research communications
trans-cyclohexane-1,2-diammonium chromate(VI) from synchrotron X-ray diffraction data
ofaPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr
The structure of the title hybrid compound, (C6H16N2)[CrO4], has been determined from synchrotron data. The organic cation adopts a chair conformation. The inorganic CrO42− anion is slightly distorted owing to its involvement in N—H⋯O hydrogen-bonding interactions with neighbouring trans-cyclohexane-1,2-diammonium cations, whereby the two Cr—O bonds to the O atoms acting as acceptor atoms for two hydrogen bonds are slightly longer than the other two Cr—O bonds for which only one acceptor interaction per O atom is observed. In the crystal, cations and anions are packed into layers parallel to (001), held together through the aforementioned N—H⋯O hydrogen bonds.
Keywords: crystal structure; trans-cyclohexane-1,2-diammonium; chromate(VI); hydrogen bonding; synchrotron radiation; hybrid compound.
CCDC reference: 1519508
1. Chemical context
Organic–inorganic hybrid compounds are of interest because of the possibility of their forming extended networks through versatile hydrogen bonds (Mkaouar et al., 2016). The amine trans-1,2-cyclohexanediamine (chxn), C6H14N2, is strongly basic and readily captures two protons to form a dication, (C6H16N2)2+. Crystal structures of this amine or the dication have been determined for trans-1,2-cyclohexanediamine hydrobromide (Morse & Chesick, 1976), trans-cyclohexane-1,2-diammonium dichloride (Farrugia et al., 2001) and trans-cyclohexane-1,2-diammonium bis(3′-nitro-trans-cinnamate) (Hosomi et al., 2000). With respect to complex inorganic anions of the types ZnCl42−, CrO42− or Cr2O72−, the crystal structures of hybrid compounds with organic ammonium cations have been determined for propane-1,3-diammonium tetrachloridozincate (Kallel et al., 1980), propane-1,3-diammonium dichromate(VI) (Trabelsi et al., 2012) and propane-1,2-diammonium chromate(VI) (Trabelsi et al., 2014). However, a combination of trans-cyclohexane-1,2-diammonium and CrO42− has not been reported. In this communication, we present details on the preparation of the new organic chromate(VI), (C6H16N2)[CrO4], (I) and its structural characterization by synchrotron single-crystal X-ray diffraction.
2. Structural commentary
Fig. 1 shows an ellipsoid plot of the molecular components of (I). The organic diammonium cation adopts a stable chair conformation with respect to the cyclohexane ring. The C—C and N—C distances range from 1.506 (5) to 1.525 (4) Å and from 1.492 (3) to 1.493 (3) Å, respectively; the range of N—C—C and C—C—C angles is 108.3 (2) to 113.7 (2)° and 109.2 (2) to 112.0 (3)°, respectively.
The bond lengths and angles are very similar than in the structure of the bis(3′-nitro-trans-cinnamate) compound with the same cation (Hosomi et al., 2000). The cyclohexane ring C—C bond lengths and angles and the torsion angles involving the C and N atoms are in essential agreement with the values obtained for [Cr(chxn)3](ZnCl4)Cl·3H2O (Moon & Choi, 2016). The CrVI atom in the CrO42− anion has the characteristic tetrahedral coordination environment of four O atoms, with Cr—O bond lengths ranging from 1.628 (2) to 1.6654 (19) Å and O—Cr—O angles ranging from 108.30 (10)–111.43 (11)° (Table 1). The distortion from ideal values is due to the influence of hydrogen bonding. For O atoms that are acceptor atoms of two hydrogen bonds (O1 and O4), the Cr—O bond lengths are slightly longer than those of the other two O atoms (O2 and O3) which are each involved in only one hydrogen-bonding interaction.
|
3. Supramolecular features
the cations and anions are arranged in layers parallel to (001). The ammonium group is directed towards the anion, hence causing polar and non-polar sections in the alternating along [001]. As mentioned above, each of the O atoms is involved in N—H⋯O hydrogen bonds that hold the polar (001) sheets together (Fig. 24. Database survey
A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with three updates; Groom et al., 2016) indicates a total of 31 hits for compounds containing the cyclohexanediammonium cation (C6H16N2)2+.
