research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [Ag(NH3)3]2[Ag(NH3)2]2[SnF6]F2, a compound showing argentophilic inter­actions

CROSSMARK_Color_square_no_text.svg

aAnorganische Chemie, Fluorchemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
*Correspondence e-mail: florian.kraus@chemie.uni-marburg.de

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 November 2016; accepted 28 November 2016; online 29 November 2016)

Bis[triamminesilver(I)] bis­[diamminesilver(I)] hexa­fluorido­stannate(IV) difluoride, [Ag(NH3)3]2[Ag(NH3)2]2[SnF6]F2, was obtained in the form of colourless crystals from the reaction of CsAgSnF7 in anhydrous ammonia. Two different ammine complexes of silver(I) are present in the structure, i.e. a linear diammine and a T-shaped triammine complex. The ammine silver(I) complexes show Ag⋯Ag distances in the range of argentophilic inter­actions. In the crystal, several N—H⋯F hydrogen bonds are present between the complex cations and the SbF6 and F anions, leading to the formation of a three-dimensional network.

1. Chemical context

Metallophilicity, especially argento- and aurophilicity, is a theoretically and experimentally well-established concept, see, for example, the seminal works of Jansen (Jansen, 1987[Jansen, M. (1987). Angew. Chem. Int. Ed. Engl. 26, 1098-1110.]), Schmidbaur and co-workers (Scherbaum et al., 1988[Scherbaum, F., Grohmann, A., Huber, B., Krüger, C. & Schmidbaur, H. (1988). Angew. Chem. Int. Ed. Engl. 27, 1544-1546.]; Schmidbaur, 1995[Schmidbaur, H. (1995). Chem. Soc. Rev. 24, 391-400.]; Schmidbaur & Schier, 2012[Schmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370-412.], 2015[Schmidbaur, H. & Schier, A. (2015). Angew. Chem. Int. Ed. 54, 746-784.]) or Pyykkö and co-workers (Pyykkö & Zhao, 1991[Pyykkö, P. & Zhao, Y. (1991). Angew. Chem. Int. Ed. Engl. 30, 604-605.]; Pyykkö, 1997[Pyykkö, P. (1997). Chem. Rev. 97, 597-636.],2004[Pyykkö, P. (2004). Angew. Chem. Int. Ed. 43, 4412-4456.]; Pyykkö et al., 1997[Pyykkö, P., Runeberg, N. & Mendizabal, F. (1997). Chem. Eur. J. 3, 1451-1457.]; Pyykkö & Mendizabal, 1997[Pyykkö, P. & Mendizabal, F. (1997). Chem. Eur. J. 3, 1458-1465.]). We reacted a silver(II) compound, CsAgSnF7, with anhydrous liquid ammonia and observed the reduction of AgII. The preparation conditions and crystal structure of the thus obtained AgI title compound, [Ag(NH3)3]2[Ag(NH3)2]2[SnF6]F2, is reported here. The short Ag⋯Ag distances between the complex cations are in the range of argentophilic inter­actions.

2. Structural commentary

[Ag(NH3)3]2[Ag(NH3)2]2[SnF6]F2 crystallizes in space group type P21/c. The Sn atom occupies Wyckoff position 2d (site symmetry [\overline{1}]), all other atoms reside on general positions 4e. The structure comprises of [Ag(NH3)3]+ and [Ag(NH3)2]+ complex cations as well as F and [SnF6]2− anions (Fig. 1[link]). The diamminesilver(I) cation (Ag2) is almost linear with an N—Ag—N angle of 170.93 (7)° and Ag—N distances of 2.1160 (16) and 2.1183 (16) Å. The deviation from linearity is likely to arise from the surrounding, i.e. N—H⋯F hydrogen bonding to adjacent [SnF6]2− and F anions. This [Ag(NH3)2]+ cation shows a short Ag⋯Ag distance of 3.0611 (2) Å to a neighboring [Ag(NH3)3]+ cation and another slightly longer Ag⋯Ag distance of 3.3282 (2) Å to a second [Ag(NH3)3]+ cation (symmetry code x, −y + [{1\over 2}], z + [{1\over 2}]). The triammine silver(I) cation (Ag1) is T-shaped and can be viewed as a linear diammine silver(I) cation to which another ammine ligands is bound at a longer distance. The short Ag—N distances are 2.1434 (16) and 2.1662 (16) Å, and the remote ammine ligand is bound at a distance of 2.5870 (19) Å. The N—Ag—N angle between the shortly bonded ligands is 173.74 (7)°. The deviation of N—Ag—N angles including the remote ammine ligand from 90° [85.44 (6) and 110.82 (6)°] are probably due to hydrogen bonding of the ammine ligands to F atoms of the anions.

[Figure 1]
Figure 1
The principal building units in the crystal structure of the title compound, showing the F anion, the [SnF6]2− anion, as well as the argentophilic inter­action (in red) between the [Ag(NH3)2]+ and [Ag(NH3)3]+ cations. Displacement ellipsoids are drawn at the 70% probability level and H atoms are shown with an arbitrary radius. [Symmetry code: (i) −x + 1, −y, −z + 1.]

3. Supra­molecular features

As a result of the short Ag1⋯Ag2 contacts, corrugated strands of alternating [Ag(NH3)3]+ and [Ag(NH3)2]+ cations occur where the [Ag(NH3)3]+ cations form the kinks which are connected by the [Ag(NH3)2]+ cations. The strands run parallel to the c axis (Fig. 2[link]). Similar metallophilic inter­actions have been observed in the ammine copper(I) fluoride {[Cu(NH3)3]2[Cu2(NH3)4]}F4·4NH3 (Woidy et al., 2015[Woidy, P., Karttunen, A. J., Widenmeyer, M., Niewa, R. & Kraus, F. (2015). Chem. Eur. J. 21, 3290-3303.]). However, the cuprophilic inter­actions are only observed between the diammine copper(I) cations forming linear strands whereas the triammine copper(I) cations do not show such inter­actions.

[Figure 2]
Figure 2
A section of the crystal structure in a view along [100], showing a corrugated strand of complex cations running along [001]. The argentophilic inter­actions are drawn as red dashed bonds between the AgI atoms and N—H⋯F hydrogen bonds are shown as dashed lines. [SnF6]2− anions are shown as polyhedra to highlight their positions relative to the the kinks of the strand. Displacement ellipsoids are as in Fig. 1[link].

In the title structure, the fluoride anions reside above and below the cation strands and connect neighbouring strands via N—H⋯F hydrogen bonds, whereas the [SnF6]2− anions lie on the sides of the strands, also connecting neighbouring ones. The free fluoride ion (F4) is an acceptor of six hydrogen bonds (Fig. 3[link]). Its coordination environment resembles an octa­hedron with one longer edge. It inter­connects the Ag⋯Ag strands along the a-axis. The [SnF6]2− anion inter­connects four of the Ag⋯Ag strands (Fig. 4[link]). Four of the six F atoms bonded to the Sn atom are acceptors of four hydrogen bonds (two regular, two bifurcated), the other two F atoms are acceptors of three hydrogen bonds. The diammine silver(I) cations only form regular hydrogen bonds, whereas the triammine silver(I) cations form regular as well as bifurcated hydrogen bonds. The bifurcated hydrogen bonds bridge four edges of each [SnF6]2− octa­hedron. Overall, a rather complex three-dimensional hydrogen-bonded network results (Fig. 5[link]). Numerical details of the hydrogen-bonding inter­actions are summarized in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F4i 0.85 (3) 2.03 (3) 2.884 (2) 178 (2)
N1—H1B⋯F4ii 0.89 (3) 1.96 (3) 2.844 (2) 171 (3)
N1—H1C⋯F3i 0.98 (4) 2.14 (4) 3.057 (2) 156 (3)
N2—H2A⋯F1iii 0.91 (3) 2.43 (3) 3.227 (2) 146 (2)
N2—H2A⋯F3iv 0.91 (3) 2.56 (3) 3.354 (2) 145.4 (19)
N2—H2B⋯F3 0.94 (3) 2.04 (3) 2.961 (2) 167 (3)
N2—H2C⋯F4 0.83 (3) 2.02 (3) 2.849 (2) 172 (3)
N3—H3A⋯F1i 0.88 (3) 2.57 (3) 3.274 (2) 138 (3)
N3—H3A⋯F2v 0.88 (3) 2.42 (3) 3.223 (2) 153 (3)
N3—H3B⋯F3iv 0.79 (3) 2.61 (3) 3.345 (3) 157 (3)
N3—H3C⋯F1vi 0.91 (3) 2.39 (3) 3.279 (3) 167 (3)
N4—H4A⋯F2 0.90 (3) 2.04 (3) 2.930 (2) 170 (2)
N4—H4B⋯F4vii 0.84 (3) 1.97 (3) 2.7955 (19) 171 (3)
N4—H4C⋯F1i 0.79 (3) 2.33 (3) 3.045 (2) 151 (3)
N5—H5A⋯F4 0.96 (3) 1.90 (3) 2.8305 (19) 160 (3)
N5—H5B⋯F4viii 0.95 (3) 1.93 (3) 2.882 (2) 173 (2)
N5—H5C⋯F2ix 0.93 (3) 2.09 (3) 2.999 (2) 163 (3)
Symmetry codes: (i) x-1, y, z; (ii) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z+1; (iv) -x+1, -y, -z+2; (v) -x, -y, -z+1; (vi) -x+1, -y, -z+1; (vii) x-1, y, z-1; (viii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ix) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
A section of the crystal structure of the title compound, showing the N—H⋯F hydrogen bonds (dashed lines) around the free fluoride anion and the bridging of the corrugated Ag⋯Ag strands (red dashed lines). Displacement ellipsoids are as in Fig. 1[link]. [Symmetry codes: (ii) x, −y + [{1\over 2}], z + [{1\over 2}]; (x) 1 + x, y, z; (xi) 1 + x, [{1\over 2}] − y, [{1\over 2}] + z; (xii) 1 + x, y, 1 + z.]
[Figure 4]
Figure 4
A section of the crystal structure, showing the hydrogen bonding towards the [SnF6]2− anion, which is shown as a polyhedron. AgI atoms are inter­connected by Ag⋯Ag inter­actions (red dashed lines) to show the formation of strands. Displacement ellipsoids are as in Fig. 1[link].
[Figure 5]
Figure 5
The crystal structure of the title compound. AgI atoms are inter­connected by argentophilic inter­actions (red dashed lines) to show the formation of strands and [SnF6]2− anions are shown as polyhedra. Displacement ellipsoids are as in Fig. 1[link].

4. Synthesis and crystallization

870 mg of CsAgSnF7 were reacted with approximately 10 ml of anhydrous liquid ammonia at 195 K. Upon contact, the greenish colour of the educt vanished and a white powder was observed. This indicates that AgII was reduced to AgI and ammonia was oxidized to N2. From this white powder, colorless crystals grew within three months of storage at 233 K of which a suitable one was selected for the diffraction experiment. The role of the Cs atoms remains unclear.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were localized from difference Fourier syntheses and were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [Ag(NH3)3]2[Ag(NH3)2]2[SnF6]F2
Mr 872.51
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 7.3274 (2), 19.4495 (4), 7.8579 (3)
β (°) 113.205 (4)
V3) 1029.27 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.01
Crystal size (mm) 0.20 × 0.05 × 0.05
 
Data collection
Diffractometer Oxford-Diffraction Xcalibur3
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.])
Tmin, Tmax 0.602, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 30418, 5731, 4330
Rint 0.030
(sin θ/λ)max−1) 0.889
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.046, 0.99
No. of reflections 5731
No. of parameters 167
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 1.04, −0.93
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[triamminesilver(I)] bis[diamminesilver(I)] hexafluoridostannate(IV) difluoride top
Crystal data top
[Ag(NH3)3]2[Ag(NH3)2]2[SnF6]F2F(000) = 820
Mr = 872.51Dx = 2.815 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.3274 (2) ÅCell parameters from 16653 reflections
b = 19.4495 (4) Åθ = 2.8–39.1°
c = 7.8579 (3) ŵ = 5.01 mm1
β = 113.205 (4)°T = 123 K
V = 1029.27 (6) Å3Block, colorless
Z = 20.20 × 0.05 × 0.05 mm
Data collection top
Oxford-Diffraction Xcalibur3
diffractometer
5731 independent reflections
Radiation source: Enhance (Mo) X-ray Source4330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.0238 pixels mm-1θmax = 39.2°, θmin = 3.0°
phi– and ω–rotation scansh = 1213
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 3430
Tmin = 0.602, Tmax = 1.000l = 1313
30418 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020All H-atom parameters refined
wR(F2) = 0.046 w = 1/[σ2(Fo2) + (0.0215P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.002
5731 reflectionsΔρmax = 1.04 e Å3
167 parametersΔρmin = 0.93 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00277 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
SN10.5000000.0000000.5000000.01140 (3)
F10.71015 (17)0.04893 (6)0.45645 (18)0.0254 (3)
F20.31983 (17)0.07728 (6)0.39037 (17)0.0232 (2)
F30.58561 (19)0.04104 (7)0.74794 (16)0.0274 (3)
AG10.16018 (2)0.12778 (2)0.95234 (2)0.01661 (3)
N10.1364 (2)0.16467 (9)0.8813 (2)0.0179 (3)
H1A0.170 (4)0.1789 (14)0.968 (4)0.029 (7)*
H1B0.171 (4)0.2005 (14)0.805 (4)0.028 (7)*
H1C0.222 (5)0.1286 (19)0.805 (5)0.070 (11)*
N20.4708 (2)0.10144 (9)1.0373 (2)0.0175 (3)
H2A0.509 (4)0.0701 (13)1.131 (3)0.021 (6)*
H2B0.485 (4)0.0811 (15)0.935 (4)0.041 (8)*
H2C0.557 (5)0.1316 (16)1.084 (4)0.044 (9)*
N30.0911 (3)0.00306 (10)0.8291 (3)0.0277 (4)
H3A0.031 (5)0.0050 (15)0.751 (5)0.046 (9)*
H3B0.149 (5)0.0181 (16)0.920 (5)0.043 (9)*
H3C0.133 (5)0.0059 (15)0.737 (4)0.043 (9)*
AG20.23394 (2)0.22258 (2)0.67497 (2)0.01676 (3)
N40.0292 (3)0.15407 (9)0.4859 (2)0.0196 (3)
H4A0.111 (4)0.1257 (14)0.459 (4)0.033 (7)*
H4B0.052 (4)0.1757 (14)0.396 (4)0.034 (7)*
H4C0.034 (4)0.1288 (15)0.520 (4)0.033 (8)*
N50.4733 (2)0.28292 (9)0.8539 (2)0.0167 (3)
H5A0.543 (4)0.2617 (14)0.973 (4)0.033 (7)*
H5B0.562 (4)0.2883 (12)0.793 (3)0.020 (6)*
H5C0.439 (5)0.3248 (17)0.891 (4)0.052 (9)*
F40.74284 (16)0.21290 (6)1.16824 (14)0.0177 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
SN10.01283 (6)0.01077 (7)0.01170 (7)0.00057 (5)0.00600 (5)0.00041 (5)
F10.0194 (5)0.0291 (7)0.0314 (6)0.0056 (5)0.0139 (5)0.0066 (5)
F20.0207 (5)0.0175 (5)0.0319 (6)0.0053 (4)0.0110 (5)0.0065 (5)
F30.0329 (6)0.0314 (7)0.0179 (5)0.0038 (5)0.0098 (5)0.0095 (5)
AG10.01565 (5)0.01867 (7)0.01611 (6)0.00126 (5)0.00689 (4)0.00184 (5)
N10.0179 (7)0.0166 (7)0.0183 (7)0.0021 (6)0.0061 (6)0.0005 (6)
N20.0175 (6)0.0178 (7)0.0160 (7)0.0000 (6)0.0053 (5)0.0007 (6)
N30.0206 (8)0.0236 (9)0.0346 (10)0.0001 (7)0.0063 (8)0.0068 (8)
AG20.01614 (6)0.01801 (7)0.01510 (6)0.00111 (5)0.00505 (4)0.00066 (4)
N40.0184 (7)0.0174 (8)0.0194 (7)0.0010 (6)0.0035 (6)0.0012 (6)
N50.0169 (6)0.0173 (7)0.0161 (7)0.0003 (5)0.0066 (5)0.0011 (5)
F40.0176 (5)0.0200 (5)0.0143 (5)0.0003 (4)0.0051 (4)0.0015 (4)
Geometric parameters (Å, º) top
Sn1—F1i1.9518 (11)N2—H2A0.91 (3)
Sn1—F11.9518 (11)N2—H2B0.94 (3)
Sn1—F21.9617 (11)N2—H2C0.83 (3)
Sn1—F2i1.9617 (11)N3—H3A0.88 (3)
Sn1—F3i1.9655 (11)N3—H3B0.79 (3)
Sn1—F31.9656 (11)N3—H3C0.91 (3)
Ag1—N12.1434 (16)Ag2—N42.1160 (16)
Ag1—N22.1662 (16)Ag2—N52.1183 (16)
Ag1—N32.5870 (19)N4—H4A0.90 (3)
Ag1—Ag23.0611 (2)N4—H4B0.84 (3)
Ag1—Ag2ii3.3283 (2)N4—H4C0.79 (3)
N1—H1A0.85 (3)N5—H5A0.96 (3)
N1—H1B0.89 (3)N5—H5B0.95 (3)
N1—H1C0.98 (4)N5—H5C0.93 (3)
F1i—Sn1—F1180.0Ag1—N2—H2A110.8 (15)
F1i—Sn1—F290.56 (5)Ag1—N2—H2B107.2 (17)
F1—Sn1—F289.44 (5)H2A—N2—H2B108 (2)
F1i—Sn1—F2i89.44 (5)Ag1—N2—H2C119 (2)
F1—Sn1—F2i90.56 (5)H2A—N2—H2C100 (2)
F2—Sn1—F2i180.0H2B—N2—H2C111 (3)
F1i—Sn1—F3i90.58 (6)Ag1—N3—H3A115 (2)
F1—Sn1—F3i89.42 (6)Ag1—N3—H3B101 (2)
F2—Sn1—F3i88.80 (5)H3A—N3—H3B126 (3)
F2i—Sn1—F3i91.19 (5)Ag1—N3—H3C113.7 (19)
F1i—Sn1—F389.42 (6)H3A—N3—H3C89 (3)
F1—Sn1—F390.58 (6)H3B—N3—H3C113 (3)
F2—Sn1—F391.19 (5)N4—Ag2—N5170.93 (7)
F2i—Sn1—F388.81 (5)N4—Ag2—Ag181.11 (5)
F3i—Sn1—F3180.0N5—Ag2—Ag1101.15 (5)
N1—Ag1—N2173.74 (7)N4—Ag2—Ag1iii104.96 (5)
N1—Ag1—N3100.82 (6)N5—Ag2—Ag1iii77.58 (4)
N2—Ag1—N385.44 (6)Ag1—Ag2—Ag1iii149.685 (7)
N1—Ag1—Ag293.35 (5)Ag2—N4—H4A101.3 (17)
N2—Ag1—Ag284.44 (5)Ag2—N4—H4B110.4 (19)
N3—Ag1—Ag2111.20 (6)H4A—N4—H4B115 (3)
N1—Ag1—Ag2ii77.42 (5)Ag2—N4—H4C120 (2)
N2—Ag1—Ag2ii96.40 (5)H4A—N4—H4C104 (3)
N3—Ag1—Ag2ii169.75 (6)H4B—N4—H4C107 (3)
Ag2—Ag1—Ag2ii79.041 (4)Ag2—N5—H5A113.0 (16)
Ag1—N1—H1A118.6 (17)Ag2—N5—H5B106.2 (14)
Ag1—N1—H1B115.3 (18)H5A—N5—H5B109 (2)
H1A—N1—H1B101 (2)Ag2—N5—H5C115.7 (19)
Ag1—N1—H1C105 (2)H5A—N5—H5C100 (2)
H1A—N1—H1C114 (3)H5B—N5—H5C112 (2)
H1B—N1—H1C102 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F4iv0.85 (3)2.03 (3)2.884 (2)178 (2)
N1—H1B···F4v0.89 (3)1.96 (3)2.844 (2)171 (3)
N1—H1C···F3iv0.98 (4)2.14 (4)3.057 (2)156 (3)
N2—H2A···F1vi0.91 (3)2.43 (3)3.227 (2)146 (2)
N2—H2A···F3vii0.91 (3)2.56 (3)3.354 (2)145.4 (19)
N2—H2B···F30.94 (3)2.04 (3)2.961 (2)167 (3)
N2—H2C···F40.83 (3)2.02 (3)2.849 (2)172 (3)
N3—H3A···F1iv0.88 (3)2.57 (3)3.274 (2)138 (3)
N3—H3A···F2viii0.88 (3)2.42 (3)3.223 (2)153 (3)
N3—H3B···F3vii0.79 (3)2.61 (3)3.345 (3)157 (3)
N3—H3C···F1i0.91 (3)2.39 (3)3.279 (3)167 (3)
N4—H4A···F20.90 (3)2.04 (3)2.930 (2)170 (2)
N4—H4B···F4ix0.84 (3)1.97 (3)2.7955 (19)171 (3)
N4—H4C···F1iv0.79 (3)2.33 (3)3.045 (2)151 (3)
N5—H5A···F40.96 (3)1.90 (3)2.8305 (19)160 (3)
N5—H5B···F4iii0.95 (3)1.93 (3)2.882 (2)173 (2)
N5—H5C···F2ii0.93 (3)2.09 (3)2.999 (2)163 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x1, y, z; (v) x1, y+1/2, z1/2; (vi) x, y, z+1; (vii) x+1, y, z+2; (viii) x, y, z+1; (ix) x1, y, z1.
 

Acknowledgements

FK thanks the DFG for a Heisenberg Professorship and Dr Matthias Conrad for helpful discussions.

References

First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJansen, M. (1987). Angew. Chem. Int. Ed. Engl. 26, 1098–1110.  CrossRef Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationPyykkö, P. (1997). Chem. Rev. 97, 597–636.  CrossRef PubMed Web of Science Google Scholar
First citationPyykkö, P. (2004). Angew. Chem. Int. Ed. 43, 4412–4456.  Google Scholar
First citationPyykkö, P. & Mendizabal, F. (1997). Chem. Eur. J. 3, 1458–1465.  Google Scholar
First citationPyykkö, P., Runeberg, N. & Mendizabal, F. (1997). Chem. Eur. J. 3, 1451–1457.  Google Scholar
First citationPyykkö, P. & Zhao, Y. (1991). Angew. Chem. Int. Ed. Engl. 30, 604–605.  Google Scholar
First citationScherbaum, F., Grohmann, A., Huber, B., Krüger, C. & Schmidbaur, H. (1988). Angew. Chem. Int. Ed. Engl. 27, 1544–1546.  CSD CrossRef Google Scholar
First citationSchmidbaur, H. (1995). Chem. Soc. Rev. 24, 391–400.  CrossRef CAS Web of Science Google Scholar
First citationSchmidbaur, H. & Schier, A. (2012). Chem. Soc. Rev. 41, 370–412.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchmidbaur, H. & Schier, A. (2015). Angew. Chem. Int. Ed. 54, 746–784.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoidy, P., Karttunen, A. J., Widenmeyer, M., Niewa, R. & Kraus, F. (2015). Chem. Eur. J. 21, 3290–3303.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds