research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and computational studies of (3Z)-4-benzoyl-3-[(2,4-di­nitro­phen­yl)hydrazinyl­­idene]-5-phenyl­furan-2(3H)-one

CROSSMARK_Color_square_no_text.svg

aYesilyurt Demir Celik Vocational School, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and cDepartment of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
*Correspondence e-mail: hbulbul@omu.edu.tr

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 November 2016; accepted 21 November 2016; online 29 November 2016)

In the mol­ecular structure of the title compound, C23H14N4O7, the furan, di­nitro­phenyl and phenyl rings are almost in the same plane (r.m.s. deviation = 0.127 Å), with the benzoyl ring inclined by a dihedral angle of 56.4 (1)° to the three-ring system. A bifurcated intra­molecular N—H⋯(O,O) hydrogen bond is present. In the crystal, adjacent mol­ecules are linked by C—H⋯O hydrogen bonds into chains parallel to [001]. A ππ stacking inter­action between the benzoyl and di­nitro­phenyl moieties contributes to the crystal packing. Theoretical calculations using DFT(B3YLP) methods were used to confirm the mol­ecular structure.

1. Chemical context

Furan-2-3-diones are known heterocyclic starting compounds and show a high reactivity. Due to their characteristics, numerous reports have highlighted their usage in chemistry (Ziegler et al., 1967[Ziegler, E., Eder, M., Belegratis, C. & Prewedourakis, E. (1967). Monatsh. Chem. 98, 2249-2251.]; Saalfrank et al., 1991[Saalfrank, R. W., Lutz, T., Hömer, B., Gündel, J., Peters, K. & von Schnering, H. G. (1991). Chem. Ber. 124, 2289-2295.]; Sarıpınar et al., 2000[Sarıpınar, E., Güzel, Y., Önal, Z., Ilhan, I. Ö. & Akçamur, Y. (2000). J. Chem. Soc. Pak. 22, 308-317.]). In furan-2,3-diones, atoms C2, C3, C5 and C6 represent electrophilic sites of different reactivity and can be used for the construction of condensed heterocyclic systems upon reaction with various nucleophiles and binucleo­philes (Kollenz et al., 1976[Kollenz, G., Ziegler, E., Ott, W. & Igel, H. (1976). Z. Naturforsch. Teil B, 31, 1511-1514.]; Akçamur et al., 1986[Akçamur, Y., Penn, G., Ziegler, E., Sterk, H., Kollenz, G., Peters, K., Peters, E. M. & von Schnering, H. G. (1986). Monatsh. Chem. 117, 231-245.]; Akçamur & Kollenz, 1987[Akçamur, Y. & Kollenz, G. (1987). Org. Prep. Proced. Int. 19, 52-56.]). The reactions of substituted furan-2,3-diones with dienophiles in different solvents and at various temperatures have also been studied (Kollenz et al., 1984a[Kollenz, G., Ott, W., Ziegler, E., Peters, E. M., Peters, K., von Schnering, H. G., Formáček, V. & Quast, H. (1984a). Liebigs Ann. Chem. pp. 1137-1164.],b[Kollenz, G., Penn, G., Dolenz, G., Akçamur, Y., Peters, K., Peters, E. M. & von Schnering, H. G. (1984b). Chem. Ber. 117, 1299-1309.]). Moreover, derivatives of heterocyclic 2,3-diones which are also α,β-unsaturated carbonyl compounds have been found to serve as versatile synthetic equivalents in thermolysis reactions (Fulloon et al., 1995[Fulloon, B., El-Nabi, H. A. A., Kollenz, G. & Wentrup, C. (1995). Tetrahedron Lett. 36, 6547-6550.]; El-Nabi & Kollenz, 1997[El-Nabi, H. A. A. & Kollenz, G. (1997). Monatsh. Chem. 128, 381-387.]; Kollenz et al., 2001[Kollenz, G., Heilmayer, W., Kappe, C. O., Wallfisch, B. & Wentrup, C. (2001). Croat. Chem. Acta, 74, 815-823.]), cyclo­addition reactions (Kollenz et al., 1987[Kollenz, G., Penn, G., Ott, W., Peters, K., Peters, E. M. & von Schnering, H. G. (1987). Heterocycles, 26, 625-631.]) and nucleophilic addition reactions (Kollenz et al., 1977[Kollenz, G., Ziegler, E., Ott, W. & Kriwetz, G. (1977). Z. Naturforsch. Teil B, 32, 701-701.]; Altural et al., 1989[Altural, B., Akçamur, Y., Sarıpınar, E., Yıldırım, I. & Kollenz, G. (1989). Monatsh. Chem. 120, 1015-1020.]). Several attempts to change functional groups in furan- or pyrrol-2,3-diones and related systems have been reported (Fabian & Kollenz, 1994[Fabian, W. M. F. & Kollenz, G. (1994). J. Mol. Struct. Theochem, 313, 219-230.]; Wong & Wentrup, 1994[Wong, M. W. & Wentrup, C. (1994). J. Org. Chem. 59, 5279-5285.]).

As part of our studies in this area, we have synthesized the title furan-2,3-dione derivative and report here its mol­ecular and crystal structure.

2. Structural commentary

The mol­ecular structure of the title compound is not planar (Fig. 1[link]). However, three of the four rings, viz. C7–C12 (phenyl ring), C13–O2 (furan ring) and C18–C23 (phenyl ring of the di­nitro­phenyl moiety) are almost co-planar. The central furan ring is twisted by 11.30 (5)° to the phenyl ring and by 8.89 (5)° to the di­nitro­phenyl ring. The benzoyl ring is inclined by 56.4 (1)° to the least-squares plane of the three-ring system (r.m.s. deviation = 0.127 Å). Bond lengths and angles for the (2,4-di­nitro­phen­yl)hydrazione moiety are consistent with those in related structures (Fun et al., 2014[Fun, H.-K., Chantrapromma, S., Ruanwas, P., Kobkeatthawin, T. & Chidan Kumar, C. S. (2014). Acta Cryst. E70, o89-o90.]; Mague et al., 2014[Mague, J. T., Mohamed, S. K., Akkurt, M., El-Kashef, H. M. S. & Albayati, M. R. (2014). Acta Cryst. E70, o1246-o1247.]). The two nitro groups of the di­nitro­phenyl ring are twisted slightly from the ring plane, with torsion angles C22—C21—N3—O4 = −8.1 (3)°, C20—C21—N3—O5 = −9.0 (3)°, C20—C19—N4—O6= − 3.5 (2)° and C18—C19—N4—O7=-4.6 (2)°.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bonds are indicated by dashed lines.

A bifurcated intra­molecular N—H⋯(O,O) hydrogen bond involving both the carbonyl O atom of the furane dione moiety and an O atom of one of nitro groups is present, forming two S(6) motifs (Fig. 1[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O5i 0.93 2.55 3.352 (3) 144
C22—H22⋯O4ii 0.93 2.43 3.218 (2) 143
N2—H25⋯O7 0.87 (2) 1.997 (19) 2.6106 (19) 126.8 (16)
N2—H25⋯O3 0.87 (2) 2.118 (19) 2.795 (2) 134.5 (17)
Symmetry codes: (i) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

3. Supra­molecular features

In the crystal, adjacent mol­ecules are linked through C—H⋯O hydrogen bonds whereby one inter­action (C22—H22⋯O4) leads to a R22(10) motif and the other (C4—H5⋯O5) links the mol­ecules into chains propagating parallel to [001]. In addition, ππ inter­actions between the C1–C6 [benzoyl; Cg(2)] and C18–C23 [di­nitro­phenyl; Cg(4)] rings with a centroid-to-centroid distance of Cg(2)⋯Cg(4)i = 3.81 (1) Å [symmetry code (i) x, 3/2-y, [{1\over 2}] + z] are present (Table 1[link], Fig. 2[link]).

[Figure 2]
Figure 2
The packing of mol­ecules in the title compound in a view along [010]. Dashed lines indicate C—H⋯O hydrogen bonds.

4. Theoretical calculations

The mol­ecular structure was optimized using DFT(B3YLP) methods with the 6-31G+(d) basis set (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B. 37, 785-789.]; Schlegel, 1982[Schlegel, H. B. (1982). J. Comput. Chem. 3, 214-218.]; Peng et al., 1996[Peng, C., Ayala, P. Y., Schlegel, H. B. & Frisch, M. J. (1996). J. Comput. Chem. 17, 49-56.]) in the calculation and visualization programs of Gaussian03–GaussView4.1 (Frisch et al., 2004[Frisch, M. J., et al. (2004). Gaussian 03. Wallingford, Conn, USA.]; Dennington et al., 2007[Dennington, R., Keith, T. & Millam, J. (2007). GaussView4.1. Semichem, Shawnee Mission, Kan, USA.]).

The optimized parameters such as bond lengths, bond angles and torsion angles are in good agreement with experimental values on basis of the diffraction study. The highest deviations between the two methods relate to the C4—C5 bond length [1.368 (3) Å from diffraction data, 1.4008 Å from DFT calculations] and the N4—C19—C20—C21 torsion angle [178.85 (14)° from diffraction data, 179.92° from DFT calculations].

The mol­ecular electrostatic potential is a suitable way to inter­pret the hydrogen-bonding donor and acceptor sides. Electrophilic and nuclecophilic regions are good descriptors for such inter­actions in a mol­ecular electrostatic potential surface. Generally, colours are used for this description. Red-coloured regions are related to a negative electrostatic potential and associated with electrophilic characteristics while blue-coloured regions are related to positive electrostatic potentials and associated with nuclecophilic characteristics. In the title mol­ecule, negative regions are mainly located on atoms O4 and O5 with a minimum value of −0.045 a.u. Positive regions are located around atom N1 with a maximum value of 0.037 a.u. These regions are associated with hydrogen-bonding donor and acceptor sites. The mol­ecular electrostatic potential surface is shown in Fig. 3[link].

[Figure 3]
Figure 3
The mol­ecular electrostatic potential surface of the title compound, calculated at the B3LYP/6–31 G+(d) level.

5. Synthesis and crystallization

A mixture of 4-benzoyl-5-phenyl-2,3-furan­dione (0,5 g., 5,5 mmol) and 2,4-di­nitro­phenyl hydrazine (0,356 g., 5,5 mmol) was dissolved in benzene and stirred about 1 h with a magnetic stirrer. Then the solvent was evaporated and the remaining oily residue was treated with dry diethyl ether and kept at room temperature for 24 h. The precipitate obtained was filtered off and recrystallized from toluene. The completion of the reaction was monitored by TLC. Yield 0,49 g (57%); m.p. = 465 K.

IR (ATR) cm−1: 3192.49 (–NH), 3115.20 (aromatic –CH), 1769.25 and 1654.16 (C=O of carbon­yl),1593.73 (C=N of pyrazoline ring), 1493.96 (NO2), 1446.99–1334.23 (aromatic C=C) Analysis calculated for C23H14N4O7: C,61.57; H,3.87; N, 12.54; found: C, 60.26; H, 3.06; N, 12.23.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atom attached to the hydrazine group was located from a difference Fourier map and was refined freely. All other H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C23H14N4O7
Mr 458.38
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 20.7156 (11), 6.3660 (3), 16.0288 (7)
β (°) 105.183 (4)
V3) 2040.02 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.64 × 0.34 × 0.15
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany (2002).])
Tmin, Tmax 0.954, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 18074, 3992, 2617
Rint 0.036
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.089, 1.01
No. of reflections 3992
No. of parameters 311
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.11, −0.15
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany (2002).]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

(3Z)-4-Benzoyl-3-[(2,4-dinitrophenyl)hydrazinylidene]-5-phenylfuran-2(3H)-one top
Crystal data top
C23H14N4O7F(000) = 944
Mr = 458.38Dx = 1.492 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.7156 (11) ÅCell parameters from 18113 reflections
b = 6.3660 (3) Åθ = 1.3–27.4°
c = 16.0288 (7) ŵ = 0.11 mm1
β = 105.183 (4)°T = 293 K
V = 2040.02 (17) Å3Stick, red
Z = 40.64 × 0.34 × 0.15 mm
Data collection top
Stoe IPDS 2
diffractometer
3992 independent reflections
Radiation source: fine-focus sealed tube2617 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.036
ω–scansθmax = 26.0°, θmin = 2.0°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 2525
Tmin = 0.954, Tmax = 0.985k = 77
18074 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0424P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3992 reflectionsΔρmax = 0.11 e Å3
311 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.25724 (8)0.8002 (2)0.43332 (9)0.0568 (4)
C10.21265 (9)0.5758 (3)0.18120 (10)0.0585 (4)
H10.2549270.6320790.2048180.070*
C20.19729 (8)0.3763 (2)0.20527 (9)0.0495 (4)
C30.16531 (11)0.6908 (3)0.12232 (11)0.0738 (6)
H30.1759390.8234020.1055220.089*
C40.10245 (12)0.6093 (4)0.08846 (12)0.0826 (6)
H40.0705700.6876270.0490820.099*
C50.08647 (10)0.4138 (4)0.11232 (12)0.0785 (6)
H50.0436690.3603370.0897190.094*
C60.13366 (9)0.2962 (3)0.16968 (10)0.0616 (4)
H60.1228900.1621620.1847650.074*
C70.37944 (10)0.0410 (3)0.26118 (12)0.0714 (5)
H70.3383620.0083070.2233420.086*
C80.41433 (11)0.2150 (3)0.24598 (14)0.0798 (6)
H80.3964710.2991880.1980790.096*
C90.47493 (11)0.2648 (3)0.30065 (14)0.0789 (6)
H90.4974500.3851440.2911380.095*
C100.50228 (11)0.1372 (4)0.36932 (13)0.0816 (6)
H100.5441550.1686460.4054550.098*
C110.46834 (9)0.0374 (3)0.38542 (11)0.0684 (5)
H110.4877640.1238570.4319930.082*
C120.40534 (8)0.0861 (3)0.33289 (10)0.0547 (4)
C130.36878 (9)0.2643 (3)0.35482 (9)0.0541 (4)
C140.30514 (8)0.3394 (2)0.32797 (9)0.0496 (4)
C150.24688 (8)0.2423 (2)0.26518 (9)0.0487 (4)
C160.30221 (9)0.5239 (2)0.37966 (9)0.0519 (4)
C170.36975 (9)0.5505 (3)0.43806 (11)0.0591 (4)
C180.20589 (9)0.9389 (3)0.42466 (9)0.0526 (4)
C190.21248 (8)1.1297 (3)0.47072 (9)0.0541 (4)
C200.16058 (10)1.2723 (3)0.45749 (11)0.0611 (5)
H200.1658721.3979590.4880980.073*
C210.10175 (10)1.2270 (3)0.39934 (11)0.0620 (5)
C220.09279 (9)1.0401 (3)0.35364 (11)0.0663 (5)
H220.0520031.0108890.3144580.080*
C230.14385 (9)0.8990 (3)0.36622 (10)0.0601 (4)
H230.1374150.7735400.3354010.072*
N10.24959 (7)0.6356 (2)0.37783 (8)0.0534 (3)
N30.04722 (10)1.3806 (3)0.38399 (13)0.0822 (5)
N40.27400 (8)1.1906 (3)0.53243 (9)0.0657 (4)
O10.23927 (6)0.05224 (18)0.26464 (7)0.0636 (3)
O20.40819 (6)0.38975 (19)0.42049 (7)0.0630 (3)
O30.39113 (6)0.6791 (2)0.49284 (8)0.0774 (4)
O40.00184 (9)1.3482 (3)0.32419 (12)0.1127 (6)
O50.05355 (10)1.5319 (3)0.43157 (14)0.1261 (7)
O60.27748 (8)1.3652 (2)0.56528 (9)0.0900 (4)
O70.32091 (7)1.0674 (3)0.54951 (9)0.0941 (5)
H250.2963 (10)0.827 (3)0.4674 (12)0.074 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0586 (10)0.0590 (9)0.0480 (7)0.0054 (8)0.0053 (7)0.0087 (7)
C10.0701 (11)0.0548 (10)0.0470 (8)0.0028 (9)0.0087 (8)0.0032 (8)
C20.0511 (10)0.0527 (9)0.0431 (8)0.0033 (8)0.0098 (7)0.0047 (7)
C30.1018 (17)0.0596 (11)0.0551 (10)0.0135 (11)0.0117 (11)0.0042 (9)
C40.0831 (16)0.0984 (17)0.0576 (11)0.0325 (13)0.0029 (10)0.0014 (11)
C50.0558 (12)0.1085 (17)0.0647 (11)0.0069 (12)0.0041 (9)0.0059 (12)
C60.0547 (11)0.0723 (12)0.0559 (9)0.0058 (9)0.0110 (8)0.0060 (8)
C70.0543 (11)0.0804 (13)0.0734 (12)0.0042 (10)0.0059 (9)0.0139 (10)
C80.0705 (14)0.0788 (14)0.0918 (14)0.0030 (11)0.0245 (12)0.0223 (11)
C90.0775 (15)0.0734 (13)0.0930 (14)0.0137 (11)0.0348 (12)0.0041 (12)
C100.0689 (13)0.0996 (16)0.0738 (12)0.0259 (12)0.0145 (10)0.0118 (12)
C110.0615 (12)0.0827 (13)0.0570 (10)0.0075 (10)0.0082 (9)0.0017 (9)
C120.0530 (10)0.0575 (10)0.0514 (9)0.0002 (8)0.0096 (8)0.0045 (8)
C130.0563 (11)0.0573 (10)0.0439 (8)0.0070 (8)0.0049 (7)0.0013 (7)
C140.0528 (10)0.0480 (9)0.0449 (8)0.0044 (8)0.0073 (7)0.0022 (7)
C150.0512 (10)0.0480 (10)0.0475 (8)0.0062 (8)0.0139 (7)0.0019 (7)
C160.0559 (10)0.0512 (9)0.0459 (8)0.0059 (8)0.0083 (7)0.0000 (7)
C170.0594 (11)0.0623 (11)0.0521 (9)0.0070 (9)0.0081 (8)0.0053 (8)
C180.0572 (10)0.0563 (10)0.0441 (8)0.0042 (8)0.0128 (7)0.0004 (7)
C190.0589 (10)0.0588 (10)0.0434 (8)0.0087 (9)0.0113 (7)0.0025 (8)
C200.0741 (13)0.0566 (10)0.0558 (9)0.0038 (10)0.0228 (9)0.0001 (8)
C210.0660 (12)0.0637 (11)0.0584 (10)0.0040 (9)0.0199 (9)0.0085 (9)
C220.0582 (11)0.0852 (13)0.0530 (9)0.0068 (10)0.0103 (8)0.0019 (9)
C230.0592 (11)0.0653 (11)0.0532 (9)0.0068 (9)0.0101 (8)0.0086 (8)
N10.0612 (9)0.0501 (8)0.0468 (7)0.0068 (7)0.0105 (6)0.0050 (6)
N30.0786 (13)0.0811 (13)0.0892 (12)0.0119 (11)0.0261 (10)0.0214 (11)
N40.0695 (11)0.0699 (11)0.0560 (8)0.0101 (9)0.0136 (8)0.0116 (8)
O10.0653 (8)0.0467 (7)0.0760 (7)0.0090 (6)0.0136 (6)0.0004 (6)
O20.0558 (7)0.0680 (8)0.0564 (6)0.0023 (6)0.0008 (5)0.0081 (6)
O30.0701 (8)0.0847 (9)0.0679 (7)0.0109 (7)0.0011 (6)0.0245 (7)
O40.0866 (12)0.1288 (14)0.1116 (12)0.0244 (11)0.0059 (10)0.0299 (11)
O50.1177 (15)0.0906 (12)0.1662 (18)0.0297 (11)0.0303 (13)0.0205 (12)
O60.1058 (12)0.0720 (9)0.0814 (9)0.0141 (8)0.0054 (8)0.0272 (8)
O70.0671 (9)0.1046 (11)0.0951 (10)0.0046 (9)0.0063 (8)0.0398 (9)
Geometric parameters (Å, º) top
N2—N11.3562 (18)C12—C131.457 (2)
N2—C181.362 (2)C13—C141.362 (2)
N2—H250.87 (2)C13—O21.4007 (18)
C1—C31.380 (2)C14—C161.448 (2)
C1—C21.388 (2)C14—C151.489 (2)
C1—H10.9300C15—O11.2196 (17)
C2—C61.389 (2)C16—N11.296 (2)
C2—C151.479 (2)C16—C171.475 (2)
C3—C41.374 (3)C17—O31.1972 (19)
C3—H30.9300C17—O21.370 (2)
C4—C51.368 (3)C18—C231.401 (2)
C4—H40.9300C18—C191.409 (2)
C5—C61.375 (3)C19—C201.380 (2)
C5—H50.9300C19—N41.447 (2)
C6—H60.9300C20—C211.357 (2)
C7—C81.379 (3)C20—H200.9300
C7—C121.393 (2)C21—C221.384 (2)
C7—H70.9300C21—N31.465 (2)
C8—C91.367 (3)C22—C231.362 (2)
C8—H80.9300C22—H220.9300
C9—C101.366 (3)C23—H230.9300
C9—H90.9300N3—O51.214 (2)
C10—C111.375 (3)N3—O41.218 (2)
C10—H100.9300N4—O71.2230 (19)
C11—C121.390 (2)N4—O61.2239 (18)
C11—H110.9300
N1—N2—C18118.69 (14)C14—C13—C12135.91 (15)
N1—N2—H25119.5 (13)O2—C13—C12112.81 (14)
C18—N2—H25121.0 (13)C13—C14—C16106.62 (14)
C3—C1—C2120.12 (17)C13—C14—C15127.89 (14)
C3—C1—H1119.9C16—C14—C15125.17 (15)
C2—C1—H1119.9O1—C15—C2120.07 (14)
C1—C2—C6118.92 (15)O1—C15—C14119.81 (14)
C1—C2—C15122.50 (14)C2—C15—C14120.09 (13)
C6—C2—C15118.55 (15)N1—C16—C14126.40 (14)
C4—C3—C1120.01 (19)N1—C16—C17127.16 (15)
C4—C3—H3120.0C14—C16—C17106.34 (15)
C1—C3—H3120.0O3—C17—O2122.55 (16)
C5—C4—C3120.44 (19)O3—C17—C16130.62 (17)
C5—C4—H4119.8O2—C17—C16106.82 (14)
C3—C4—H4119.8N2—C18—C23120.38 (15)
C4—C5—C6120.03 (19)N2—C18—C19122.67 (15)
C4—C5—H5120.0C23—C18—C19116.92 (16)
C6—C5—H5120.0C20—C19—C18121.43 (15)
C5—C6—C2120.47 (18)C20—C19—N4116.10 (15)
C5—C6—H6119.8C18—C19—N4122.44 (16)
C2—C6—H6119.8C21—C20—C19119.29 (16)
C8—C7—C12120.40 (18)C21—C20—H20120.4
C8—C7—H7119.8C19—C20—H20120.4
C12—C7—H7119.8C20—C21—C22121.18 (17)
C9—C8—C7120.61 (19)C20—C21—N3119.20 (18)
C9—C8—H8119.7C22—C21—N3119.61 (18)
C7—C8—H8119.7C23—C22—C21119.83 (17)
C10—C9—C8119.74 (19)C23—C22—H22120.1
C10—C9—H9120.1C21—C22—H22120.1
C8—C9—H9120.1C22—C23—C18121.34 (16)
C9—C10—C11120.49 (19)C22—C23—H23119.3
C9—C10—H10119.8C18—C23—H23119.3
C11—C10—H10119.8C16—N1—N2117.12 (14)
C10—C11—C12120.77 (18)O5—N3—O4124.0 (2)
C10—C11—H11119.6O5—N3—C21118.2 (2)
C12—C11—H11119.6O4—N3—C21117.8 (2)
C11—C12—C7117.88 (17)O7—N4—O6122.19 (16)
C11—C12—C13119.49 (15)O7—N4—C19119.14 (15)
C7—C12—C13122.62 (15)O6—N4—C19118.67 (17)
C14—C13—O2111.27 (14)C17—O2—C13108.93 (13)
C3—C1—C2—C60.5 (2)C15—C14—C16—C17174.56 (14)
C3—C1—C2—C15177.30 (15)N1—C16—C17—O32.5 (3)
C2—C1—C3—C41.1 (3)C14—C16—C17—O3179.04 (18)
C1—C3—C4—C50.4 (3)N1—C16—C17—O2176.23 (15)
C3—C4—C5—C60.8 (3)C14—C16—C17—O20.31 (17)
C4—C5—C6—C21.4 (3)N1—N2—C18—C237.3 (2)
C1—C2—C6—C50.7 (2)N1—N2—C18—C19170.66 (14)
C15—C2—C6—C5178.63 (15)N2—C18—C19—C20176.72 (15)
C12—C7—C8—C90.3 (3)C23—C18—C19—C201.3 (2)
C7—C8—C9—C102.3 (3)N2—C18—C19—N41.5 (2)
C8—C9—C10—C112.1 (3)C23—C18—C19—N4179.50 (14)
C9—C10—C11—C120.8 (3)C18—C19—C20—C210.5 (2)
C10—C11—C12—C73.3 (3)N4—C19—C20—C21178.85 (14)
C10—C11—C12—C13176.04 (17)C19—C20—C21—C220.5 (3)
C8—C7—C12—C113.1 (3)C19—C20—C21—N3178.66 (14)
C8—C7—C12—C13176.23 (17)C20—C21—C22—C230.7 (3)
C11—C12—C13—C14168.59 (18)N3—C21—C22—C23178.48 (15)
C7—C12—C13—C1410.7 (3)C21—C22—C23—C180.2 (3)
C11—C12—C13—O210.6 (2)N2—C18—C23—C22176.95 (15)
C7—C12—C13—O2170.12 (15)C19—C18—C23—C221.1 (2)
O2—C13—C14—C160.67 (17)C14—C16—N1—N2178.37 (14)
C12—C13—C14—C16178.51 (17)C17—C16—N1—N22.5 (2)
O2—C13—C14—C15174.42 (14)C18—N2—N1—C16170.45 (14)
C12—C13—C14—C154.8 (3)C20—C21—N3—O59.0 (3)
C1—C2—C15—O1157.59 (15)C22—C21—N3—O5171.81 (19)
C6—C2—C15—O120.2 (2)C20—C21—N3—O4171.09 (17)
C1—C2—C15—C1424.2 (2)C22—C21—N3—O48.1 (3)
C6—C2—C15—C14158.02 (14)C20—C19—N4—O7177.08 (16)
C13—C14—C15—O138.1 (2)C18—C19—N4—O74.6 (2)
C16—C14—C15—O1134.56 (16)C20—C19—N4—O63.5 (2)
C13—C14—C15—C2143.63 (16)C18—C19—N4—O6174.77 (15)
C16—C14—C15—C243.7 (2)O3—C17—O2—C13178.77 (16)
C13—C14—C16—N1175.98 (15)C16—C17—O2—C130.08 (17)
C15—C14—C16—N12.0 (2)C14—C13—O2—C170.49 (18)
C13—C14—C16—C170.59 (17)C12—C13—O2—C17178.90 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O5i0.932.553.352 (3)144
C22—H22···O4ii0.932.433.218 (2)143
N2—H25···O70.87 (2)1.997 (19)2.6106 (19)126.8 (16)
N2—H25···O30.87 (2)2.118 (19)2.795 (2)134.5 (17)
Symmetry codes: (i) x, y+5/2, z1/2; (ii) x, y1/2, z+1/2.
 

References

First citationAkçamur, Y. & Kollenz, G. (1987). Org. Prep. Proced. Int. 19, 52–56.  Google Scholar
First citationAkçamur, Y., Penn, G., Ziegler, E., Sterk, H., Kollenz, G., Peters, K., Peters, E. M. & von Schnering, H. G. (1986). Monatsh. Chem. 117, 231–245.  CSD CrossRef CAS Web of Science Google Scholar
First citationAltural, B., Akçamur, Y., Sarıpınar, E., Yıldırım, I. & Kollenz, G. (1989). Monatsh. Chem. 120, 1015–1020.  CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationDennington, R., Keith, T. & Millam, J. (2007). GaussView4.1. Semichem, Shawnee Mission, Kan, USA.  Google Scholar
First citationEl-Nabi, H. A. A. & Kollenz, G. (1997). Monatsh. Chem. 128, 381–387.  Google Scholar
First citationFabian, W. M. F. & Kollenz, G. (1994). J. Mol. Struct. Theochem, 313, 219–230.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2004). Gaussian 03. Wallingford, Conn, USA.  Google Scholar
First citationFulloon, B., El-Nabi, H. A. A., Kollenz, G. & Wentrup, C. (1995). Tetrahedron Lett. 36, 6547–6550.  CAS Google Scholar
First citationFun, H.-K., Chantrapromma, S., Ruanwas, P., Kobkeatthawin, T. & Chidan Kumar, C. S. (2014). Acta Cryst. E70, o89–o90.  CSD CrossRef IUCr Journals Google Scholar
First citationKollenz, G., Heilmayer, W., Kappe, C. O., Wallfisch, B. & Wentrup, C. (2001). Croat. Chem. Acta, 74, 815–823.  CAS Google Scholar
First citationKollenz, G., Ott, W., Ziegler, E., Peters, E. M., Peters, K., von Schnering, H. G., Formáček, V. & Quast, H. (1984a). Liebigs Ann. Chem. pp. 1137–1164.  Google Scholar
First citationKollenz, G., Penn, G., Dolenz, G., Akçamur, Y., Peters, K., Peters, E. M. & von Schnering, H. G. (1984b). Chem. Ber. 117, 1299–1309.  CAS Google Scholar
First citationKollenz, G., Penn, G., Ott, W., Peters, K., Peters, E. M. & von Schnering, H. G. (1987). Heterocycles, 26, 625–631.  CAS Google Scholar
First citationKollenz, G., Ziegler, E., Ott, W. & Igel, H. (1976). Z. Naturforsch. Teil B, 31, 1511–1514.  Google Scholar
First citationKollenz, G., Ziegler, E., Ott, W. & Kriwetz, G. (1977). Z. Naturforsch. Teil B, 32, 701–701.  Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B. 37, 785–789.  CAS Google Scholar
First citationMague, J. T., Mohamed, S. K., Akkurt, M., El-Kashef, H. M. S. & Albayati, M. R. (2014). Acta Cryst. E70, o1246–o1247.  CSD CrossRef IUCr Journals Google Scholar
First citationPeng, C., Ayala, P. Y., Schlegel, H. B. & Frisch, M. J. (1996). J. Comput. Chem. 17, 49–56.  CrossRef CAS Google Scholar
First citationSaalfrank, R. W., Lutz, T., Hömer, B., Gündel, J., Peters, K. & von Schnering, H. G. (1991). Chem. Ber. 124, 2289–2295.  CAS Google Scholar
First citationSarıpınar, E., Güzel, Y., Önal, Z., Ilhan, I. Ö. & Akçamur, Y. (2000). J. Chem. Soc. Pak. 22, 308–317.  Google Scholar
First citationSchlegel, H. B. (1982). J. Comput. Chem. 3, 214–218.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany (2002).  Google Scholar
First citationWong, M. W. & Wentrup, C. (1994). J. Org. Chem. 59, 5279–5285.  CAS Google Scholar
First citationZiegler, E., Eder, M., Belegratis, C. & Prewedourakis, E. (1967). Monatsh. Chem. 98, 2249–2251.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds