N2—C281.333 (4)C22—C271.399 (4)
N2—C121.359 (4)C23—C241.393 (5)
N3—C301.342 (5)C23—H230.9500
N3—C341.356 (5)C24—C251.376 (5)
C1—C21.367 (5)C24—H240.9500
C1—H10.9500C25—C261.383 (6)
C2—C31.379 (5)C25—H250.9500
C2—H20.9500C26—C271.382 (5)
C3—C41.375 (5)C26—H260.9500
C3—H30.9500C27—H270.9500
C4—C51.396 (5)C28—H280.9500
C4—H40.9500C29—H29A0.9800
C5—C61.465 (5)C29—H29B0.9800
C6—C71.395 (5)C29—H29C0.9800
C6—C111.415 (5)C30—C311.377 (5)
C7—C81.379 (5)C30—H300.9500
C7—H70.9500C31—C321.372 (7)
C8—C91.390 (5)C31—H310.9500
C8—H80.9500C32—C331.369 (7)
C9—C101.383 (5)C32—H320.9500
C9—H90.9500C33—C341.391 (5)
C10—C111.404 (5)C33—H330.9500
C10—H100.9500C34—C351.469 (6)
C12—C191.407 (5)C35—C401.403 (5)
C12—C131.460 (5)C35—C361.415 (5)
C13—C181.399 (4)C36—C371.399 (5)
C13—C141.415 (4)C37—C381.379 (5)
C14—C151.406 (5)C37—H370.9500
C15—C161.385 (5)C38—C391.388 (7)
C15—H150.9500C38—H380.9500
C16—C171.374 (5)C39—C401.369 (7)
C16—H160.9500C39—H390.9500
C17—C181.385 (5)C40—H400.9500
C17—H170.9500
C14—Ir1—C3694.78 (13)C18—C17—H17120.2
C14—Ir1—C1197.37 (13)C17—C18—C13120.2 (3)
C36—Ir1—C1195.40 (13)C17—C18—H18119.9
C14—Ir1—N1174.67 (11)C13—C18—H18119.9
C36—Ir1—N189.78 (12)C12—C19—C20120.1 (3)
C11—Ir1—N179.41 (12)C12—C19—H19120.0
C14—Ir1—N279.27 (12)C20—C19—H19120.0
C36—Ir1—N2173.22 (11)C21—C20—C19118.8 (3)
C11—Ir1—N288.63 (11)C21—C20—C29123.4 (3)
N1—Ir1—N296.33 (11)C19—C20—C29117.7 (3)
C14—Ir1—N386.75 (11)C28—C21—C20116.8 (3)
C36—Ir1—N379.51 (13)C28—C21—C22118.8 (3)
C11—Ir1—N3173.73 (12)C20—C21—C22124.4 (3)
N1—Ir1—N396.81 (10)C23—C22—C27117.8 (3)
N2—Ir1—N396.80 (11)C23—C22—C21121.1 (3)
C1—N1—C5119.1 (3)C27—C22—C21120.9 (3)
C1—N1—Ir1125.9 (2)C22—C23—C24121.2 (3)
C5—N1—Ir1115.0 (2)C22—C23—H23119.4
C28—N2—C12119.0 (3)C24—C23—H23119.4
C28—N2—Ir1126.3 (2)C25—C24—C23120.1 (4)
C12—N2—Ir1114.6 (2)C25—C24—H24120.0
C30—N3—C34119.3 (3)C23—C24—H24120.0
C30—N3—Ir1125.8 (2)C24—C25—C26119.7 (4)
C34—N3—Ir1114.8 (2)C24—C25—H25120.2
N1—C1—C2123.3 (3)C26—C25—H25120.2
N1—C1—H1118.4C27—C26—C25120.2 (3)
C2—C1—H1118.4C27—C26—H26119.9
C1—C2—C3118.7 (4)C25—C26—H26119.9
C1—C2—H2120.7C26—C27—C22121.0 (4)
C3—C2—H2120.7C26—C27—H27119.5
C4—C3—C2119.1 (3)C22—C27—H27119.5
C4—C3—H3120.5N2—C28—C21125.2 (3)
C2—C3—H3120.5N2—C28—H28117.4
C3—C4—C5120.2 (3)C21—C28—H28117.4
C3—C4—H4119.9C20—C29—H29A109.5
C5—C4—H4119.9C20—C29—H29B109.5
N1—C5—C4119.6 (3)H29A—C29—H29B109.5
