research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (aceto­nitrile-κN)iodido­(2-(naphthalen-1-yl)-6-{1-[(2,4,6-tri­methyl­phen­yl)imino]ethyl}­pyridine-κ2N,N′)copper(I)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science for Women, University of Baghdad, Iraq, and bDepartment of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, England
*Correspondence e-mail: nadaaj_chem@csw.uobaghdad.edu.iq, gas8@leicester.ac.uk

Edited by M. Weil, Vienna University of Technology, Austria (Received 11 November 2016; accepted 22 November 2016; online 29 November 2016)

In the mononuclear title complex, [CuI(C2H3N)(C26H24N2)], the CuI ion has a distorted tetra­hedral coordination environment, defined by two N atoms of the chelating 2-(naphthalen-1-yl)-6-[(2,4,6-tri­methyl­phen­yl)imino]­pyridine ligand, one N atom of an aceto­nitrile ligand and one iodide ligand. Within the complex, there are weak intra­molecular C—H⋯N hydrogen bonds, while weak inter­molecular C—H⋯I inter­actions between complex mol­ecules, help to facilitate a three-dimensional network.

1. Chemical context

Coordination complexes of copper(I) halides bearing a variety of co-ligands have been of inter­est in coordination chemistry (Karahan et al., 2015[Karahan, A., Karabulut, S., Dal, H., Kurtaran, R. & Leszczynski, J. (2015). J. Mol. Struct. 1093, 1-7.]; Dennehy et al., 2011[Dennehy, M., Quinzani, O. V., Mandolesi, S. D. & Burrow, R. A. (2011). J. Mol. Struct. 998, 119-125.]; Oshio et al., 1996[Oshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472-479.]; Seward et al., 2003[Seward, C., Chan, J., Song, D. & Wang, S. (2003). Inorg. Chem. 42, 1112-1120.]) due, in some measure, to their preparative accessibility, structural variability, magnetic properties (Oshio et al., 1996[Oshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472-479.]) and their relevance to biological or medicinal applications (Corey et al., 1987[Corey, E. J., Wess, G., Xiang, Y. B. & Singh, A. K. (1987). J. Am. Chem. Soc. 109, 4717-4718.]; Dias et al., 2006[Dias, H. V. R., Batdorf, K. H., Fianchini, M., Diyabalanage, H. V. K., Carnahan, S., Mulcahy, R., Rabiee, A., Nelson, K. & van Waasbergen, L. G. (2006). J. Inorg. Biochem. 100, 158-160.]). The role of copper(I) is evident in several biologically important reactions, such as a di­oxy­gen carrier and models for several enzymes (Krupanidhi et al., 2008[Krupanidhi, S., Sreekumar, A. & Sanjeevi, C. B. (2008). Indian J. Med. Res. 128, 448-461.]). Elsewhere, these compounds have been reported to be luminescent (Aslanidis et al., 2010[Aslanidis, P., Cox, P. J. & Tsipis, A. C. (2010). Dalton Trans. pp. 10238-10248.]; Gallego et al., 2012[Gallego, A., Castillo, O., Gómez-García, C., Zamora, F. & Delgado, S. (2012). Inorg. Chem. 51, 718-727.]) and exhibit corrosion inhibit­ing properties (Tian et al., 2004[Tian, Y.-Q., Xu, H.-J., Weng, L.-H., Chen, Z.-X., Zhao, D.-Y. & You, X.-Z. (2004). Eur. J. Inorg. Chem. pp. 1813-1816.]). The structures of metal complexes bearing naphthyl-substituted N,N-pyridine-alkyl­amides were reported by Armitage et al. (2015[Armitage, A. P., Boyron, O., Champouret, Y. D. M., Patel, M., Singh, K. & Solan, G. A. (2015). Catalysts, 5, 1425-1444.]) and related structures were presented by Wattanakanjana et al. (2014[Wattanakanjana, Y., Nimthong, A., Mokakul, J. & Sukpornsawan, P. (2014). Acta Cryst. E70, m219.]). Cotton et al. (1999[Cotton, A. F., Murillo, C. A., Bochmann, M. & Wilkinson, G. (1999). In Advanced Inorganic Chemistry, 6th ed. New York: Wiley.]) highlighted details of the affinity of nitrile ligands for CuI ions. Within this context, we report herein the crystal structure of the title complex, [CuI(C2H3N)(C26H24N2)].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title complex is shown in Fig. 1[link]. The CuI ion is coordinated by atoms N1 and N2 of the 2-(naphthalen-1-yl)-6-[(2,4,6-tri­methyl­phen­yl)imino]­pyridine ligand, by atom N3 of an aceto­nitrile ligand and by an iodide anion (I1), leading to a distorted tetra­hedral coordination environment. The two N atoms of the bidentate ligand chelate to CuI with similar Cu—N bond lengths [Cu1—N1 = 2.091 (4), Cu1—N2 = 2.085 (4) Å]. A comparable N,N′-binding has been observed in related structures with bis­[2-(2-pyrid­yl)eth­yl]amine ligands (Osako et al., 2001[Osako, T., Tachi, Y., Taki, M., Fukuzumi, S. & Itoh, S. (2001). Inorg. Chem. 40, 6604-6609.]). At 1.960 (5) Å, the Cu1—N3 distance is significantly shorter than the Cu—Npyridine and Cu—Nimine distances. The Cu1—I distance amounts to 2.5479 (9) Å. The N2—Cu1—N1 bite angle of the chelating ligand is 78.86 (18)°, while the N3—Cu—I angle between the monodentate aceto­nitrile and iodide ligands is closer to tetra­hedral, 112.74 (15)°. The naphthyl ring system is inclined by 58.20 (17)° to the central N=C(CH3)—pyridine moiety, whereas the tri­methyl­phenyl ring is almost perpendicular to the latter, at 84.8 (3)°. Within the complex, an intra­molecular C—H⋯N hydrogen-bonding inter­action is present, stabil­izing the mol­ecular conformation (Table 1[link], Fig. 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26B⋯N1 0.98 2.52 2.891 (8) 102
[Figure 1]
Figure 1
The mol­ecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. The C—H⋯N hydrogen bond is shown as a dashed line.

3. Supra­molecular features

In the crystal, weak C—H⋯I contacts involving a phenyl H atom [C16—H16B⋯Ii, 3.958 (6) Å, 152°; symmetry code: (i) x, y − 1, z] and a H atom of the aceto­nitrile methyl group [[C28—H28B⋯Ii, 4.010 (6) Å, 109°] link the complex mol­ecules, forming a three-dimensional network (Fig. 2[link]).

[Figure 2]
Figure 2
Part of the crystal structure, showing inter­molecular C—H⋯I inter­actions (dashed lines).

4. Synthesis and crystallization

All synthetic manipulations were performed under a nitro­gen atmosphere, using standard Schlenk techniques. Solvents were distilled under nitro­gen from appropriate drying agents and degassed prior to use (Armarego et al., 1996[Armarego, W. L. F. & Perrin, D. D. (1996). In Purification of Laboratory Chemicals, 4th ed. Oxford: Butterworth Heinemann.]). The 2-(naphthalen-1-yl)-6-[(2,4,6-tri­methyl­phen­yl)imino]­pyridine ligand (Lmes) was synthesized according to a modified literature procedure (Armitage et al., 2015[Armitage, A. P., Boyron, O., Champouret, Y. D. M., Patel, M., Singh, K. & Solan, G. A. (2015). Catalysts, 5, 1425-1444.]).

A solution of 0.0262 g of CuI (0.137 mmol) in 5 ml of aceto­nitrile was mixed with a solution of 0.05 g of Lmes (0.134 mmol) in 5 ml of aceto­nitrile. The mixture was stirred at room temperature for 24 h before evaporating the volatiles. The residue was extracted with n-hexane (5 × 3 ml). The extracts were combined and the solvent removed under reduced pressure to give a red solid which was recrystallized from aceto­nitrile solution. Yield: 54%. M.p. >253 K (decomp). 1H NMR (400 MHz, CD2Cl2): δ 1.88 [s, 6H, ortho- (CH3)2], 1.97 (s, 3H, N≡CCH3), 2.16 (s, 3H, N=CCH3), 2.20 [s, 3H, para-(CH3)2], 6.84 (s, 2H, Mes-H), 7.39 (s, 1H, Nap-H), 7.45 (t, J 7.8, 2H, Nap-H/Py–H), 7.51 (s, 1H, Py–H), 7.73 (s, 1H, Py-H), 7.81 (s, 2H, Nap-H), 7.87 (d, J 3.7, 2H, Nap-H), 8.04 (s, 1H, Nap-H). IR νmax (solid)/cm−1 1620 (C=Nimine), 1555 (C=Npy). ESI MS: m/z 428 [M–I–MeCN]+.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were positioned geometrically, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C) for H atoms on Csp2 and 0.98 Å with Uiso(H) = 1.5Ueq(C) for H atoms on Csp3.

Table 2
Experimental details

Crystal data
Chemical formula [CuI(C2H3N)(C26H24N2)]
Mr 595.97
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 14.689 (3), 8.0775 (15), 21.861 (4)
β (°) 103.942 (3)
V3) 2517.4 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.11
Crystal size (mm) 0.25 × 0.07 × 0.03
 
Data collection
Diffractometer Bruker APEX 2000 CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.679, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 19143, 4936, 2757
Rint 0.125
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.085, 0.77
No. of reflections 4936
No. of parameters 303
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.13, −0.81
Computer programs: SMART and SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(Acetonitrile-κN)iodido(2-(naphthalen-1-yl)-6-{1-[(2,4,6-trimethylphenyl)imino]ethyl}pyridine-κ2N,N')copper(I) top
Crystal data top
[CuI(C2H3N)(C26H24N2)]F(000) = 1192
Mr = 595.97Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 639 reflections
a = 14.689 (3) Åθ = 2.9–23.2°
b = 8.0775 (15) ŵ = 2.11 mm1
c = 21.861 (4) ÅT = 150 K
β = 103.942 (3)°Needle, orange
V = 2517.4 (8) Å30.25 × 0.07 × 0.03 mm
Z = 4
Data collection top
Bruker APEX 2000 CCD area detector
diffractometer
4936 independent reflections
Radiation source: fine-focus sealed tube2757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
phi and ω scansθmax = 26.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1817
Tmin = 0.679, Tmax = 0.862k = 99
19143 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 0.77 w = 1/[σ2(Fo2) + (0.0178P)2]
where P = (Fo2 + 2Fc2)/3
4936 reflections(Δ/σ)max = 0.002
303 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.81 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.27041 (5)0.46133 (9)0.24724 (3)0.0280 (2)
I10.27321 (3)0.69329 (5)0.16873 (2)0.03325 (13)
N10.2948 (3)0.5389 (6)0.3410 (2)0.0241 (12)
N20.1440 (3)0.3972 (5)0.2685 (2)0.0196 (11)
N30.3532 (3)0.2768 (6)0.2390 (2)0.0307 (13)
C10.3799 (4)0.6189 (7)0.3735 (3)0.0241 (14)
C20.3847 (4)0.7897 (8)0.3723 (3)0.0277 (15)
C30.4709 (4)0.8651 (7)0.3999 (3)0.0309 (16)
H30.47550.98240.39960.037*
C40.5483 (4)0.7737 (8)0.4270 (3)0.0322 (16)
C50.5416 (4)0.6047 (8)0.4277 (3)0.0335 (16)
H50.59560.54120.44630.040*
C60.4569 (4)0.5231 (7)0.4015 (3)0.0293 (15)
C70.2277 (4)0.5153 (7)0.3683 (3)0.0245 (14)
C80.2289 (4)0.5595 (7)0.4358 (2)0.0293 (15)
H8A0.28920.61040.45600.044*
H8B0.22000.45900.45880.044*
H8C0.17810.63780.43630.044*
C90.1407 (4)0.4362 (7)0.3290 (3)0.0237 (14)
C100.0617 (4)0.4098 (7)0.3511 (3)0.0246 (14)
H100.06120.43890.39310.030*
C110.0174 (4)0.3404 (7)0.3115 (3)0.0260 (15)
H110.07230.31970.32600.031*
C120.0143 (4)0.3028 (7)0.2511 (3)0.0249 (14)
H120.06790.25690.22300.030*
C130.0668 (4)0.3312 (7)0.2308 (3)0.0224 (14)
C140.0726 (4)0.2803 (7)0.1655 (3)0.0193 (13)
C150.1401 (4)0.1717 (7)0.1593 (3)0.0281 (15)
H150.18650.13910.19560.034*
C160.1429 (4)0.1057 (7)0.0993 (3)0.0282 (15)
H160.19050.02950.09550.034*
C170.0766 (4)0.1533 (7)0.0478 (3)0.0303 (16)
H170.07810.10870.00790.036*
C180.0056 (4)0.2669 (7)0.0517 (3)0.0244 (15)
C190.0043 (4)0.3361 (7)0.1116 (3)0.0224 (14)
C200.0648 (4)0.4581 (7)0.1131 (3)0.0266 (15)
H200.06710.50700.15220.032*
C210.1273 (4)0.5060 (7)0.0600 (3)0.0305 (16)
H210.17120.59060.06260.037*
C220.1293 (4)0.4334 (8)0.0006 (3)0.0337 (16)
H220.17540.46440.03610.040*
C230.0625 (4)0.3175 (7)0.0021 (3)0.0294 (15)
H230.06200.26930.04170.035*
C240.3003 (4)0.8937 (7)0.3427 (3)0.0347 (17)
H24A0.27470.85720.29920.052*
H24B0.31891.01020.34280.052*
H24C0.25240.88110.36680.052*
C250.6418 (4)0.8592 (8)0.4547 (3)0.051 (2)
H25A0.63560.93140.48950.076*
H25B0.65980.92550.42200.076*
H25C0.69010.77550.47040.076*
C260.4524 (4)0.3376 (7)0.4039 (3)0.0379 (17)
H26A0.51390.29100.40370.057*
H26B0.40550.29700.36720.057*
H26C0.43470.30360.44260.057*
C270.4029 (4)0.1710 (8)0.2387 (3)0.0284 (15)
C280.4682 (4)0.0349 (7)0.2396 (3)0.0367 (17)
H28A0.50680.02000.28250.055*
H28B0.50880.06010.21120.055*
H28C0.43300.06700.22570.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0280 (4)0.0304 (5)0.0269 (4)0.0010 (4)0.0089 (4)0.0029 (4)
I10.0350 (2)0.0339 (3)0.0303 (2)0.0026 (2)0.00674 (18)0.0044 (2)
N10.024 (3)0.027 (3)0.021 (3)0.003 (2)0.002 (2)0.003 (2)
N20.018 (3)0.021 (3)0.018 (3)0.001 (2)0.000 (2)0.003 (2)
N30.025 (3)0.033 (3)0.037 (3)0.004 (3)0.012 (3)0.002 (3)
C10.022 (4)0.032 (4)0.017 (3)0.005 (3)0.002 (3)0.002 (3)
C20.038 (4)0.029 (4)0.017 (3)0.007 (3)0.009 (3)0.006 (3)
C30.040 (4)0.025 (4)0.028 (4)0.013 (3)0.008 (3)0.006 (3)
C40.024 (4)0.042 (5)0.028 (4)0.008 (3)0.001 (3)0.007 (3)
C50.033 (4)0.033 (4)0.028 (4)0.004 (3)0.004 (3)0.001 (3)
C60.036 (4)0.028 (4)0.022 (4)0.009 (3)0.003 (3)0.002 (3)
C70.029 (4)0.018 (3)0.025 (4)0.003 (3)0.005 (3)0.003 (3)
C80.018 (3)0.039 (4)0.030 (4)0.008 (3)0.005 (3)0.002 (3)
C90.027 (4)0.015 (3)0.027 (4)0.001 (3)0.003 (3)0.007 (3)
C100.029 (4)0.024 (4)0.024 (4)0.004 (3)0.012 (3)0.002 (3)
C110.021 (3)0.024 (4)0.037 (4)0.001 (3)0.016 (3)0.002 (3)
C120.018 (3)0.028 (4)0.029 (4)0.001 (3)0.006 (3)0.001 (3)
C130.021 (3)0.014 (3)0.030 (4)0.002 (3)0.002 (3)0.002 (3)
C140.014 (3)0.021 (3)0.023 (3)0.005 (3)0.004 (3)0.003 (3)
C150.022 (3)0.027 (4)0.033 (4)0.000 (3)0.001 (3)0.003 (3)
C160.026 (4)0.029 (4)0.034 (4)0.005 (3)0.014 (3)0.000 (3)
C170.034 (4)0.028 (4)0.031 (4)0.006 (3)0.011 (3)0.005 (3)
C180.021 (3)0.025 (4)0.026 (4)0.006 (3)0.002 (3)0.003 (3)
C190.024 (3)0.018 (4)0.025 (3)0.004 (3)0.006 (3)0.001 (3)
C200.027 (4)0.024 (4)0.026 (4)0.007 (3)0.003 (3)0.002 (3)
C210.023 (4)0.029 (4)0.038 (4)0.007 (3)0.004 (3)0.004 (3)
C220.031 (4)0.036 (4)0.029 (4)0.001 (3)0.001 (3)0.008 (3)
C230.034 (4)0.034 (4)0.020 (3)0.008 (3)0.007 (3)0.001 (3)
C240.038 (4)0.032 (4)0.037 (4)0.004 (3)0.014 (3)0.008 (3)
C250.041 (4)0.047 (5)0.054 (5)0.024 (4)0.008 (4)0.001 (4)
C260.042 (4)0.032 (4)0.034 (4)0.001 (3)0.002 (3)0.007 (3)
C270.024 (4)0.040 (4)0.022 (3)0.006 (3)0.006 (3)0.000 (3)
C280.035 (4)0.031 (4)0.046 (4)0.006 (3)0.014 (3)0.000 (3)
Geometric parameters (Å, º) top
Cu1—N31.960 (5)C13—C141.507 (7)
Cu1—N22.085 (4)C14—C151.355 (7)
Cu1—N12.091 (4)C14—C191.426 (7)
Cu1—I12.5479 (9)C15—C161.427 (7)
N1—C71.282 (7)C15—H150.9500
N1—C11.434 (6)C16—C171.354 (7)
N2—C131.342 (6)C16—H160.9500
N2—C91.372 (6)C17—C181.408 (7)
N3—C271.125 (7)C17—H170.9500
C1—C21.382 (7)C18—C231.409 (7)
C1—C61.386 (7)C18—C191.427 (7)
C2—C31.403 (7)C19—C201.420 (7)
C2—C241.508 (7)C20—C211.351 (7)
C3—C41.366 (8)C20—H200.9500
C3—H30.9500C21—C221.420 (8)
C4—C51.369 (8)C21—H210.9500
C4—C251.527 (7)C22—C231.368 (7)
C5—C61.402 (7)C22—H220.9500
C5—H50.9500C23—H230.9500
C6—C261.501 (7)C24—H24A0.9800
C7—C91.500 (7)C24—H24B0.9800
C7—C81.515 (7)C24—H24C0.9800
C8—H8A0.9800C25—H25A0.9800
C8—H8B0.9800C25—H25B0.9800
C8—H8C0.9800C25—H25C0.9800
C9—C101.377 (7)C26—H26A0.9800
C10—C111.389 (7)C26—H26B0.9800
C10—H100.9500C26—H26C0.9800
C11—C121.364 (7)C27—C281.456 (8)
C11—H110.9500C28—H28A0.9800
C12—C131.387 (7)C28—H28B0.9800
C12—H120.9500C28—H28C0.9800
N3—Cu1—N2115.94 (19)C15—C14—C19120.5 (5)
N3—Cu1—N1110.75 (19)C15—C14—C13118.8 (5)
N2—Cu1—N178.86 (18)C19—C14—C13120.5 (5)
N3—Cu1—I1112.74 (15)C14—C15—C16121.2 (5)
N2—Cu1—I1119.51 (12)C14—C15—H15119.4
N1—Cu1—I1114.43 (13)C16—C15—H15119.4
C7—N1—C1120.8 (5)C17—C16—C15118.9 (6)
C7—N1—Cu1116.2 (4)C17—C16—H16120.5
C1—N1—Cu1122.9 (4)C15—C16—H16120.5
C13—N2—C9117.5 (5)C16—C17—C18122.0 (6)
C13—N2—Cu1128.9 (4)C16—C17—H17119.0
C9—N2—Cu1113.5 (4)C18—C17—H17119.0
C27—N3—Cu1175.3 (5)C17—C18—C23121.7 (6)
C2—C1—C6121.7 (6)C17—C18—C19119.0 (5)
C2—C1—N1118.9 (5)C23—C18—C19119.2 (5)
C6—C1—N1119.2 (5)C20—C19—C14124.3 (5)
C1—C2—C3118.0 (6)C20—C19—C18117.5 (5)
C1—C2—C24121.6 (5)C14—C19—C18118.2 (5)
C3—C2—C24120.4 (6)C21—C20—C19121.4 (6)
C4—C3—C2121.5 (6)C21—C20—H20119.3
C4—C3—H3119.2C19—C20—H20119.3
C2—C3—H3119.2C20—C21—C22121.8 (6)
C3—C4—C5119.3 (6)C20—C21—H21119.1
C3—C4—C25120.2 (6)C22—C21—H21119.1
C5—C4—C25120.5 (6)C23—C22—C21117.8 (6)
C4—C5—C6121.6 (6)C23—C22—H22121.1
C4—C5—H5119.2C21—C22—H22121.1
C6—C5—H5119.2C22—C23—C18122.3 (6)
C1—C6—C5117.9 (6)C22—C23—H23118.8
C1—C6—C26122.3 (6)C18—C23—H23118.8
C5—C6—C26119.8 (6)C2—C24—H24A109.5
N1—C7—C9116.2 (5)C2—C24—H24B109.5
N1—C7—C8126.0 (5)H24A—C24—H24B109.5
C9—C7—C8117.8 (5)C2—C24—H24C109.5
C7—C8—H8A109.5H24A—C24—H24C109.5
C7—C8—H8B109.5H24B—C24—H24C109.5
H8A—C8—H8B109.5C4—C25—H25A109.5
C7—C8—H8C109.5C4—C25—H25B109.5
H8A—C8—H8C109.5H25A—C25—H25B109.5
H8B—C8—H8C109.5C4—C25—H25C109.5
N2—C9—C10122.0 (5)H25A—C25—H25C109.5
N2—C9—C7115.2 (5)H25B—C25—H25C109.5
C10—C9—C7122.7 (5)C6—C26—H26A109.5
C9—C10—C11119.6 (5)C6—C26—H26B109.5
C9—C10—H10120.2H26A—C26—H26B109.5
C11—C10—H10120.2C6—C26—H26C109.5
C12—C11—C10118.3 (5)H26A—C26—H26C109.5
C12—C11—H11120.8H26B—C26—H26C109.5
C10—C11—H11120.8N3—C27—C28178.7 (7)
C11—C12—C13120.2 (5)C27—C28—H28A109.5
C11—C12—H12119.9C27—C28—H28B109.5
C13—C12—H12119.9H28A—C28—H28B109.5
N2—C13—C12122.2 (5)C27—C28—H28C109.5
N2—C13—C14117.2 (5)H28A—C28—H28C109.5
C12—C13—C14120.5 (5)H28B—C28—H28C109.5
N3—Cu1—N1—C7113.7 (4)N1—C7—C9—N20.5 (7)
N2—Cu1—N1—C70.1 (4)C8—C7—C9—N2179.3 (5)
I1—Cu1—N1—C7117.6 (4)N1—C7—C9—C10177.1 (5)
N3—Cu1—N1—C168.3 (5)C8—C7—C9—C103.0 (8)
N2—Cu1—N1—C1178.0 (5)N2—C9—C10—C110.6 (8)
I1—Cu1—N1—C160.5 (4)C7—C9—C10—C11178.1 (5)
N3—Cu1—N2—C1374.9 (5)C9—C10—C11—C121.0 (8)
N1—Cu1—N2—C13177.3 (5)C10—C11—C12—C131.0 (9)
I1—Cu1—N2—C1365.3 (5)C9—N2—C13—C120.2 (8)
N3—Cu1—N2—C9108.0 (4)Cu1—N2—C13—C12176.7 (4)
N1—Cu1—N2—C90.2 (4)C9—N2—C13—C14176.8 (5)
I1—Cu1—N2—C9111.7 (3)Cu1—N2—C13—C146.3 (7)
C7—N1—C1—C286.8 (7)C11—C12—C13—N20.7 (9)
Cu1—N1—C1—C291.2 (6)C11—C12—C13—C14176.2 (5)
C7—N1—C1—C697.6 (7)N2—C13—C14—C1556.3 (7)
Cu1—N1—C1—C684.4 (6)C12—C13—C14—C15120.8 (6)
C6—C1—C2—C30.7 (9)N2—C13—C14—C19128.1 (5)
N1—C1—C2—C3174.8 (5)C12—C13—C14—C1954.8 (8)
C6—C1—C2—C24179.1 (5)C19—C14—C15—C162.4 (8)
N1—C1—C2—C245.4 (8)C13—C14—C15—C16173.3 (5)
C1—C2—C3—C40.2 (9)C14—C15—C16—C170.1 (9)
C24—C2—C3—C4180.0 (5)C15—C16—C17—C180.5 (9)
C2—C3—C4—C50.3 (9)C16—C17—C18—C23179.2 (6)
C2—C3—C4—C25178.0 (5)C16—C17—C18—C191.1 (8)
C3—C4—C5—C60.5 (10)C15—C14—C19—C20175.4 (5)
C25—C4—C5—C6178.8 (5)C13—C14—C19—C209.0 (8)
C2—C1—C6—C51.4 (9)C15—C14—C19—C183.9 (8)
N1—C1—C6—C5174.1 (5)C13—C14—C19—C18171.7 (5)
C2—C1—C6—C26179.1 (5)C17—C18—C19—C20176.1 (5)
N1—C1—C6—C265.4 (9)C23—C18—C19—C202.1 (8)
C4—C5—C6—C11.3 (9)C17—C18—C19—C143.2 (8)
C4—C5—C6—C26179.2 (6)C23—C18—C19—C14178.6 (5)
C1—N1—C7—C9177.8 (5)C14—C19—C20—C21179.7 (5)
Cu1—N1—C7—C90.3 (7)C18—C19—C20—C210.5 (8)
C1—N1—C7—C82.4 (9)C19—C20—C21—C222.1 (9)
Cu1—N1—C7—C8179.5 (4)C20—C21—C22—C233.0 (9)
C13—N2—C9—C100.2 (8)C21—C22—C23—C181.3 (9)
Cu1—N2—C9—C10177.2 (4)C17—C18—C23—C22176.9 (5)
C13—N2—C9—C7177.8 (5)C19—C18—C23—C221.2 (9)
Cu1—N2—C9—C70.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C26—H26B···N10.982.522.891 (8)102
 

Footnotes

Research Visitor at University of Leicester, UK.

Acknowledgements

The authors acknowledge the technical support given by the staff of the Department of Chemistry, University of Leicester. Special thanks to the postgraduate students Mona H. Alhalafi and Amina Isbilir for their constant support throughout the period of research.

References

First citationArmarego, W. L. F. & Perrin, D. D. (1996). In Purification of Laboratory Chemicals, 4th ed. Oxford: Butterworth Heinemann.  Google Scholar
First citationArmitage, A. P., Boyron, O., Champouret, Y. D. M., Patel, M., Singh, K. & Solan, G. A. (2015). Catalysts, 5, 1425–1444.  CAS Google Scholar
First citationAslanidis, P., Cox, P. J. & Tsipis, A. C. (2010). Dalton Trans. pp. 10238–10248.  Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorey, E. J., Wess, G., Xiang, Y. B. & Singh, A. K. (1987). J. Am. Chem. Soc. 109, 4717–4718.  CrossRef CAS Web of Science Google Scholar
First citationCotton, A. F., Murillo, C. A., Bochmann, M. & Wilkinson, G. (1999). In Advanced Inorganic Chemistry, 6th ed. New York: Wiley.  Google Scholar
First citationDennehy, M., Quinzani, O. V., Mandolesi, S. D. & Burrow, R. A. (2011). J. Mol. Struct. 998, 119–125.  Web of Science CSD CrossRef CAS Google Scholar
First citationDias, H. V. R., Batdorf, K. H., Fianchini, M., Diyabalanage, H. V. K., Carnahan, S., Mulcahy, R., Rabiee, A., Nelson, K. & van Waasbergen, L. G. (2006). J. Inorg. Biochem. 100, 158–160.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGallego, A., Castillo, O., Gómez-García, C., Zamora, F. & Delgado, S. (2012). Inorg. Chem. 51, 718–727.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKarahan, A., Karabulut, S., Dal, H., Kurtaran, R. & Leszczynski, J. (2015). J. Mol. Struct. 1093, 1–7.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrupanidhi, S., Sreekumar, A. & Sanjeevi, C. B. (2008). Indian J. Med. Res. 128, 448–461.  Web of Science PubMed CAS Google Scholar
First citationOsako, T., Tachi, Y., Taki, M., Fukuzumi, S. & Itoh, S. (2001). Inorg. Chem. 40, 6604–6609.  CAS Google Scholar
First citationOshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472–479.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSeward, C., Chan, J., Song, D. & Wang, S. (2003). Inorg. Chem. 42, 1112–1120.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Y.-Q., Xu, H.-J., Weng, L.-H., Chen, Z.-X., Zhao, D.-Y. & You, X.-Z. (2004). Eur. J. Inorg. Chem. pp. 1813–1816.  Web of Science CSD CrossRef Google Scholar
First citationWattanakanjana, Y., Nimthong, A., Mokakul, J. & Sukpornsawan, P. (2014). Acta Cryst. E70, m219.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds