research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(3,5-di­methyl­pyridine-κN)bis­­(methanol-κO)bis­­(thio­cyanato-κN)cobalt(II)

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth Strasse 2, D-24118 Kiel, Germany
*Correspondence e-mail: ssuckert@ac.uni-kiel.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 8 November 2016; accepted 15 November 2016; online 18 November 2016)

The asymmetric unit of the title complex, [Co(NCS)2(C7H9N)2(CH3OH)2], comprises of one CoII cation located on a centre of inversion, one thio­cyanate ligand, one methanol ligand and one 3,5-di­methyl­pyridine ligand. The CoII cation is octa­hedrally coordinated by two terminal N-bonding thio­cyanate anions, two methanol mol­ecules and two 3,5-di­methyl­pyridine ligands into a discrete complex. The complex mol­ecules are linked by inter­molecular O—H⋯S hydrogen bonding into chains that elongate in the direction parallel to the b axis.

1. Chemical context

For a long time, the synthesis of new mol­ecular magnetic materials with desired physical properties has been a topic of inter­est in coordination chemistry (Liu et al., 2015[Liu, K., Shi, W. & Cheng, P. (2015). Coord. Chem. Rev. 289-290, 74-122.]). To reach this goal, paramagnetic cations must be linked by small anionic ligands such as, for example, thio­cyanate anions that can mediate magnetic exchange between the cations (Palion-Gazda et al., 2015[Palion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380-2388.]; Massoud et al., 2013[Massoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26-33.]). In this context, our group has already reported several thio­cyanato coordination polymers which – depending on the metal cation and the neutral co-ligand – show different magnetic phenomena including a slow relaxation of the magnetization (Werner et al., 2014[Werner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893-2901.], 2015a[Werner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333-17342.],b[Werner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3236-3245.],c[Werner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015c). Dalton Trans. 44, 14149-14158.]). In this regard, discrete complexes are also of inter­est because a transformation into the desired polymeric compounds can be achieved through thermal decomposition, as shown in one of our previous studies (Näther et al., 2013[Näther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696-2714.]). During our systematic work, compounds based on 3,5-di­methyl­pyridine as co-ligand should be prepared, for which only one thio­cyanato compound is known (Price & Stone, 1984[Price, S. L. & Stone, A. J. (1984). Acta Cryst. A40, C111.]; Nassimbeni et al., 1986[Nassimbeni, L. R., Papanicolaou, S. & Moore, M. H. (1986). J. Inclusion Phenom. 4, 31-42.]). In the course of our investigations with CoII as the transition metal, crystals of the title compound, [Co(NCS)2(C7H9N)2(CH3OH)2], were obtained and characterized by single crystal X-ray diffraction. Unfortunately, no single-phase crystalline powder could be synthesized, which prevented further investigations of physical properties.

2. Structural commentary

The asymmetric unit of the title compound comprises of one CoII cation, one thio­cyanato anion, one methanol mol­ecule and one neutral 3,5-di­methyl­pyridine co-ligand. The CoII cation is located on a center of inversion; the thio­cyanate anion, the methanol mol­ecule as well as the 3,5-di­methyl­pyridine ligand are each located on general positions. The CoII cation is octa­hedrally coordinated by two terminal N-bonded thio­cyanato ligands, two methanol mol­ecules and two 3,5-di­methyl­pyridine ligands in an all-trans configuration (Fig. 1[link]). The Co—N bond length to the thio­cyanate anion is significantly shorter [2.0898 (19) Å] than to the pyridine N atom of the 3,5-di­methyl­pyridine ligand [2.1602 (17) Å], which is in agreement with values reported in the literature (Goodgame et al., 2003[Goodgame, D. M. L., Grachvogel, D. A., White, A. J. P. & Williams, D. J. (2003). Inorg. Chim. Acta, 348, 187-193.]; Wöhlert et al., 2014[Wöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, U. & Näther, C. (2014). Inorg. Chem. 53, 8298-8310.]).

[Scheme 1]
[Figure 1]
Figure 1
View of a discrete complex of the title compound, showing the atom labelling and anisotropic displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x, −y + 1, −z + 1.]

3. Supra­molecular features

The discrete complexes in the crystal are linked by pairs of inter­molecular O—H⋯S hydrogen bonds between the hydroxyl H atom of the methanol ligand and the thio­cyanato S atom of an adjacent complex into chains propagating parallel to the b axis (Fig. 2[link], Table 1[link]). These pairs are located around centres of inversion.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯S1i 0.84 2.45 3.2885 (17) 175
Symmetry code: (i) x, y-1, z.
[Figure 2]
Figure 2
The crystal structure of the title compound in a view along the a axis, showing the inter­molecular hydrogen bonding as dashed lines.

