research communications
κN)iodido(2-(naphthalen-1-yl)-6-{1-[(2,4,6-trimethylphenyl)imino]ethyl}pyridine-κ2N,N′)copper(I)
of (acetonitrile-aDepartment of Chemistry, College of Science for Women, University of Baghdad, Iraq, and bDepartment of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, England
*Correspondence e-mail: nadaaj_chem@csw.uobaghdad.edu.iq, gas8@leicester.ac.uk
In the mononuclear title complex, [CuI(C2H3N)(C26H24N2)], the CuI ion has a distorted tetrahedral coordination environment, defined by two N atoms of the chelating 2-(naphthalen-1-yl)-6-[(2,4,6-trimethylphenyl)imino]pyridine ligand, one N atom of an acetonitrile ligand and one iodide ligand. Within the complex, there are weak intramolecular C—H⋯N hydrogen bonds, while weak intermolecular C—H⋯I interactions between complex molecules, help to facilitate a three-dimensional network.
Keywords: crystal structure; copper(I) complex; 2-imino-6-(naphthalen-1-yl)pyridine; Schiff base; iodide; bidentate ligand.
CCDC reference: 1518571
1. Chemical context
Coordination complexes of copper(I) halides bearing a variety of co-ligands have been of interest in coordination chemistry (Karahan et al., 2015; Dennehy et al., 2011; Oshio et al., 1996; Seward et al., 2003) due, in some measure, to their preparative accessibility, structural variability, magnetic properties (Oshio et al., 1996) and their relevance to biological or medicinal applications (Corey et al., 1987; Dias et al., 2006). The role of copper(I) is evident in several biologically important reactions, such as a dioxygen carrier and models for several enzymes (Krupanidhi et al., 2008). Elsewhere, these compounds have been reported to be luminescent (Aslanidis et al., 2010; Gallego et al., 2012) and exhibit corrosion inhibiting properties (Tian et al., 2004). The structures of metal complexes bearing naphthyl-substituted N,N-pyridine-alkylamides were reported by Armitage et al. (2015) and related structures were presented by Wattanakanjana et al. (2014). Cotton et al. (1999) highlighted details of the affinity of nitrile ligands for CuI ions. Within this context, we report herein the of the title complex, [CuI(C2H3N)(C26H24N2)].
2. Structural commentary
The molecular structure of the title complex is shown in Fig. 1. The CuI ion is coordinated by atoms N1 and N2 of the 2-(naphthalen-1-yl)-6-[(2,4,6-trimethylphenyl)imino]pyridine ligand, by atom N3 of an acetonitrile ligand and by an iodide anion (I1), leading to a distorted tetrahedral coordination environment. The two N atoms of the bidentate ligand chelate to CuI with similar Cu—N bond lengths [Cu1—N1 = 2.091 (4), Cu1—N2 = 2.085 (4) Å]. A comparable N,N′-binding has been observed in related structures with bis[2-(2-pyridyl)ethyl]amine ligands (Osako et al., 2001). At 1.960 (5) Å, the Cu1—N3 distance is significantly shorter than the Cu—Npyridine and Cu—Nimine distances. The Cu1—I distance amounts to 2.5479 (9) Å. The N2—Cu1—N1 bite angle of the chelating ligand is 78.86 (18)°, while the N3—Cu—I angle between the monodentate acetonitrile and iodide ligands is closer to tetrahedral, 112.74 (15)°. The naphthyl ring system is inclined by 58.20 (17)° to the central N=C(CH3)—pyridine moiety, whereas the trimethylphenyl ring is almost perpendicular to the latter, at 84.8 (3)°. Within the complex, an intramolecular C—H⋯N hydrogen-bonding interaction is present, stabilizing the molecular conformation (Table 1, Fig. 1).
|
3. Supramolecular features
In the crystal, weak C—H⋯I contacts involving a phenyl H atom [C16—H16B⋯Ii, 3.958 (6) Å, 152°; symmetry code: (i) x, y − 1, z] and a H atom of the acetonitrile methyl group [[C28—H28B⋯Ii, 4.010 (6) Å, 109°] link the complex molecules, forming a three-dimensional network (Fig. 2).
4. Synthesis and crystallization
All synthetic manipulations were performed under a nitrogen atmosphere, using standard Schlenk techniques. Solvents were distilled under nitrogen from appropriate drying agents and degassed prior to use (Armarego et al., 1996). The 2-(naphthalen-1-yl)-6-[(2,4,6-trimethylphenyl)imino]pyridine ligand (Lmes) was synthesized according to a modified literature procedure (Armitage et al., 2015).
A solution of 0.0262 g of CuI (0.137 mmol) in 5 ml of acetonitrile was mixed with a solution of 0.05 g of Lmes (0.134 mmol) in 5 ml of acetonitrile. The mixture was stirred at room temperature for 24 h before evaporating the volatiles. The residue was extracted with n-hexane (5 × 3 ml). The extracts were combined and the solvent removed under reduced pressure to give a red solid which was recrystallized from acetonitrile solution. Yield: 54%. M.p. >253 K (decomp). 1H NMR (400 MHz, CD2Cl2): δ 1.88 [s, 6H, ortho- (CH3)2], 1.97 (s, 3H, N≡CCH3), 2.16 (s, 3H, N=CCH3), 2.20 [s, 3H, para-(CH3)2], 6.84 (s, 2H, Mes-H), 7.39 (s, 1H, Nap-H), 7.45 (t, J 7.8, 2H, Nap-H/Py–H), 7.51 (s, 1H, Py–H), 7.73 (s, 1H, Py-H), 7.81 (s, 2H, Nap-H), 7.87 (d, J 3.7, 2H, Nap-H), 8.04 (s, 1H, Nap-H). IR νmax (solid)/cm−1 1620 (C=Nimine), 1555 (C=Npy). ESI MS: m/z 428 [M–I–MeCN]+.
5. Refinement
Crystal data, data collection and structure . Hydrogen atoms were positioned geometrically, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C) for H atoms on Csp2 and 0.98 Å with Uiso(H) = 1.5Ueq(C) for H atoms on Csp3.
details are summarized in Table 2Supporting information
CCDC reference: 1518571
https://doi.org/10.1107/S2056989016018685/wm5341sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016018685/wm5341Isup2.hkl
Data collection: SMART (Bruker, 2001); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[CuI(C2H3N)(C26H24N2)] | F(000) = 1192 |
Mr = 595.97 | Dx = 1.572 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 639 reflections |
a = 14.689 (3) Å | θ = 2.9–23.2° |
b = 8.0775 (15) Å | µ = 2.11 mm−1 |
c = 21.861 (4) Å | T = 150 K |
β = 103.942 (3)° | Needle, orange |
V = 2517.4 (8) Å3 | 0.25 × 0.07 × 0.03 mm |
Z = 4 |
Bruker APEX 2000 CCD area detector diffractometer | 4936 independent reflections |
Radiation source: fine-focus sealed tube | 2757 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.125 |
phi and ω scans | θmax = 26.0°, θmin = 1.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −18→17 |
Tmin = 0.679, Tmax = 0.862 | k = −9→9 |
19143 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.085 | H-atom parameters constrained |
S = 0.77 | w = 1/[σ2(Fo2) + (0.0178P)2] where P = (Fo2 + 2Fc2)/3 |
4936 reflections | (Δ/σ)max = 0.002 |
303 parameters | Δρmax = 1.13 e Å−3 |
0 restraints | Δρmin = −0.81 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.27041 (5) | 0.46133 (9) | 0.24724 (3) | 0.0280 (2) | |
I1 | 0.27321 (3) | 0.69329 (5) | 0.16873 (2) | 0.03325 (13) | |
N1 | 0.2948 (3) | 0.5389 (6) | 0.3410 (2) | 0.0241 (12) | |
N2 | 0.1440 (3) | 0.3972 (5) | 0.2685 (2) | 0.0196 (11) | |
N3 | 0.3532 (3) | 0.2768 (6) | 0.2390 (2) | 0.0307 (13) | |
C1 | 0.3799 (4) | 0.6189 (7) | 0.3735 (3) | 0.0241 (14) | |
C2 | 0.3847 (4) | 0.7897 (8) | 0.3723 (3) | 0.0277 (15) | |
C3 | 0.4709 (4) | 0.8651 (7) | 0.3999 (3) | 0.0309 (16) | |
H3 | 0.4755 | 0.9824 | 0.3996 | 0.037* | |
C4 | 0.5483 (4) | 0.7737 (8) | 0.4270 (3) | 0.0322 (16) | |
C5 | 0.5416 (4) | 0.6047 (8) | 0.4277 (3) | 0.0335 (16) | |
H5 | 0.5956 | 0.5412 | 0.4463 | 0.040* | |
C6 | 0.4569 (4) | 0.5231 (7) | 0.4015 (3) | 0.0293 (15) | |
C7 | 0.2277 (4) | 0.5153 (7) | 0.3683 (3) | 0.0245 (14) | |
C8 | 0.2289 (4) | 0.5595 (7) | 0.4358 (2) | 0.0293 (15) | |
H8A | 0.2892 | 0.6104 | 0.4560 | 0.044* | |
H8B | 0.2200 | 0.4590 | 0.4588 | 0.044* | |
H8C | 0.1781 | 0.6378 | 0.4363 | 0.044* | |
C9 | 0.1407 (4) | 0.4362 (7) | 0.3290 (3) | 0.0237 (14) | |
C10 | 0.0617 (4) | 0.4098 (7) | 0.3511 (3) | 0.0246 (14) | |
H10 | 0.0612 | 0.4389 | 0.3931 | 0.030* | |
C11 | −0.0174 (4) | 0.3404 (7) | 0.3115 (3) | 0.0260 (15) | |
H11 | −0.0723 | 0.3197 | 0.3260 | 0.031* | |
C12 | −0.0143 (4) | 0.3028 (7) | 0.2511 (3) | 0.0249 (14) | |
H12 | −0.0679 | 0.2569 | 0.2230 | 0.030* | |
C13 | 0.0668 (4) | 0.3312 (7) | 0.2308 (3) | 0.0224 (14) | |
C14 | 0.0726 (4) | 0.2803 (7) | 0.1655 (3) | 0.0193 (13) | |
C15 | 0.1401 (4) | 0.1717 (7) | 0.1593 (3) | 0.0281 (15) | |
H15 | 0.1865 | 0.1391 | 0.1956 | 0.034* | |
C16 | 0.1429 (4) | 0.1057 (7) | 0.0993 (3) | 0.0282 (15) | |
H16 | 0.1905 | 0.0295 | 0.0955 | 0.034* | |
C17 | 0.0766 (4) | 0.1533 (7) | 0.0478 (3) | 0.0303 (16) | |
H17 | 0.0781 | 0.1087 | 0.0079 | 0.036* | |
C18 | 0.0056 (4) | 0.2669 (7) | 0.0517 (3) | 0.0244 (15) | |
C19 | 0.0043 (4) | 0.3361 (7) | 0.1116 (3) | 0.0224 (14) | |
C20 | −0.0648 (4) | 0.4581 (7) | 0.1131 (3) | 0.0266 (15) | |
H20 | −0.0671 | 0.5070 | 0.1522 | 0.032* | |
C21 | −0.1273 (4) | 0.5060 (7) | 0.0600 (3) | 0.0305 (16) | |
H21 | −0.1712 | 0.5906 | 0.0626 | 0.037* | |
C22 | −0.1293 (4) | 0.4334 (8) | 0.0006 (3) | 0.0337 (16) | |
H22 | −0.1754 | 0.4644 | −0.0361 | 0.040* | |
C23 | −0.0625 (4) | 0.3175 (7) | −0.0021 (3) | 0.0294 (15) | |
H23 | −0.0620 | 0.2693 | −0.0417 | 0.035* | |
C24 | 0.3003 (4) | 0.8937 (7) | 0.3427 (3) | 0.0347 (17) | |
H24A | 0.2747 | 0.8572 | 0.2992 | 0.052* | |
H24B | 0.3189 | 1.0102 | 0.3428 | 0.052* | |
H24C | 0.2524 | 0.8811 | 0.3668 | 0.052* | |
C25 | 0.6418 (4) | 0.8592 (8) | 0.4547 (3) | 0.051 (2) | |
H25A | 0.6356 | 0.9314 | 0.4895 | 0.076* | |
H25B | 0.6598 | 0.9255 | 0.4220 | 0.076* | |
H25C | 0.6901 | 0.7755 | 0.4704 | 0.076* | |
C26 | 0.4524 (4) | 0.3376 (7) | 0.4039 (3) | 0.0379 (17) | |
H26A | 0.5139 | 0.2910 | 0.4037 | 0.057* | |
H26B | 0.4055 | 0.2970 | 0.3672 | 0.057* | |
H26C | 0.4347 | 0.3036 | 0.4426 | 0.057* | |
C27 | 0.4029 (4) | 0.1710 (8) | 0.2387 (3) | 0.0284 (15) | |
C28 | 0.4682 (4) | 0.0349 (7) | 0.2396 (3) | 0.0367 (17) | |
H28A | 0.5068 | 0.0200 | 0.2825 | 0.055* | |
H28B | 0.5088 | 0.0601 | 0.2112 | 0.055* | |
H28C | 0.4330 | −0.0670 | 0.2257 | 0.055* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0280 (4) | 0.0304 (5) | 0.0269 (4) | −0.0010 (4) | 0.0089 (4) | −0.0029 (4) |
I1 | 0.0350 (2) | 0.0339 (3) | 0.0303 (2) | 0.0026 (2) | 0.00674 (18) | 0.0044 (2) |
N1 | 0.024 (3) | 0.027 (3) | 0.021 (3) | −0.003 (2) | 0.002 (2) | −0.003 (2) |
N2 | 0.018 (3) | 0.021 (3) | 0.018 (3) | 0.001 (2) | 0.000 (2) | 0.003 (2) |
N3 | 0.025 (3) | 0.033 (3) | 0.037 (3) | 0.004 (3) | 0.012 (3) | −0.002 (3) |
C1 | 0.022 (4) | 0.032 (4) | 0.017 (3) | −0.005 (3) | 0.002 (3) | −0.002 (3) |
C2 | 0.038 (4) | 0.029 (4) | 0.017 (3) | −0.007 (3) | 0.009 (3) | −0.006 (3) |
C3 | 0.040 (4) | 0.025 (4) | 0.028 (4) | −0.013 (3) | 0.008 (3) | −0.006 (3) |
C4 | 0.024 (4) | 0.042 (5) | 0.028 (4) | −0.008 (3) | 0.001 (3) | 0.007 (3) |
C5 | 0.033 (4) | 0.033 (4) | 0.028 (4) | −0.004 (3) | −0.004 (3) | −0.001 (3) |
C6 | 0.036 (4) | 0.028 (4) | 0.022 (4) | −0.009 (3) | 0.003 (3) | 0.002 (3) |
C7 | 0.029 (4) | 0.018 (3) | 0.025 (4) | −0.003 (3) | 0.005 (3) | −0.003 (3) |
C8 | 0.018 (3) | 0.039 (4) | 0.030 (4) | −0.008 (3) | 0.005 (3) | 0.002 (3) |
C9 | 0.027 (4) | 0.015 (3) | 0.027 (4) | −0.001 (3) | 0.003 (3) | 0.007 (3) |
C10 | 0.029 (4) | 0.024 (4) | 0.024 (4) | 0.004 (3) | 0.012 (3) | 0.002 (3) |
C11 | 0.021 (3) | 0.024 (4) | 0.037 (4) | −0.001 (3) | 0.016 (3) | 0.002 (3) |
C12 | 0.018 (3) | 0.028 (4) | 0.029 (4) | −0.001 (3) | 0.006 (3) | 0.001 (3) |
C13 | 0.021 (3) | 0.014 (3) | 0.030 (4) | 0.002 (3) | 0.002 (3) | −0.002 (3) |
C14 | 0.014 (3) | 0.021 (3) | 0.023 (3) | −0.005 (3) | 0.004 (3) | 0.003 (3) |
C15 | 0.022 (3) | 0.027 (4) | 0.033 (4) | 0.000 (3) | 0.001 (3) | 0.003 (3) |
C16 | 0.026 (4) | 0.029 (4) | 0.034 (4) | 0.005 (3) | 0.014 (3) | 0.000 (3) |
C17 | 0.034 (4) | 0.028 (4) | 0.031 (4) | −0.006 (3) | 0.011 (3) | −0.005 (3) |
C18 | 0.021 (3) | 0.025 (4) | 0.026 (4) | −0.006 (3) | 0.002 (3) | 0.003 (3) |
C19 | 0.024 (3) | 0.018 (4) | 0.025 (3) | −0.004 (3) | 0.006 (3) | −0.001 (3) |
C20 | 0.027 (4) | 0.024 (4) | 0.026 (4) | −0.007 (3) | 0.003 (3) | −0.002 (3) |
C21 | 0.023 (4) | 0.029 (4) | 0.038 (4) | 0.007 (3) | 0.004 (3) | 0.004 (3) |
C22 | 0.031 (4) | 0.036 (4) | 0.029 (4) | −0.001 (3) | −0.001 (3) | 0.008 (3) |
C23 | 0.034 (4) | 0.034 (4) | 0.020 (3) | −0.008 (3) | 0.007 (3) | −0.001 (3) |
C24 | 0.038 (4) | 0.032 (4) | 0.037 (4) | −0.004 (3) | 0.014 (3) | −0.008 (3) |
C25 | 0.041 (4) | 0.047 (5) | 0.054 (5) | −0.024 (4) | −0.008 (4) | 0.001 (4) |
C26 | 0.042 (4) | 0.032 (4) | 0.034 (4) | 0.001 (3) | −0.002 (3) | 0.007 (3) |
C27 | 0.024 (4) | 0.040 (4) | 0.022 (3) | −0.006 (3) | 0.006 (3) | 0.000 (3) |
C28 | 0.035 (4) | 0.031 (4) | 0.046 (4) | 0.006 (3) | 0.014 (3) | 0.000 (3) |
Cu1—N3 | 1.960 (5) | C13—C14 | 1.507 (7) |
Cu1—N2 | 2.085 (4) | C14—C15 | 1.355 (7) |
Cu1—N1 | 2.091 (4) | C14—C19 | 1.426 (7) |
Cu1—I1 | 2.5479 (9) | C15—C16 | 1.427 (7) |
N1—C7 | 1.282 (7) | C15—H15 | 0.9500 |
N1—C1 | 1.434 (6) | C16—C17 | 1.354 (7) |
N2—C13 | 1.342 (6) | C16—H16 | 0.9500 |
N2—C9 | 1.372 (6) | C17—C18 | 1.408 (7) |
N3—C27 | 1.125 (7) | C17—H17 | 0.9500 |
C1—C2 | 1.382 (7) | C18—C23 | 1.409 (7) |
C1—C6 | 1.386 (7) | C18—C19 | 1.427 (7) |
C2—C3 | 1.403 (7) | C19—C20 | 1.420 (7) |
C2—C24 | 1.508 (7) | C20—C21 | 1.351 (7) |
C3—C4 | 1.366 (8) | C20—H20 | 0.9500 |
C3—H3 | 0.9500 | C21—C22 | 1.420 (8) |
C4—C5 | 1.369 (8) | C21—H21 | 0.9500 |
C4—C25 | 1.527 (7) | C22—C23 | 1.368 (7) |
C5—C6 | 1.402 (7) | C22—H22 | 0.9500 |
C5—H5 | 0.9500 | C23—H23 | 0.9500 |
C6—C26 | 1.501 (7) | C24—H24A | 0.9800 |
C7—C9 | 1.500 (7) | C24—H24B | 0.9800 |
C7—C8 | 1.515 (7) | C24—H24C | 0.9800 |
C8—H8A | 0.9800 | C25—H25A | 0.9800 |
C8—H8B | 0.9800 | C25—H25B | 0.9800 |
C8—H8C | 0.9800 | C25—H25C | 0.9800 |
C9—C10 | 1.377 (7) | C26—H26A | 0.9800 |
C10—C11 | 1.389 (7) | C26—H26B | 0.9800 |
C10—H10 | 0.9500 | C26—H26C | 0.9800 |
C11—C12 | 1.364 (7) | C27—C28 | 1.456 (8) |
C11—H11 | 0.9500 | C28—H28A | 0.9800 |
C12—C13 | 1.387 (7) | C28—H28B | 0.9800 |
C12—H12 | 0.9500 | C28—H28C | 0.9800 |
N3—Cu1—N2 | 115.94 (19) | C15—C14—C19 | 120.5 (5) |
N3—Cu1—N1 | 110.75 (19) | C15—C14—C13 | 118.8 (5) |
N2—Cu1—N1 | 78.86 (18) | C19—C14—C13 | 120.5 (5) |
N3—Cu1—I1 | 112.74 (15) | C14—C15—C16 | 121.2 (5) |
N2—Cu1—I1 | 119.51 (12) | C14—C15—H15 | 119.4 |
N1—Cu1—I1 | 114.43 (13) | C16—C15—H15 | 119.4 |
C7—N1—C1 | 120.8 (5) | C17—C16—C15 | 118.9 (6) |
C7—N1—Cu1 | 116.2 (4) | C17—C16—H16 | 120.5 |
C1—N1—Cu1 | 122.9 (4) | C15—C16—H16 | 120.5 |
C13—N2—C9 | 117.5 (5) | C16—C17—C18 | 122.0 (6) |
C13—N2—Cu1 | 128.9 (4) | C16—C17—H17 | 119.0 |
C9—N2—Cu1 | 113.5 (4) | C18—C17—H17 | 119.0 |
C27—N3—Cu1 | 175.3 (5) | C17—C18—C23 | 121.7 (6) |
C2—C1—C6 | 121.7 (6) | C17—C18—C19 | 119.0 (5) |
C2—C1—N1 | 118.9 (5) | C23—C18—C19 | 119.2 (5) |
C6—C1—N1 | 119.2 (5) | C20—C19—C14 | 124.3 (5) |
C1—C2—C3 | 118.0 (6) | C20—C19—C18 | 117.5 (5) |
C1—C2—C24 | 121.6 (5) | C14—C19—C18 | 118.2 (5) |
C3—C2—C24 | 120.4 (6) | C21—C20—C19 | 121.4 (6) |
C4—C3—C2 | 121.5 (6) | C21—C20—H20 | 119.3 |
C4—C3—H3 | 119.2 | C19—C20—H20 | 119.3 |
C2—C3—H3 | 119.2 | C20—C21—C22 | 121.8 (6) |
C3—C4—C5 | 119.3 (6) | C20—C21—H21 | 119.1 |
C3—C4—C25 | 120.2 (6) | C22—C21—H21 | 119.1 |
C5—C4—C25 | 120.5 (6) | C23—C22—C21 | 117.8 (6) |
C4—C5—C6 | 121.6 (6) | C23—C22—H22 | 121.1 |
C4—C5—H5 | 119.2 | C21—C22—H22 | 121.1 |
C6—C5—H5 | 119.2 | C22—C23—C18 | 122.3 (6) |
C1—C6—C5 | 117.9 (6) | C22—C23—H23 | 118.8 |
C1—C6—C26 | 122.3 (6) | C18—C23—H23 | 118.8 |
C5—C6—C26 | 119.8 (6) | C2—C24—H24A | 109.5 |
N1—C7—C9 | 116.2 (5) | C2—C24—H24B | 109.5 |
N1—C7—C8 | 126.0 (5) | H24A—C24—H24B | 109.5 |
C9—C7—C8 | 117.8 (5) | C2—C24—H24C | 109.5 |
C7—C8—H8A | 109.5 | H24A—C24—H24C | 109.5 |
C7—C8—H8B | 109.5 | H24B—C24—H24C | 109.5 |
H8A—C8—H8B | 109.5 | C4—C25—H25A | 109.5 |
C7—C8—H8C | 109.5 | C4—C25—H25B | 109.5 |
H8A—C8—H8C | 109.5 | H25A—C25—H25B | 109.5 |
H8B—C8—H8C | 109.5 | C4—C25—H25C | 109.5 |
N2—C9—C10 | 122.0 (5) | H25A—C25—H25C | 109.5 |
N2—C9—C7 | 115.2 (5) | H25B—C25—H25C | 109.5 |
C10—C9—C7 | 122.7 (5) | C6—C26—H26A | 109.5 |
C9—C10—C11 | 119.6 (5) | C6—C26—H26B | 109.5 |
C9—C10—H10 | 120.2 | H26A—C26—H26B | 109.5 |
C11—C10—H10 | 120.2 | C6—C26—H26C | 109.5 |
C12—C11—C10 | 118.3 (5) | H26A—C26—H26C | 109.5 |
C12—C11—H11 | 120.8 | H26B—C26—H26C | 109.5 |
C10—C11—H11 | 120.8 | N3—C27—C28 | 178.7 (7) |
C11—C12—C13 | 120.2 (5) | C27—C28—H28A | 109.5 |
C11—C12—H12 | 119.9 | C27—C28—H28B | 109.5 |
C13—C12—H12 | 119.9 | H28A—C28—H28B | 109.5 |
N2—C13—C12 | 122.2 (5) | C27—C28—H28C | 109.5 |
N2—C13—C14 | 117.2 (5) | H28A—C28—H28C | 109.5 |
C12—C13—C14 | 120.5 (5) | H28B—C28—H28C | 109.5 |
N3—Cu1—N1—C7 | −113.7 (4) | N1—C7—C9—N2 | 0.5 (7) |
N2—Cu1—N1—C7 | 0.1 (4) | C8—C7—C9—N2 | −179.3 (5) |
I1—Cu1—N1—C7 | 117.6 (4) | N1—C7—C9—C10 | −177.1 (5) |
N3—Cu1—N1—C1 | 68.3 (5) | C8—C7—C9—C10 | 3.0 (8) |
N2—Cu1—N1—C1 | −178.0 (5) | N2—C9—C10—C11 | 0.6 (8) |
I1—Cu1—N1—C1 | −60.5 (4) | C7—C9—C10—C11 | 178.1 (5) |
N3—Cu1—N2—C13 | −74.9 (5) | C9—C10—C11—C12 | −1.0 (8) |
N1—Cu1—N2—C13 | 177.3 (5) | C10—C11—C12—C13 | 1.0 (9) |
I1—Cu1—N2—C13 | 65.3 (5) | C9—N2—C13—C12 | 0.2 (8) |
N3—Cu1—N2—C9 | 108.0 (4) | Cu1—N2—C13—C12 | −176.7 (4) |
N1—Cu1—N2—C9 | 0.2 (4) | C9—N2—C13—C14 | −176.8 (5) |
I1—Cu1—N2—C9 | −111.7 (3) | Cu1—N2—C13—C14 | 6.3 (7) |
C7—N1—C1—C2 | −86.8 (7) | C11—C12—C13—N2 | −0.7 (9) |
Cu1—N1—C1—C2 | 91.2 (6) | C11—C12—C13—C14 | 176.2 (5) |
C7—N1—C1—C6 | 97.6 (7) | N2—C13—C14—C15 | 56.3 (7) |
Cu1—N1—C1—C6 | −84.4 (6) | C12—C13—C14—C15 | −120.8 (6) |
C6—C1—C2—C3 | 0.7 (9) | N2—C13—C14—C19 | −128.1 (5) |
N1—C1—C2—C3 | −174.8 (5) | C12—C13—C14—C19 | 54.8 (8) |
C6—C1—C2—C24 | −179.1 (5) | C19—C14—C15—C16 | −2.4 (8) |
N1—C1—C2—C24 | 5.4 (8) | C13—C14—C15—C16 | 173.3 (5) |
C1—C2—C3—C4 | 0.2 (9) | C14—C15—C16—C17 | 0.1 (9) |
C24—C2—C3—C4 | 180.0 (5) | C15—C16—C17—C18 | 0.5 (9) |
C2—C3—C4—C5 | −0.3 (9) | C16—C17—C18—C23 | 179.2 (6) |
C2—C3—C4—C25 | 178.0 (5) | C16—C17—C18—C19 | 1.1 (8) |
C3—C4—C5—C6 | −0.5 (10) | C15—C14—C19—C20 | −175.4 (5) |
C25—C4—C5—C6 | −178.8 (5) | C13—C14—C19—C20 | 9.0 (8) |
C2—C1—C6—C5 | −1.4 (9) | C15—C14—C19—C18 | 3.9 (8) |
N1—C1—C6—C5 | 174.1 (5) | C13—C14—C19—C18 | −171.7 (5) |
C2—C1—C6—C26 | 179.1 (5) | C17—C18—C19—C20 | 176.1 (5) |
N1—C1—C6—C26 | −5.4 (9) | C23—C18—C19—C20 | −2.1 (8) |
C4—C5—C6—C1 | 1.3 (9) | C17—C18—C19—C14 | −3.2 (8) |
C4—C5—C6—C26 | −179.2 (6) | C23—C18—C19—C14 | 178.6 (5) |
C1—N1—C7—C9 | 177.8 (5) | C14—C19—C20—C21 | 179.7 (5) |
Cu1—N1—C7—C9 | −0.3 (7) | C18—C19—C20—C21 | 0.5 (8) |
C1—N1—C7—C8 | −2.4 (9) | C19—C20—C21—C22 | 2.1 (9) |
Cu1—N1—C7—C8 | 179.5 (4) | C20—C21—C22—C23 | −3.0 (9) |
C13—N2—C9—C10 | −0.2 (8) | C21—C22—C23—C18 | 1.3 (9) |
Cu1—N2—C9—C10 | 177.2 (4) | C17—C18—C23—C22 | −176.9 (5) |
C13—N2—C9—C7 | −177.8 (5) | C19—C18—C23—C22 | 1.2 (9) |
Cu1—N2—C9—C7 | −0.5 (6) |
Footnotes
‡Research Visitor at University of Leicester, UK.
Acknowledgements
The authors acknowledge the technical support given by the staff of the Department of Chemistry, University of Leicester. Special thanks to the postgraduate students Mona H. Alhalafi and Amina Isbilir for their constant support throughout the period of research.
References
Armarego, W. L. F. & Perrin, D. D. (1996). In Purification of Laboratory Chemicals, 4th ed. Oxford: Butterworth Heinemann. Google Scholar
Armitage, A. P., Boyron, O., Champouret, Y. D. M., Patel, M., Singh, K. & Solan, G. A. (2015). Catalysts, 5, 1425–1444. CAS Google Scholar
Aslanidis, P., Cox, P. J. & Tsipis, A. C. (2010). Dalton Trans. pp. 10238–10248. Google Scholar
Bruker (2001). SMART, SAINT and SADABS. Bruker Inc., Madison, Wisconsin, USA. Google Scholar
Corey, E. J., Wess, G., Xiang, Y. B. & Singh, A. K. (1987). J. Am. Chem. Soc. 109, 4717–4718. CrossRef CAS Web of Science Google Scholar
Cotton, A. F., Murillo, C. A., Bochmann, M. & Wilkinson, G. (1999). In Advanced Inorganic Chemistry, 6th ed. New York: Wiley. Google Scholar
Dennehy, M., Quinzani, O. V., Mandolesi, S. D. & Burrow, R. A. (2011). J. Mol. Struct. 998, 119–125. Web of Science CSD CrossRef CAS Google Scholar
Dias, H. V. R., Batdorf, K. H., Fianchini, M., Diyabalanage, H. V. K., Carnahan, S., Mulcahy, R., Rabiee, A., Nelson, K. & van Waasbergen, L. G. (2006). J. Inorg. Biochem. 100, 158–160. Web of Science CSD CrossRef PubMed CAS Google Scholar
Gallego, A., Castillo, O., Gómez-García, C., Zamora, F. & Delgado, S. (2012). Inorg. Chem. 51, 718–727. Web of Science CSD CrossRef CAS PubMed Google Scholar
Karahan, A., Karabulut, S., Dal, H., Kurtaran, R. & Leszczynski, J. (2015). J. Mol. Struct. 1093, 1–7. Web of Science CSD CrossRef CAS Google Scholar
Krupanidhi, S., Sreekumar, A. & Sanjeevi, C. B. (2008). Indian J. Med. Res. 128, 448–461. Web of Science PubMed CAS Google Scholar
Osako, T., Tachi, Y., Taki, M., Fukuzumi, S. & Itoh, S. (2001). Inorg. Chem. 40, 6604–6609. CAS Google Scholar
Oshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472–479. CSD CrossRef PubMed CAS Web of Science Google Scholar
Seward, C., Chan, J., Song, D. & Wang, S. (2003). Inorg. Chem. 42, 1112–1120. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, Y.-Q., Xu, H.-J., Weng, L.-H., Chen, Z.-X., Zhao, D.-Y. & You, X.-Z. (2004). Eur. J. Inorg. Chem. pp. 1813–1816. Web of Science CSD CrossRef Google Scholar
Wattanakanjana, Y., Nimthong, A., Mokakul, J. & Sukpornsawan, P. (2014). Acta Cryst. E70, m219. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.