N1—C5—C6114.1 (3)C20—C29—H29C109.5
C4—C5—C6126.3 (3)H29A—C29—H29C109.5
C7—C6—C11121.9 (3)H29B—C29—H29C109.5
C7—C6—C5122.2 (3)N3—C30—C31122.9 (4)
C11—C6—C5115.8 (3)N3—C30—H30118.5
C8—C7—C6120.3 (3)C31—C30—H30118.5
C8—C7—H7119.9C32—C31—C30118.1 (4)
C6—C7—H7119.9C32—C31—H31120.9
C7—C8—C9119.3 (3)C30—C31—H31120.9
C7—C8—H8120.4C33—C32—C31119.7 (4)
C9—C8—H8120.4C33—C32—H32120.2
C10—C9—C8120.4 (3)C31—C32—H32120.2
C10—C9—H9119.8C32—C33—C34120.5 (4)
C8—C9—H9119.8C32—C33—H33119.8
C9—C10—C11122.4 (3)C34—C33—H33119.8
C9—C10—H10118.8N3—C34—C33119.5 (4)
C11—C10—H10118.8N3—C34—C35114.3 (3)
C10—C11—C6115.8 (3)C33—C34—C35126.1 (4)
C10—C11—Ir1128.7 (2)C40—C35—C36121.3 (4)
C6—C11—Ir1115.5 (2)C40—C35—C34122.8 (4)
N2—C12—C19120.0 (3)C36—C35—C34115.9 (3)
N2—C12—C13114.7 (3)C37—C36—C35116.2 (3)
C19—C12—C13125.2 (3)C37—C36—Ir1128.3 (3)
C18—C13—C14121.4 (3)C35—C36—Ir1115.5 (3)
C18—C13—C12123.2 (3)C38—C37—C36122.5 (4)
C14—C13—C12115.3 (3)C38—C37—H37118.8
C15—C14—C13116.0 (3)C36—C37—H37118.8
C15—C14—Ir1127.9 (2)C37—C38—C39119.9 (4)
C13—C14—Ir1116.0 (2)C37—C38—H38120.0
C16—C15—C14122.2 (3)C39—C38—H38120.0
C16—C15—H15118.9C40—C39—C38120.1 (4)
C14—C15—H15118.9C40—C39—H39120.0
C17—C16—C15120.6 (3)C38—C39—H39120.0
C17—C16—H16119.7C39—C40—C35120.1 (4)
C15—C16—H16119.7C39—C40—H40120.0
C16—C17—C18119.6 (3)C35—C40—H40120.0
C16—C17—H17120.2
C5—N1—C1—C20.0 (5)C12—C19—C20—C29176.5 (3)
Ir1—N1—C1—C2179.0 (3)C19—C20—C21—C282.3 (4)
N1—C1—C2—C31.2 (6)C29—C20—C21—C28174.9 (3)
C1—C2—C3—C40.9 (6)C19—C20—C21—C22176.6 (3)
C2—C3—C4—C50.5 (6)C29—C20—C21—C226.2 (5)
C1—N1—C5—C41.5 (5)C28—C21—C22—C2342.5 (4)
Ir1—N1—C5—C4177.6 (3)C20—C21—C22—C23138.7 (3)
C1—N1—C5—C6176.9 (3)C28—C21—C22—C27133.6 (3)
Ir1—N1—C5—C64.0 (4)C20—C21—C22—C2745.3 (4)
C3—C4—C5—N11.7 (5)C27—C22—C23—C240.8 (5)
C3—C4—C5—C6176.5 (4)C21—C22—C23—C24177.0 (3)
N1—C5—C6—C7175.9 (3)C22—C23—C24—C250.4 (5)
C4—C5—C6—C72.4 (5)C23—C24—C25—C260.7 (5)
N1—C5—C6—C111.3 (4)C24—C25—C26—C270.2 (5)
C4—C5—C6—C11179.6 (3)C25—C26—C27—C221.4 (5)
C11—C6—C7—C80.1 (5)C23—C22—C27—C261.7 (5)
C5—C6—C7—C8176.9 (3)C21—C22—C27—C26177.9 (3)
C6—C7—C8—C90.4 (5)C12—N2—C28—C211.1 (5)
C7—C8—C9—C100.7 (6)Ir1—N2—C28—C21178.0 (2)
C8—C9—C10—C110.7 (6)C20—C21—C28—N21.4 (5)
C9—C10—C11—C60.3 (5)C22—C21—C28—N2177.5 (3)
C9—C10—C11—Ir1179.5 (3)C34—N3—C30—C311.2 (5)
C7—C6—C11—C100.1 (5)Ir1—N3—C30—C31176.5 (3)
C5—C6—C11—C10177.2 (3)N3—C30—C31—C320.1 (6)
C7—C6—C11—Ir1179.3 (3)C30—C31—C32—C330.4 (7)
C5—C6—C11—Ir12.1 (4)C31—C32—C33—C340.6 (7)
C28—N2—C12—C192.6 (4)C30—N3—C34—C332.2 (5)
Ir1—N2—C12—C19179.9 (2)Ir1—N3—C34—C33178.0 (3)
C28—N2—C12—C13178.2 (3)C30—N3—C34—C35176.1 (3)
Ir1—N2—C12—C131.0 (3)Ir1—N3—C34—C350.3 (4)
N2—C12—C13—C18177.8 (3)C32—C33—C34—N32.0 (6)
C19—C12—C13—C181.2 (5)C32—C33—C34—C35176.1 (4)
N2—C12—C13—C141.9 (4)N3—C34—C35—C40176.4 (3)
C19—C12—C13—C14179.1 (3)C33—C34—C35—C401.8 (6)
C18—C13—C14—C151.5 (4)N3—C34—C35—C360.2 (5)
C12—C13—C14—C15178.2 (3)C33—C34—C35—C36178.3 (4)
C18—C13—C14—Ir1177.8 (2)C40—C35—C36—C371.3 (5)
C12—C13—C14—Ir11.9 (3)C34—C35—C36—C37177.9 (3)
C13—C14—C15—C160.2 (5)C40—C35—C36—Ir1176.1 (3)
Ir1—C14—C15—C16176.0 (3)C34—C35—C36—Ir10.5 (4)
C14—C15—C16—C170.9 (5)C35—C36—C37—C381.6 (5)
C15—C16—C17—C180.7 (5)Ir1—C36—C37—C38175.4 (3)
C16—C17—C18—C130.5 (5)C36—C37—C38—C390.4 (6)
C14—C13—C18—C171.7 (5)C37—C38—C39—C401.1 (7)
C12—C13—C18—C17178.0 (3)C38—C39—C40—C351.4 (7)
N2—C12—C19—C201.7 (5)C36—C35—C40—C390.2 (6)
C13—C12—C19—C20179.3 (3)C34—C35—C40—C39176.2 (4)
C12—C19—C20—C210.8 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C22–C27 and N1/C1–C5 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C29—H29A···Cg1i0.982.893.589 (4)136
C39—H39···Cg2ii0.952.893.796 (5)160
Symmetry codes: (i) x, y1/2, z1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

This study was supported by a 2016 Research Grant from Kangwon National University (No. 520160312).

References

First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638–655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJung, N., Lee, E., Kim, J., Park, H., Park, K.-M. & Kang, Y. (2012). Bull. Korean Chem. Soc. 33, 183–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationKang, Y., Chang, Y.-L., Lu, J.-S., Ko, S.-B., Rao, Y., Varlan, M., Lu, Z.-H. & Wang, S. (2013). J. Mater. Chem. C. 1, 441–450.  Web of Science CSD CrossRef CAS Google Scholar
First citationNatori, I., Natori, S., Kanasashi, A., Tsuchiya, K. & Ogino, K. (2013). Polym. J. 45, 601–605.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZhou, Q., Zhang, B., Su, L., Jiang, T., Chen, R., Du, T., Ye, Y., Shen, J., Dai, G., Han, D. & Jiang, H. (2013). Tetrahedron, 69, 10996–11003.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds