research communications
Z)-4-benzoyl-3-[(2,4-dinitrophenyl)hydrazinylidene]-5-phenylfuran-2(3H)-one
and computational studies of (3aYesilyurt Demir Celik Vocational School, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139, Samsun, Turkey, and cDepartment of Chemistry, Faculty of Sciences, Erciyes University, 38039, Kayseri, Turkey
*Correspondence e-mail: hbulbul@omu.edu.tr
In the molecular structure of the title compound, C23H14N4O7, the furan, dinitrophenyl and phenyl rings are almost in the same plane (r.m.s. deviation = 0.127 Å), with the benzoyl ring inclined by a dihedral angle of 56.4 (1)° to the three-ring system. A bifurcated intramolecular N—H⋯(O,O) hydrogen bond is present. In the crystal, adjacent molecules are linked by C—H⋯O hydrogen bonds into chains parallel to [001]. A π–π stacking interaction between the benzoyl and dinitrophenyl moieties contributes to the crystal packing. Theoretical calculations using DFT(B3YLP) methods were used to confirm the molecular structure.
Keywords: crystal structure; computational studies; furan derivative; hydrazione; π-π interactions.
CCDC reference: 1514260
1. Chemical context
Furan-2-3-diones are known heterocyclic starting compounds and show a high reactivity. Due to their characteristics, numerous reports have highlighted their usage in chemistry (Ziegler et al., 1967; Saalfrank et al., 1991; Sarıpınar et al., 2000). In furan-2,3-diones, atoms C2, C3, C5 and C6 represent electrophilic sites of different reactivity and can be used for the construction of condensed heterocyclic systems upon reaction with various nucleophiles and binucleophiles (Kollenz et al., 1976; Akçamur et al., 1986; Akçamur & Kollenz, 1987). The reactions of substituted furan-2,3-diones with dienophiles in different solvents and at various temperatures have also been studied (Kollenz et al., 1984a,b). Moreover, derivatives of heterocyclic 2,3-diones which are also α,β-unsaturated have been found to serve as versatile synthetic equivalents in thermolysis reactions (Fulloon et al., 1995; El-Nabi & Kollenz, 1997; Kollenz et al., 2001), cycloaddition reactions (Kollenz et al., 1987) and nucleophilic addition reactions (Kollenz et al., 1977; Altural et al., 1989). Several attempts to change functional groups in furan- or pyrrol-2,3-diones and related systems have been reported (Fabian & Kollenz, 1994; Wong & Wentrup, 1994).
As part of our studies in this area, we have synthesized the title furan-2,3-dione derivative and report here its molecular and crystal structure.
2. Structural commentary
The molecular structure of the title compound is not planar (Fig. 1). However, three of the four rings, viz. C7–C12 (phenyl ring), C13–O2 (furan ring) and C18–C23 (phenyl ring of the dinitrophenyl moiety) are almost co-planar. The central furan ring is twisted by 11.30 (5)° to the phenyl ring and by 8.89 (5)° to the dinitrophenyl ring. The benzoyl ring is inclined by 56.4 (1)° to the least-squares plane of the three-ring system (r.m.s. deviation = 0.127 Å). Bond lengths and angles for the (2,4-dinitrophenyl)hydrazione moiety are consistent with those in related structures (Fun et al., 2014; Mague et al., 2014). The two nitro groups of the dinitrophenyl ring are twisted slightly from the ring plane, with torsion angles C22—C21—N3—O4 = −8.1 (3)°, C20—C21—N3—O5 = −9.0 (3)°, C20—C19—N4—O6= − 3.5 (2)° and C18—C19—N4—O7=-4.6 (2)°.
A bifurcated intramolecular N—H⋯(O,O) hydrogen bond involving both the carbonyl O atom of the furane dione moiety and an O atom of one of nitro groups is present, forming two S(6) motifs (Fig. 1, Table 1).
3. Supramolecular features
In the crystal, adjacent molecules are linked through C—H⋯O hydrogen bonds whereby one interaction (C22—H22⋯O4) leads to a R22(10) motif and the other (C4—H5⋯O5) links the molecules into chains propagating parallel to [001]. In addition, π–π interactions between the C1–C6 [benzoyl; Cg(2)] and C18–C23 [dinitrophenyl; Cg(4)] rings with a centroid-to-centroid distance of Cg(2)⋯Cg(4)i = 3.81 (1) Å [symmetry code (i) x, 3/2-y, + z] are present (Table 1, Fig. 2).
4. Theoretical calculations
The molecular structure was optimized using DFT(B3YLP) methods with the 6-31G+(d) basis set (Becke, 1993; Lee et al., 1988; Schlegel, 1982; Peng et al., 1996) in the calculation and visualization programs of Gaussian03–GaussView4.1 (Frisch et al., 2004; Dennington et al., 2007).
The optimized parameters such as bond lengths, bond angles and torsion angles are in good agreement with experimental values on basis of the diffraction study. The highest deviations between the two methods relate to the C4—C5 bond length [1.368 (3) Å from diffraction data, 1.4008 Å from DFT calculations] and the N4—C19—C20—C21 torsion angle [178.85 (14)° from diffraction data, 179.92° from DFT calculations].
The molecular electrostatic potential is a suitable way to interpret the hydrogen-bonding donor and acceptor sides. Electrophilic and nuclecophilic regions are good descriptors for such interactions in a molecular electrostatic potential surface. Generally, colours are used for this description. Red-coloured regions are related to a negative electrostatic potential and associated with electrophilic characteristics while blue-coloured regions are related to positive electrostatic potentials and associated with nuclecophilic characteristics. In the title molecule, negative regions are mainly located on atoms O4 and O5 with a minimum value of −0.045 a.u. Positive regions are located around atom N1 with a maximum value of 0.037 a.u. These regions are associated with hydrogen-bonding donor and acceptor sites. The molecular electrostatic potential surface is shown in Fig. 3.
5. Synthesis and crystallization
A mixture of 4-benzoyl-5-phenyl-2,3-furandione (0,5 g., 5,5 mmol) and 2,4-dinitrophenyl hydrazine (0,356 g., 5,5 mmol) was dissolved in benzene and stirred about 1 h with a magnetic stirrer. Then the solvent was evaporated and the remaining oily residue was treated with dry diethyl ether and kept at room temperature for 24 h. The precipitate obtained was filtered off and recrystallized from toluene. The completion of the reaction was monitored by TLC. Yield 0,49 g (57%); m.p. = 465 K.
IR (ATR) cm−1: 3192.49 (–NH), 3115.20 (aromatic –CH), 1769.25 and 1654.16 (C=O of carbonyl),1593.73 (C=N of pyrazoline ring), 1493.96 (NO2), 1446.99–1334.23 (aromatic C=C) Analysis calculated for C23H14N4O7: C,61.57; H,3.87; N, 12.54; found: C, 60.26; H, 3.06; N, 12.23.
6. details
Crystal data, data collection and structure . The H atom attached to the hydrazine group was located from a difference Fourier map and was refined freely. All other H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
details are summarized in Table 2Supporting information
CCDC reference: 1514260
https://doi.org/10.1107/S2056989016018600/wm5340sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016018600/wm5340Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016018600/wm5340Isup3.cml
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).C23H14N4O7 | F(000) = 944 |
Mr = 458.38 | Dx = 1.492 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 20.7156 (11) Å | Cell parameters from 18113 reflections |
b = 6.3660 (3) Å | θ = 1.3–27.4° |
c = 16.0288 (7) Å | µ = 0.11 mm−1 |
β = 105.183 (4)° | T = 293 K |
V = 2040.02 (17) Å3 | Stick, red |
Z = 4 | 0.64 × 0.34 × 0.15 mm |
Stoe IPDS 2 diffractometer | 3992 independent reflections |
Radiation source: fine-focus sealed tube | 2617 reflections with I > 2σ(I) |
Detector resolution: 6.67 pixels mm-1 | Rint = 0.036 |
ω–scans | θmax = 26.0°, θmin = 2.0° |
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −25→25 |
Tmin = 0.954, Tmax = 0.985 | k = −7→7 |
18074 measured reflections | l = −19→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.089 | w = 1/[σ2(Fo2) + (0.0424P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
3992 reflections | Δρmax = 0.11 e Å−3 |
311 parameters | Δρmin = −0.15 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N2 | 0.25724 (8) | 0.8002 (2) | 0.43332 (9) | 0.0568 (4) | |
C1 | 0.21265 (9) | 0.5758 (3) | 0.18120 (10) | 0.0585 (4) | |
H1 | 0.254927 | 0.632079 | 0.204818 | 0.070* | |
C2 | 0.19729 (8) | 0.3763 (2) | 0.20527 (9) | 0.0495 (4) | |
C3 | 0.16531 (11) | 0.6908 (3) | 0.12232 (11) | 0.0738 (6) | |
H3 | 0.175939 | 0.823402 | 0.105522 | 0.089* | |
C4 | 0.10245 (12) | 0.6093 (4) | 0.08846 (12) | 0.0826 (6) | |
H4 | 0.070570 | 0.687627 | 0.049082 | 0.099* | |
C5 | 0.08647 (10) | 0.4138 (4) | 0.11232 (12) | 0.0785 (6) | |
H5 | 0.043669 | 0.360337 | 0.089719 | 0.094* | |
C6 | 0.13366 (9) | 0.2962 (3) | 0.16968 (10) | 0.0616 (4) | |
H6 | 0.122890 | 0.162162 | 0.184765 | 0.074* | |
C7 | 0.37944 (10) | −0.0410 (3) | 0.26118 (12) | 0.0714 (5) | |
H7 | 0.338362 | −0.008307 | 0.223342 | 0.086* | |
C8 | 0.41433 (11) | −0.2150 (3) | 0.24598 (14) | 0.0798 (6) | |
H8 | 0.396471 | −0.299188 | 0.198079 | 0.096* | |
C9 | 0.47493 (11) | −0.2648 (3) | 0.30065 (14) | 0.0789 (6) | |
H9 | 0.497450 | −0.385144 | 0.291138 | 0.095* | |
C10 | 0.50228 (11) | −0.1372 (4) | 0.36932 (13) | 0.0816 (6) | |
H10 | 0.544155 | −0.168646 | 0.405455 | 0.098* | |
C11 | 0.46834 (9) | 0.0374 (3) | 0.38542 (11) | 0.0684 (5) | |
H11 | 0.487764 | 0.123857 | 0.431993 | 0.082* | |
C12 | 0.40534 (8) | 0.0861 (3) | 0.33289 (10) | 0.0547 (4) | |
C13 | 0.36878 (9) | 0.2643 (3) | 0.35482 (9) | 0.0541 (4) | |
C14 | 0.30514 (8) | 0.3394 (2) | 0.32797 (9) | 0.0496 (4) | |
C15 | 0.24688 (8) | 0.2423 (2) | 0.26518 (9) | 0.0487 (4) | |
C16 | 0.30221 (9) | 0.5239 (2) | 0.37966 (9) | 0.0519 (4) | |
C17 | 0.36975 (9) | 0.5505 (3) | 0.43806 (11) | 0.0591 (4) | |
C18 | 0.20589 (9) | 0.9389 (3) | 0.42466 (9) | 0.0526 (4) | |
C19 | 0.21248 (8) | 1.1297 (3) | 0.47072 (9) | 0.0541 (4) | |
C20 | 0.16058 (10) | 1.2723 (3) | 0.45749 (11) | 0.0611 (5) | |
H20 | 0.165872 | 1.397959 | 0.488098 | 0.073* | |
C21 | 0.10175 (10) | 1.2270 (3) | 0.39934 (11) | 0.0620 (5) | |
C22 | 0.09279 (9) | 1.0401 (3) | 0.35364 (11) | 0.0663 (5) | |
H22 | 0.052003 | 1.010889 | 0.314458 | 0.080* | |
C23 | 0.14385 (9) | 0.8990 (3) | 0.36622 (10) | 0.0601 (4) | |
H23 | 0.137415 | 0.773540 | 0.335401 | 0.072* | |
N1 | 0.24959 (7) | 0.6356 (2) | 0.37783 (8) | 0.0534 (3) | |
N3 | 0.04722 (10) | 1.3806 (3) | 0.38399 (13) | 0.0822 (5) | |
N4 | 0.27400 (8) | 1.1906 (3) | 0.53243 (9) | 0.0657 (4) | |
O1 | 0.23927 (6) | 0.05224 (18) | 0.26464 (7) | 0.0636 (3) | |
O2 | 0.40819 (6) | 0.38975 (19) | 0.42049 (7) | 0.0630 (3) | |
O3 | 0.39113 (6) | 0.6791 (2) | 0.49284 (8) | 0.0774 (4) | |
O4 | −0.00184 (9) | 1.3482 (3) | 0.32419 (12) | 0.1127 (6) | |
O5 | 0.05355 (10) | 1.5319 (3) | 0.43157 (14) | 0.1261 (7) | |
O6 | 0.27748 (8) | 1.3652 (2) | 0.56528 (9) | 0.0900 (4) | |
O7 | 0.32091 (7) | 1.0674 (3) | 0.54951 (9) | 0.0941 (5) | |
H25 | 0.2963 (10) | 0.827 (3) | 0.4674 (12) | 0.074 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.0586 (10) | 0.0590 (9) | 0.0480 (7) | −0.0054 (8) | 0.0053 (7) | −0.0087 (7) |
C1 | 0.0701 (11) | 0.0548 (10) | 0.0470 (8) | −0.0028 (9) | 0.0087 (8) | −0.0032 (8) |
C2 | 0.0511 (10) | 0.0527 (9) | 0.0431 (8) | −0.0033 (8) | 0.0098 (7) | −0.0047 (7) |
C3 | 0.1018 (17) | 0.0596 (11) | 0.0551 (10) | 0.0135 (11) | 0.0117 (11) | 0.0042 (9) |
C4 | 0.0831 (16) | 0.0984 (17) | 0.0576 (11) | 0.0325 (13) | 0.0029 (10) | 0.0014 (11) |
C5 | 0.0558 (12) | 0.1085 (17) | 0.0647 (11) | 0.0069 (12) | 0.0041 (9) | −0.0059 (12) |
C6 | 0.0547 (11) | 0.0723 (12) | 0.0559 (9) | −0.0058 (9) | 0.0110 (8) | −0.0060 (8) |
C7 | 0.0543 (11) | 0.0804 (13) | 0.0734 (12) | 0.0042 (10) | 0.0059 (9) | −0.0139 (10) |
C8 | 0.0705 (14) | 0.0788 (14) | 0.0918 (14) | −0.0030 (11) | 0.0245 (12) | −0.0223 (11) |
C9 | 0.0775 (15) | 0.0734 (13) | 0.0930 (14) | 0.0137 (11) | 0.0348 (12) | 0.0041 (12) |
C10 | 0.0689 (13) | 0.0996 (16) | 0.0738 (12) | 0.0259 (12) | 0.0145 (10) | 0.0118 (12) |
C11 | 0.0615 (12) | 0.0827 (13) | 0.0570 (10) | 0.0075 (10) | 0.0082 (9) | 0.0017 (9) |
C12 | 0.0530 (10) | 0.0575 (10) | 0.0514 (9) | 0.0002 (8) | 0.0096 (8) | 0.0045 (8) |
C13 | 0.0563 (11) | 0.0573 (10) | 0.0439 (8) | −0.0070 (8) | 0.0049 (7) | 0.0013 (7) |
C14 | 0.0528 (10) | 0.0480 (9) | 0.0449 (8) | −0.0044 (8) | 0.0073 (7) | 0.0022 (7) |
C15 | 0.0512 (10) | 0.0480 (10) | 0.0475 (8) | −0.0062 (8) | 0.0139 (7) | −0.0019 (7) |
C16 | 0.0559 (10) | 0.0512 (9) | 0.0459 (8) | −0.0059 (8) | 0.0083 (7) | 0.0000 (7) |
C17 | 0.0594 (11) | 0.0623 (11) | 0.0521 (9) | −0.0070 (9) | 0.0081 (8) | −0.0053 (8) |
C18 | 0.0572 (10) | 0.0563 (10) | 0.0441 (8) | −0.0042 (8) | 0.0128 (7) | −0.0004 (7) |
C19 | 0.0589 (10) | 0.0588 (10) | 0.0434 (8) | −0.0087 (9) | 0.0113 (7) | −0.0025 (8) |
C20 | 0.0741 (13) | 0.0566 (10) | 0.0558 (9) | −0.0038 (10) | 0.0228 (9) | −0.0001 (8) |
C21 | 0.0660 (12) | 0.0637 (11) | 0.0584 (10) | 0.0040 (9) | 0.0199 (9) | 0.0085 (9) |
C22 | 0.0582 (11) | 0.0852 (13) | 0.0530 (9) | −0.0068 (10) | 0.0103 (8) | 0.0019 (9) |
C23 | 0.0592 (11) | 0.0653 (11) | 0.0532 (9) | −0.0068 (9) | 0.0101 (8) | −0.0086 (8) |
N1 | 0.0612 (9) | 0.0501 (8) | 0.0468 (7) | −0.0068 (7) | 0.0105 (6) | −0.0050 (6) |
N3 | 0.0786 (13) | 0.0811 (13) | 0.0892 (12) | 0.0119 (11) | 0.0261 (10) | 0.0214 (11) |
N4 | 0.0695 (11) | 0.0699 (11) | 0.0560 (8) | −0.0101 (9) | 0.0136 (8) | −0.0116 (8) |
O1 | 0.0653 (8) | 0.0467 (7) | 0.0760 (7) | −0.0090 (6) | 0.0136 (6) | 0.0004 (6) |
O2 | 0.0558 (7) | 0.0680 (8) | 0.0564 (6) | −0.0023 (6) | −0.0008 (5) | −0.0081 (6) |
O3 | 0.0701 (8) | 0.0847 (9) | 0.0679 (7) | −0.0109 (7) | 0.0011 (6) | −0.0245 (7) |
O4 | 0.0866 (12) | 0.1288 (14) | 0.1116 (12) | 0.0244 (11) | 0.0059 (10) | 0.0299 (11) |
O5 | 0.1177 (15) | 0.0906 (12) | 0.1662 (18) | 0.0297 (11) | 0.0303 (13) | −0.0205 (12) |
O6 | 0.1058 (12) | 0.0720 (9) | 0.0814 (9) | −0.0141 (8) | 0.0054 (8) | −0.0272 (8) |
O7 | 0.0671 (9) | 0.1046 (11) | 0.0951 (10) | 0.0046 (9) | −0.0063 (8) | −0.0398 (9) |
N2—N1 | 1.3562 (18) | C12—C13 | 1.457 (2) |
N2—C18 | 1.362 (2) | C13—C14 | 1.362 (2) |
N2—H25 | 0.87 (2) | C13—O2 | 1.4007 (18) |
C1—C3 | 1.380 (2) | C14—C16 | 1.448 (2) |
C1—C2 | 1.388 (2) | C14—C15 | 1.489 (2) |
C1—H1 | 0.9300 | C15—O1 | 1.2196 (17) |
C2—C6 | 1.389 (2) | C16—N1 | 1.296 (2) |
C2—C15 | 1.479 (2) | C16—C17 | 1.475 (2) |
C3—C4 | 1.374 (3) | C17—O3 | 1.1972 (19) |
C3—H3 | 0.9300 | C17—O2 | 1.370 (2) |
C4—C5 | 1.368 (3) | C18—C23 | 1.401 (2) |
C4—H4 | 0.9300 | C18—C19 | 1.409 (2) |
C5—C6 | 1.375 (3) | C19—C20 | 1.380 (2) |
C5—H5 | 0.9300 | C19—N4 | 1.447 (2) |
C6—H6 | 0.9300 | C20—C21 | 1.357 (2) |
C7—C8 | 1.379 (3) | C20—H20 | 0.9300 |
C7—C12 | 1.393 (2) | C21—C22 | 1.384 (2) |
C7—H7 | 0.9300 | C21—N3 | 1.465 (2) |
C8—C9 | 1.367 (3) | C22—C23 | 1.362 (2) |
C8—H8 | 0.9300 | C22—H22 | 0.9300 |
C9—C10 | 1.366 (3) | C23—H23 | 0.9300 |
C9—H9 | 0.9300 | N3—O5 | 1.214 (2) |
C10—C11 | 1.375 (3) | N3—O4 | 1.218 (2) |
C10—H10 | 0.9300 | N4—O7 | 1.2230 (19) |
C11—C12 | 1.390 (2) | N4—O6 | 1.2239 (18) |
C11—H11 | 0.9300 | ||
N1—N2—C18 | 118.69 (14) | C14—C13—C12 | 135.91 (15) |
N1—N2—H25 | 119.5 (13) | O2—C13—C12 | 112.81 (14) |
C18—N2—H25 | 121.0 (13) | C13—C14—C16 | 106.62 (14) |
C3—C1—C2 | 120.12 (17) | C13—C14—C15 | 127.89 (14) |
C3—C1—H1 | 119.9 | C16—C14—C15 | 125.17 (15) |
C2—C1—H1 | 119.9 | O1—C15—C2 | 120.07 (14) |
C1—C2—C6 | 118.92 (15) | O1—C15—C14 | 119.81 (14) |
C1—C2—C15 | 122.50 (14) | C2—C15—C14 | 120.09 (13) |
C6—C2—C15 | 118.55 (15) | N1—C16—C14 | 126.40 (14) |
C4—C3—C1 | 120.01 (19) | N1—C16—C17 | 127.16 (15) |
C4—C3—H3 | 120.0 | C14—C16—C17 | 106.34 (15) |
C1—C3—H3 | 120.0 | O3—C17—O2 | 122.55 (16) |
C5—C4—C3 | 120.44 (19) | O3—C17—C16 | 130.62 (17) |
C5—C4—H4 | 119.8 | O2—C17—C16 | 106.82 (14) |
C3—C4—H4 | 119.8 | N2—C18—C23 | 120.38 (15) |
C4—C5—C6 | 120.03 (19) | N2—C18—C19 | 122.67 (15) |
C4—C5—H5 | 120.0 | C23—C18—C19 | 116.92 (16) |
C6—C5—H5 | 120.0 | C20—C19—C18 | 121.43 (15) |
C5—C6—C2 | 120.47 (18) | C20—C19—N4 | 116.10 (15) |
C5—C6—H6 | 119.8 | C18—C19—N4 | 122.44 (16) |
C2—C6—H6 | 119.8 | C21—C20—C19 | 119.29 (16) |
C8—C7—C12 | 120.40 (18) | C21—C20—H20 | 120.4 |
C8—C7—H7 | 119.8 | C19—C20—H20 | 120.4 |
C12—C7—H7 | 119.8 | C20—C21—C22 | 121.18 (17) |
C9—C8—C7 | 120.61 (19) | C20—C21—N3 | 119.20 (18) |
C9—C8—H8 | 119.7 | C22—C21—N3 | 119.61 (18) |
C7—C8—H8 | 119.7 | C23—C22—C21 | 119.83 (17) |
C10—C9—C8 | 119.74 (19) | C23—C22—H22 | 120.1 |
C10—C9—H9 | 120.1 | C21—C22—H22 | 120.1 |
C8—C9—H9 | 120.1 | C22—C23—C18 | 121.34 (16) |
C9—C10—C11 | 120.49 (19) | C22—C23—H23 | 119.3 |
C9—C10—H10 | 119.8 | C18—C23—H23 | 119.3 |
C11—C10—H10 | 119.8 | C16—N1—N2 | 117.12 (14) |
C10—C11—C12 | 120.77 (18) | O5—N3—O4 | 124.0 (2) |
C10—C11—H11 | 119.6 | O5—N3—C21 | 118.2 (2) |
C12—C11—H11 | 119.6 | O4—N3—C21 | 117.8 (2) |
C11—C12—C7 | 117.88 (17) | O7—N4—O6 | 122.19 (16) |
C11—C12—C13 | 119.49 (15) | O7—N4—C19 | 119.14 (15) |
C7—C12—C13 | 122.62 (15) | O6—N4—C19 | 118.67 (17) |
C14—C13—O2 | 111.27 (14) | C17—O2—C13 | 108.93 (13) |
C3—C1—C2—C6 | −0.5 (2) | C15—C14—C16—C17 | 174.56 (14) |
C3—C1—C2—C15 | 177.30 (15) | N1—C16—C17—O3 | −2.5 (3) |
C2—C1—C3—C4 | 1.1 (3) | C14—C16—C17—O3 | −179.04 (18) |
C1—C3—C4—C5 | −0.4 (3) | N1—C16—C17—O2 | 176.23 (15) |
C3—C4—C5—C6 | −0.8 (3) | C14—C16—C17—O2 | −0.31 (17) |
C4—C5—C6—C2 | 1.4 (3) | N1—N2—C18—C23 | 7.3 (2) |
C1—C2—C6—C5 | −0.7 (2) | N1—N2—C18—C19 | −170.66 (14) |
C15—C2—C6—C5 | −178.63 (15) | N2—C18—C19—C20 | 176.72 (15) |
C12—C7—C8—C9 | −0.3 (3) | C23—C18—C19—C20 | −1.3 (2) |
C7—C8—C9—C10 | −2.3 (3) | N2—C18—C19—N4 | −1.5 (2) |
C8—C9—C10—C11 | 2.1 (3) | C23—C18—C19—N4 | −179.50 (14) |
C9—C10—C11—C12 | 0.8 (3) | C18—C19—C20—C21 | 0.5 (2) |
C10—C11—C12—C7 | −3.3 (3) | N4—C19—C20—C21 | 178.85 (14) |
C10—C11—C12—C13 | 176.04 (17) | C19—C20—C21—C22 | 0.5 (3) |
C8—C7—C12—C11 | 3.1 (3) | C19—C20—C21—N3 | −178.66 (14) |
C8—C7—C12—C13 | −176.23 (17) | C20—C21—C22—C23 | −0.7 (3) |
C11—C12—C13—C14 | −168.59 (18) | N3—C21—C22—C23 | 178.48 (15) |
C7—C12—C13—C14 | 10.7 (3) | C21—C22—C23—C18 | −0.2 (3) |
C11—C12—C13—O2 | 10.6 (2) | N2—C18—C23—C22 | −176.95 (15) |
C7—C12—C13—O2 | −170.12 (15) | C19—C18—C23—C22 | 1.1 (2) |
O2—C13—C14—C16 | −0.67 (17) | C14—C16—N1—N2 | 178.37 (14) |
C12—C13—C14—C16 | 178.51 (17) | C17—C16—N1—N2 | 2.5 (2) |
O2—C13—C14—C15 | −174.42 (14) | C18—N2—N1—C16 | 170.45 (14) |
C12—C13—C14—C15 | 4.8 (3) | C20—C21—N3—O5 | −9.0 (3) |
C1—C2—C15—O1 | −157.59 (15) | C22—C21—N3—O5 | 171.81 (19) |
C6—C2—C15—O1 | 20.2 (2) | C20—C21—N3—O4 | 171.09 (17) |
C1—C2—C15—C14 | 24.2 (2) | C22—C21—N3—O4 | −8.1 (3) |
C6—C2—C15—C14 | −158.02 (14) | C20—C19—N4—O7 | 177.08 (16) |
C13—C14—C15—O1 | 38.1 (2) | C18—C19—N4—O7 | −4.6 (2) |
C16—C14—C15—O1 | −134.56 (16) | C20—C19—N4—O6 | −3.5 (2) |
C13—C14—C15—C2 | −143.63 (16) | C18—C19—N4—O6 | 174.77 (15) |
C16—C14—C15—C2 | 43.7 (2) | O3—C17—O2—C13 | 178.77 (16) |
C13—C14—C16—N1 | −175.98 (15) | C16—C17—O2—C13 | −0.08 (17) |
C15—C14—C16—N1 | −2.0 (2) | C14—C13—O2—C17 | 0.49 (18) |
C13—C14—C16—C17 | 0.59 (17) | C12—C13—O2—C17 | −178.90 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O5i | 0.93 | 2.55 | 3.352 (3) | 144 |
C22—H22···O4ii | 0.93 | 2.43 | 3.218 (2) | 143 |
N2—H25···O7 | 0.87 (2) | 1.997 (19) | 2.6106 (19) | 126.8 (16) |
N2—H25···O3 | 0.87 (2) | 2.118 (19) | 2.795 (2) | 134.5 (17) |
Symmetry codes: (i) x, −y+5/2, z−1/2; (ii) −x, y−1/2, −z+1/2. |
References
Akçamur, Y. & Kollenz, G. (1987). Org. Prep. Proced. Int. 19, 52–56. Google Scholar
Akçamur, Y., Penn, G., Ziegler, E., Sterk, H., Kollenz, G., Peters, K., Peters, E. M. & von Schnering, H. G. (1986). Monatsh. Chem. 117, 231–245. CSD CrossRef CAS Web of Science Google Scholar
Altural, B., Akçamur, Y., Sarıpınar, E., Yıldırım, I. & Kollenz, G. (1989). Monatsh. Chem. 120, 1015–1020. CAS Google Scholar
Becke, A. D. (1993). J. Chem. Phys. 98, 5648–5652. CrossRef CAS Web of Science Google Scholar
Dennington, R., Keith, T. & Millam, J. (2007). GaussView4.1. Semichem, Shawnee Mission, Kan, USA. Google Scholar
El-Nabi, H. A. A. & Kollenz, G. (1997). Monatsh. Chem. 128, 381–387. Google Scholar
Fabian, W. M. F. & Kollenz, G. (1994). J. Mol. Struct. Theochem, 313, 219–230. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., et al. (2004). Gaussian 03. Wallingford, Conn, USA. Google Scholar
Fulloon, B., El-Nabi, H. A. A., Kollenz, G. & Wentrup, C. (1995). Tetrahedron Lett. 36, 6547–6550. CAS Google Scholar
Fun, H.-K., Chantrapromma, S., Ruanwas, P., Kobkeatthawin, T. & Chidan Kumar, C. S. (2014). Acta Cryst. E70, o89–o90. CSD CrossRef IUCr Journals Google Scholar
Kollenz, G., Heilmayer, W., Kappe, C. O., Wallfisch, B. & Wentrup, C. (2001). Croat. Chem. Acta, 74, 815–823. CAS Google Scholar
Kollenz, G., Ott, W., Ziegler, E., Peters, E. M., Peters, K., von Schnering, H. G., Formáček, V. & Quast, H. (1984a). Liebigs Ann. Chem. pp. 1137–1164. Google Scholar
Kollenz, G., Penn, G., Dolenz, G., Akçamur, Y., Peters, K., Peters, E. M. & von Schnering, H. G. (1984b). Chem. Ber. 117, 1299–1309. CAS Google Scholar
Kollenz, G., Penn, G., Ott, W., Peters, K., Peters, E. M. & von Schnering, H. G. (1987). Heterocycles, 26, 625–631. CAS Google Scholar
Kollenz, G., Ziegler, E., Ott, W. & Igel, H. (1976). Z. Naturforsch. Teil B, 31, 1511–1514. Google Scholar
Kollenz, G., Ziegler, E., Ott, W. & Kriwetz, G. (1977). Z. Naturforsch. Teil B, 32, 701–701. Google Scholar
Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B. 37, 785–789. CAS Google Scholar
Mague, J. T., Mohamed, S. K., Akkurt, M., El-Kashef, H. M. S. & Albayati, M. R. (2014). Acta Cryst. E70, o1246–o1247. CSD CrossRef IUCr Journals Google Scholar
Peng, C., Ayala, P. Y., Schlegel, H. B. & Frisch, M. J. (1996). J. Comput. Chem. 17, 49–56. CrossRef CAS Google Scholar
Saalfrank, R. W., Lutz, T., Hömer, B., Gündel, J., Peters, K. & von Schnering, H. G. (1991). Chem. Ber. 124, 2289–2295. CAS Google Scholar
Sarıpınar, E., Güzel, Y., Önal, Z., Ilhan, I. Ö. & Akçamur, Y. (2000). J. Chem. Soc. Pak. 22, 308–317. Google Scholar
Schlegel, H. B. (1982). J. Comput. Chem. 3, 214–218. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany (2002). Google Scholar
Wong, M. W. & Wentrup, C. (1994). J. Org. Chem. 59, 5279–5285. CAS Google Scholar
Ziegler, E., Eder, M., Belegratis, C. & Prewedourakis, E. (1967). Monatsh. Chem. 98, 2249–2251. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.