5. Synthesis and crystallization
Compound (I) was prepared by dissolving 5 mmol of chromium trioxide (0.50 g, Sigma–Aldrich) and 0.5 mmol of trans-1,2-cyclohexanediamine (0.6 mL, Sigma-Aldrich) in 40 mL of distilled water with a molar ratio of 1:1. The mixture was stirred for 30 minutes and the resulting solution was allowed to stand at room temperature for one day to give plate-like yellow crystals suitable for X-ray structural analysis.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99-1.00 Å and N—H = 0.91 Å, and with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.
details are summarized in Table 3
|
Supporting information
CCDC reference: 1519508
https://doi.org/10.1107/S2056989016019009/wm5343sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016019009/wm5343Isup2.hkl
Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).(C6H16N2)[CrO4] | Dx = 1.616 Mg m−3 |
Mr = 232.21 | Synchrotron radiation, λ = 0.650 Å |
Orthorhombic, Pbca | Cell parameters from 49521 reflections |
a = 9.910 (2) Å | θ = 0.4–33.4° |
b = 8.3730 (17) Å | µ = 0.92 mm−1 |
c = 22.999 (5) Å | T = 173 K |
V = 1908.4 (7) Å3 | Plate, yellow |
Z = 8 | 0.10 × 0.09 × 0.01 mm |
F(000) = 976 |
ADSC Q210 CCD area detector diffractometer | 1749 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.069 |
ω scan | θmax = 26.0°, θmin = 2.5° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski & Minor, 1997) | h = −12→12 |
Tmin = 0.794, Tmax = 1.000 | k = −11→11 |
16426 measured reflections | l = −31→31 |
2383 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.055 | w = 1/[σ2(Fo2) + (0.116P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.160 | (Δ/σ)max < 0.001 |
S = 0.99 | Δρmax = 0.95 e Å−3 |
2383 reflections | Δρmin = −1.53 e Å−3 |
121 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.017 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6842 (2) | 0.3903 (3) | 0.43614 (9) | 0.0245 (5) | |
H1N1 | 0.6673 | 0.3156 | 0.4639 | 0.037* | |
H2N1 | 0.6444 | 0.4842 | 0.4463 | 0.037* | |
H3N1 | 0.7749 | 0.4049 | 0.4328 | 0.037* | |
N2 | 0.4159 (3) | 0.2284 (3) | 0.42353 (10) | 0.0279 (5) | |
H1N2 | 0.4273 | 0.2758 | 0.4588 | 0.042* | |
H2N2 | 0.4575 | 0.1315 | 0.4235 | 0.042* | |
H3N2 | 0.3262 | 0.2151 | 0.4165 | 0.042* | |
C1 | 0.6285 (3) | 0.3349 (3) | 0.37930 (11) | 0.0249 (6) | |
H1 | 0.6622 | 0.2241 | 0.3721 | 0.030* | |
C2 | 0.4758 (3) | 0.3313 (3) | 0.37730 (12) | 0.0247 (5) | |
H2 | 0.4413 | 0.4427 | 0.3823 | 0.030* | |
C3 | 0.4292 (3) | 0.2686 (4) | 0.31840 (13) | 0.0342 (7) | |
H3A | 0.4600 | 0.1569 | 0.3137 | 0.041* | |
H3B | 0.3293 | 0.2688 | 0.3171 | 0.041* | |
C4 | 0.4833 (3) | 0.3687 (4) | 0.26844 (14) | 0.0410 (8) | |
H4A | 0.4570 | 0.3192 | 0.2310 | 0.049* | |
H4B | 0.4430 | 0.4768 | 0.2701 | 0.049* | |
C5 | 0.6347 (3) | 0.3820 (4) | 0.27138 (13) | 0.0357 (7) | |
H5A | 0.6665 | 0.4563 | 0.2408 | 0.043* | |
H5B | 0.6754 | 0.2760 | 0.2638 | 0.043* | |
C6 | 0.6808 (3) | 0.4421 (4) | 0.33063 (12) | 0.0318 (6) | |
H6A | 0.6475 | 0.5523 | 0.3366 | 0.038* | |
H6B | 0.7807 | 0.4447 | 0.3318 | 0.038* | |
Cr1 | 0.44912 (4) | 0.79269 (5) | 0.43056 (2) | 0.0227 (2) | |
O1 | 0.53896 (18) | 0.9403 (2) | 0.40203 (9) | 0.0308 (5) | |
O2 | 0.34508 (19) | 0.8641 (2) | 0.47950 (9) | 0.0330 (5) | |
O3 | 0.3616 (2) | 0.6998 (2) | 0.38110 (10) | 0.0362 (5) | |
O4 | 0.55315 (18) | 0.6648 (2) | 0.46324 (9) | 0.0311 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0243 (12) | 0.0215 (11) | 0.0278 (11) | 0.0015 (9) | −0.0012 (8) | 0.0002 (8) |
N2 | 0.0267 (13) | 0.0252 (12) | 0.0316 (13) | 0.0024 (10) | 0.0025 (9) | 0.0012 (9) |
C1 | 0.0249 (14) | 0.0217 (12) | 0.0279 (13) | 0.0026 (10) | 0.0002 (10) | −0.0011 (10) |
C2 | 0.0257 (14) | 0.0195 (12) | 0.0289 (13) | 0.0000 (10) | −0.0010 (10) | 0.0009 (10) |
C3 | 0.0314 (18) | 0.0406 (16) | 0.0307 (15) | −0.0072 (12) | −0.0047 (11) | −0.0009 (13) |
C4 | 0.0376 (18) | 0.055 (2) | 0.0309 (15) | −0.0053 (16) | −0.0050 (12) | 0.0073 (14) |
C5 | 0.0317 (16) | 0.0437 (17) | 0.0315 (15) | −0.0018 (13) | 0.0024 (11) | 0.0029 (12) |
C6 | 0.0298 (16) | 0.0322 (14) | 0.0334 (15) | −0.0062 (12) | 0.0000 (11) | 0.0044 (11) |
Cr1 | 0.0223 (3) | 0.0167 (3) | 0.0290 (3) | 0.00140 (14) | −0.00086 (15) | 0.00134 (14) |
O1 | 0.0285 (11) | 0.0233 (10) | 0.0405 (12) | −0.0002 (8) | 0.0062 (8) | 0.0049 (8) |
O2 | 0.0305 (11) | 0.0285 (10) | 0.0402 (11) | 0.0053 (8) | 0.0078 (9) | 0.0010 (8) |
O3 | 0.0349 (12) | 0.0293 (11) | 0.0444 (13) | 0.0026 (8) | −0.0129 (10) | −0.0053 (8) |
O4 | 0.0356 (12) | 0.0224 (9) | 0.0354 (11) | 0.0087 (8) | −0.0053 (8) | 0.0010 (8) |
N1—C1 | 1.493 (3) | C3—H3A | 0.9900 |
N1—H1N1 | 0.9100 | C3—H3B | 0.9900 |
N1—H2N1 | 0.9100 | C4—C5 | 1.506 (5) |
N1—H3N1 | 0.9100 | C4—H4A | 0.9900 |
N2—C2 | 1.492 (3) | C4—H4B | 0.9900 |
N2—H1N2 | 0.9100 | C5—C6 | 1.523 (4) |
N2—H2N2 | 0.9100 | C5—H5A | 0.9900 |
N2—H3N2 | 0.9100 | C5—H5B | 0.9900 |
C1—C2 | 1.514 (4) | C6—H6A | 0.9900 |
C1—C6 | 1.525 (4) | C6—H6B | 0.9900 |
C1—H1 | 1.0000 | Cr1—O3 | 1.628 (2) |
C2—C3 | 1.525 (4) | Cr1—O2 | 1.6394 (19) |
C2—H2 | 1.0000 | Cr1—O1 | 1.6584 (19) |
C3—C4 | 1.520 (4) | Cr1—O4 | 1.6654 (19) |
C1—N1—H1N1 | 109.5 | C4—C3—H3B | 109.2 |
C1—N1—H2N1 | 109.5 | C2—C3—H3B | 109.2 |
H1N1—N1—H2N1 | 109.5 | H3A—C3—H3B | 107.9 |
C1—N1—H3N1 | 109.5 | C5—C4—C3 | 111.0 (3) |
H1N1—N1—H3N1 | 109.5 | C5—C4—H4A | 109.4 |
H2N1—N1—H3N1 | 109.5 | C3—C4—H4A | 109.4 |
C2—N2—H1N2 | 109.5 | C5—C4—H4B | 109.4 |
C2—N2—H2N2 | 109.5 | C3—C4—H4B | 109.4 |
H1N2—N2—H2N2 | 109.5 | H4A—C4—H4B | 108.0 |
C2—N2—H3N2 | 109.5 | C4—C5—C6 | 111.3 (2) |
H1N2—N2—H3N2 | 109.5 | C4—C5—H5A | 109.4 |
H2N2—N2—H3N2 | 109.5 | C6—C5—H5A | 109.4 |
N1—C1—C2 | 113.7 (2) | C4—C5—H5B | 109.4 |
N1—C1—C6 | 109.5 (2) | C6—C5—H5B | 109.4 |
C2—C1—C6 | 109.2 (2) | H5A—C5—H5B | 108.0 |
N1—C1—H1 | 108.1 | C5—C6—C1 | 111.1 (2) |
C2—C1—H1 | 108.1 | C5—C6—H6A | 109.4 |
C6—C1—H1 | 108.1 | C1—C6—H6A | 109.4 |
N2—C2—C1 | 112.8 (2) | C5—C6—H6B | 109.4 |
N2—C2—C3 | 108.3 (2) | C1—C6—H6B | 109.4 |
C1—C2—C3 | 109.7 (2) | H6A—C6—H6B | 108.0 |
N2—C2—H2 | 108.7 | O3—Cr1—O2 | 108.60 (11) |
C1—C2—H2 | 108.7 | O3—Cr1—O1 | 111.43 (11) |
C3—C2—H2 | 108.7 | O2—Cr1—O1 | 109.72 (10) |
C4—C3—C2 | 112.0 (3) | O3—Cr1—O4 | 109.76 (10) |
C4—C3—H3A | 109.2 | O2—Cr1—O4 | 108.30 (10) |
C2—C3—H3A | 109.2 | O1—Cr1—O4 | 108.97 (10) |
N1—C1—C2—N2 | −57.5 (3) | C2—C3—C4—C5 | 54.6 (4) |
C6—C1—C2—N2 | 179.8 (2) | C3—C4—C5—C6 | −53.4 (4) |
N1—C1—C2—C3 | −178.3 (2) | C4—C5—C6—C1 | 56.5 (3) |
C6—C1—C2—C3 | 59.0 (3) | N1—C1—C6—C5 | 175.7 (2) |
N2—C2—C3—C4 | 178.8 (3) | C2—C1—C6—C5 | −59.1 (3) |
C1—C2—C3—C4 | −57.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O2i | 0.91 | 1.99 | 2.896 (3) | 172 |
N1—H3N1···O1ii | 0.91 | 2.00 | 2.884 (3) | 164 |
N1—H2N1···O4 | 0.91 | 1.81 | 2.713 (3) | 175 |
N2—H1N2···O4i | 0.91 | 1.87 | 2.771 (3) | 169 |
N2—H3N2···O2iii | 0.91 | 2.56 | 3.104 (3) | 119 |
N2—H3N2···O3iii | 0.91 | 2.04 | 2.927 (3) | 166 |
N2—H2N2···O1iv | 0.91 | 1.86 | 2.748 (3) | 165 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y−1/2, z; (iii) −x+1/2, y−1/2, z; (iv) x, y−1, z. |
Acknowledgements
This work was supported by a grant from the 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.
References
Farrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, o992–o993. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e260–e261. CrossRef CAS IUCr Journals Google Scholar
Kallel, A., Fail, J., Fuess, H. & Daoud, A. (1980). Acta Cryst. B36, 2788–2790. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Mkaouar, I., Karâa, N., Hamdi, B. & Zouari, R. (2016). J. Mol. Struct. 1115, 161–170. CrossRef CAS Google Scholar
Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 671–674. CrossRef IUCr Journals Google Scholar
Morse, M. D. & Chesick, J. P. (1976). Acta Cryst. B32, 954–956. CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Trabelsi, S., Essid, M., Roisnel, T., Rzaigui, M. & Marouani, H. (2014). Acta Cryst. E70, m84–m85. CrossRef IUCr Journals Google Scholar
Trabelsi, S., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, m1056. CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.