4. Database survey

To the best of our knowledge, there is only one thio­cyanato coordination compound with 3,5-di­methyl­pyridine as a co-ligand deposited in the Cambridge Structure Database (Version 5.37, last update 2015; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The structure consists of an NiII cation octa­hedrally coordinated by four 3,5-di­methyl­pyridine ligands and two N-bonded thio­cyanate anions (Price et al., 1984[Price, S. L. & Stone, A. J. (1984). Acta Cryst. A40, C111.]; Nassimbeni et al., 1986[Nassimbeni, L. R., Papanicolaou, S. & Moore, M. H. (1986). J. Inclusion Phenom. 4, 31-42.]). A general search for coordination compounds with 3,5-di­methyl­pyridine resulted in 159 structures, including the aforementioned ones. Exemplary are two Co compounds: in the first, the cation is octa­hedrally coordinated by two 3,5-di­methyl­pyridine ligands as well as one μ-1,3-bridging and one μ-1,1-bridging azide anion, linking them into chains (Lu et al., 2012[Lu, Z., Gamez, P., Kou, H.-Z., Fan, C., Zhang, H. & Sun, G. (2012). CrystEngComm, 14, 5035-5041.]), whereas in the second compound, the CoII atom is octa­hedrally coordinated by four 3,5-di­methyl­pyridine ligands and two chloride anions, forming a discrete complex (Martone et al., 2007[Martone, D. P., Maverick, A. W. & Fronczek, F. R. (2007). Acta Cryst. C63, m238-m239.]).

5. Synthesis and crystallization

Co(NCS)2 and 3,5-di­methyl­pyridine were purchased from Alfa Aesar. Crystals of the title compound suitable for single crystal X-ray diffraction were obtained by the reaction of 43.8 mg Co(NCS)2 (0.25 mmol) with 28.5 µl 3,5-di­methyl­pyridine (0.6 mmol) in methanol (1.5 ml) after a few days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C—H hydrogen atoms were positioned with idealized geometry and were refined with fixed isotropic displacement parameters Uiso(H) = 1.2Ueq(C) using a riding model. The O—H hydrogen atom was located in a difference map. For refinement, the bond length was constrained to 0.84 Å, with Uiso(H) = 1.5Ueq(O), using a riding model.

Table 2
Experimental details

Crystal data
Chemical formula [Co(NCS)2(C7H9N)2(CH4O)2]
Mr 453.48
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 170
a, b, c (Å) 7.7027 (5), 7.8688 (5), 9.1970 (5)
α, β, γ (°) 87.403 (5), 81.419 (5), 76.295 (5)
V3) 535.48 (6)
Z 1
Radiation type Mo Kα
μ (mm−1) 1.02
Crystal size (mm) 0.15 × 0.09 × 0.04
 
Data collection
Diffractometer Stoe IPDS2
Absorption correction Numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.885, 0.923
No. of measured, independent and observed [I > 2σ(I)] reflections 6258, 2431, 2052
Rint 0.024
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.094, 1.08
No. of reflections 2431
No. of parameters 127
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.37
Computer programs: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis(3,5-dimethylpyridine-κN)bis(methanol-κO)bis(thiocyanato-κn)cobalt(II) top
Crystal data top
[Co(NCS)2(C7H9N)2(CH4O)2]Z = 1
Mr = 453.48F(000) = 237
Triclinic, P1Dx = 1.406 Mg m3
a = 7.7027 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8688 (5) ÅCell parameters from 6258 reflections
c = 9.1970 (5) Åθ = 2.2–27.4°
α = 87.403 (5)°µ = 1.02 mm1
β = 81.419 (5)°T = 170 K
γ = 76.295 (5)°Block, blue
V = 535.48 (6) Å30.15 × 0.09 × 0.04 mm
Data collection top
Stoe IPDS-2
diffractometer
2052 reflections with I > 2σ(I)
ω scansRint = 0.024
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
θmax = 27.4°, θmin = 2.2°
Tmin = 0.885, Tmax = 0.923h = 99
6258 measured reflectionsk = 1010
2431 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.2412P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2431 reflectionsΔρmax = 0.37 e Å3
127 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.50000.50000.02492 (13)
N10.1343 (3)0.6688 (3)0.3719 (2)0.0319 (4)
C10.2064 (3)0.7782 (3)0.3253 (2)0.0282 (4)
S10.30808 (9)0.93060 (7)0.25699 (6)0.03616 (16)
O10.2263 (2)0.2834 (2)0.45808 (19)0.0347 (4)
H10.24160.19170.40980.042*
C20.4115 (3)0.2961 (4)0.4380 (3)0.0406 (6)
H2A0.44550.33400.33700.061*
H2B0.48910.18160.45660.061*
H2C0.42610.38150.50690.061*
N110.1118 (3)0.5678 (2)0.68521 (19)0.0268 (4)
C110.1607 (3)0.4492 (3)0.7899 (2)0.0281 (4)
H110.15140.33270.77750.034*
C120.2242 (3)0.4871 (3)0.9156 (2)0.0282 (4)
C130.2358 (3)0.6584 (3)0.9313 (2)0.0291 (4)
H130.27800.69001.01580.035*
C140.1865 (3)0.7841 (3)0.8251 (2)0.0287 (4)
C150.1263 (3)0.7319 (3)0.7033 (2)0.0272 (4)
H150.09370.81650.62910.033*
C160.2780 (3)0.3476 (3)1.0281 (2)0.0343 (5)
H16A0.38820.26400.98670.051*
H16B0.18070.28641.05540.051*
H16C0.30010.40141.11550.051*
C170.1983 (4)0.9710 (3)0.8375 (3)0.0374 (5)
H17A0.21791.02180.73880.056*
H17B0.29910.97470.88990.056*
H17C0.08551.03820.89170.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0324 (2)0.0230 (2)0.0224 (2)0.01104 (16)0.00600 (15)0.00096 (14)
N10.0419 (11)0.0315 (9)0.0264 (9)0.0160 (8)0.0056 (8)0.0007 (7)
C10.0330 (11)0.0299 (10)0.0226 (9)0.0070 (9)0.0062 (8)0.0034 (8)
S10.0456 (4)0.0304 (3)0.0358 (3)0.0184 (3)0.0004 (3)0.0018 (2)
O10.0328 (9)0.0303 (8)0.0428 (9)0.0089 (7)0.0054 (7)0.0103 (7)
C20.0308 (12)0.0427 (13)0.0512 (14)0.0114 (10)0.0092 (10)0.0056 (11)
N110.0334 (10)0.0255 (9)0.0240 (8)0.0101 (7)0.0064 (7)0.0018 (7)
C110.0367 (12)0.0226 (10)0.0278 (10)0.0104 (9)0.0071 (8)0.0014 (8)
C120.0304 (11)0.0300 (11)0.0252 (10)0.0089 (9)0.0037 (8)0.0014 (8)
C130.0320 (11)0.0314 (11)0.0261 (10)0.0098 (9)0.0051 (8)0.0059 (8)
C140.0322 (11)0.0260 (10)0.0292 (10)0.0096 (9)0.0027 (8)0.0045 (8)
C150.0323 (11)0.0249 (10)0.0261 (10)0.0091 (8)0.0051 (8)0.0008 (8)
C160.0418 (13)0.0339 (12)0.0299 (11)0.0110 (10)0.0114 (9)0.0027 (9)
C170.0480 (14)0.0283 (11)0.0410 (13)0.0161 (10)0.0097 (11)0.0050 (9)
Geometric parameters (Å, º) top
Co1—N12.0898 (19)C11—C121.390 (3)
Co1—N1i2.0898 (19)C11—H110.9500
Co1—O1i2.1311 (16)C12—C131.388 (3)
Co1—O12.1311 (16)C12—C161.502 (3)
Co1—N11i2.1602 (17)C13—C141.386 (3)
Co1—N112.1602 (17)C13—H130.9500
N1—C11.164 (3)C14—C151.388 (3)
C1—S11.636 (2)C14—C171.505 (3)
O1—C21.438 (3)C15—H150.9500
O1—H10.8399C16—H16A0.9800
C2—H2A0.9800C16—H16B0.9800
C2—H2B0.9800C16—H16C0.9800
C2—H2C0.9800C17—H17A0.9800
N11—C111.342 (3)C17—H17B0.9800
N11—C151.342 (3)C17—H17C0.9800
N1—Co1—N1i180.0C15—N11—Co1121.16 (14)
N1—Co1—O1i87.76 (7)N11—C11—C12123.78 (19)
N1i—Co1—O1i92.24 (7)N11—C11—H11118.1
N1—Co1—O192.24 (7)C12—C11—H11118.1
N1i—Co1—O187.76 (7)C13—C12—C11116.89 (19)
O1i—Co1—O1180.0C13—C12—C16122.06 (19)
N1—Co1—N11i92.30 (7)C11—C12—C16121.05 (19)
N1i—Co1—N11i87.70 (7)C14—C13—C12120.79 (19)
O1i—Co1—N11i89.25 (6)C14—C13—H13119.6
O1—Co1—N11i90.75 (6)C12—C13—H13119.6
N1—Co1—N1187.70 (7)C13—C14—C15117.59 (19)
N1i—Co1—N1192.30 (7)C13—C14—C17122.42 (19)
O1i—Co1—N1190.75 (6)C15—C14—C17120.0 (2)
O1—Co1—N1189.25 (6)N11—C15—C14123.23 (19)
N11i—Co1—N11180.0N11—C15—H15118.4
C1—N1—Co1167.28 (17)C14—C15—H15118.4
N1—C1—S1179.04 (19)C12—C16—H16A109.5
C2—O1—Co1124.49 (14)C12—C16—H16B109.5
C2—O1—H197.4H16A—C16—H16B109.5
Co1—O1—H1131.5C12—C16—H16C109.5
O1—C2—H2A109.5H16A—C16—H16C109.5
O1—C2—H2B109.5H16B—C16—H16C109.5
H2A—C2—H2B109.5C14—C17—H17A109.5
O1—C2—H2C109.5C14—C17—H17B109.5
H2A—C2—H2C109.5H17A—C17—H17B109.5
H2B—C2—H2C109.5C14—C17—H17C109.5
C11—N11—C15117.71 (17)H17A—C17—H17C109.5
C11—N11—Co1121.05 (13)H17B—C17—H17C109.5
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···S1ii0.842.453.2885 (17)175
Symmetry code: (ii) x, y1, z.
 

Acknowledgements

This project was supported by the Deutsche Forschungsgemeinschaft (project No. NA 720/5–1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGoodgame, D. M. L., Grachvogel, D. A., White, A. J. P. & Williams, D. J. (2003). Inorg. Chim. Acta, 348, 187–193.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, K., Shi, W. & Cheng, P. (2015). Coord. Chem. Rev. 289–290, 74–122.  CrossRef CAS Google Scholar
First citationLu, Z., Gamez, P., Kou, H.-Z., Fan, C., Zhang, H. & Sun, G. (2012). CrystEngComm, 14, 5035–5041.  CSD CrossRef CAS Google Scholar
First citationMartone, D. P., Maverick, A. W. & Fronczek, F. R. (2007). Acta Cryst. C63, m238–m239.  CSD CrossRef IUCr Journals Google Scholar
First citationMassoud, S. S., Guilbeau, A. E., Luong, H. T., Vicente, R., Albering, J. H., Fischer, R. C. & Mautner, F. A. (2013). Polyhedron, 54, 26–33.  Web of Science CSD CrossRef CAS Google Scholar
First citationNassimbeni, L. R., Papanicolaou, S. & Moore, M. H. (1986). J. Inclusion Phenom. 4, 31–42.  CSD CrossRef CAS Google Scholar
First citationNäther, C., Wöhlert, S., Boeckmann, J., Wriedt, M. & Jess, I. (2013). Z. Anorg. Allg. Chem. 639, 2696–2714.  Google Scholar
First citationPalion-Gazda, J., Machura, B., Lloret, F. & Julve, M. (2015). Cryst. Growth Des. 15, 2380–2388.  CAS Google Scholar
First citationPrice, S. L. & Stone, A. J. (1984). Acta Cryst. A40, C111.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z. & Näther, C. (2014). Dalton Trans. 43, 17333–17342.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Rams, M., Tomkowicz, Z., Runčevski, T., Dinnebier, R. E., Suckert, S. & Näther, C. (2015a). Inorg. Chem. 54, 2893–2901.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWerner, J., Runčevski, T., Dinnebier, R. E., Ebbinghaus, S. G., Suckert, S. & Näther, C. (2015b). Eur. J. Inorg. Chem. 2015, 3236–3245.  Web of Science CSD CrossRef CAS Google Scholar
First citationWerner, J., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Neumann, T. & Näther, C. (2015c). Dalton Trans. 44, 14149–14158.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWöhlert, S., Tomkowicz, Z., Rams, M., Ebbinghaus, S. G., Fink, L., Schmidt, U. & Näther, C. (2014). Inorg. Chem. 53, 8298–8310.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds