research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of trans-cyclo­hexane-1,2-di­ammonium chromate(VI) from synchrotron X-ray diffraction data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, and bDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 19 November 2016; accepted 28 November 2016; online 30 November 2016)

The structure of the title hybrid compound, (C6H16N2)[CrO4], has been determined from synchrotron data. The organic cation adopts a chair conformation. The inorganic CrO42− anion is slightly distorted owing to its involvement in N—H⋯O hydrogen-bonding inter­actions with neighbouring trans-cyclo­hexane-1,2-di­ammonium cations, whereby the two Cr—O bonds to the O atoms acting as acceptor atoms for two hydrogen bonds are slightly longer than the other two Cr—O bonds for which only one acceptor inter­action per O atom is observed. In the crystal, cations and anions are packed into layers parallel to (001), held together through the aforementioned N—H⋯O hydrogen bonds.

1. Chemical context

Organic–inorganic hybrid compounds are of inter­est because of the possibility of their forming extended networks through versatile hydrogen bonds (Mkaouar et al., 2016[Mkaouar, I., Karâa, N., Hamdi, B. & Zouari, R. (2016). J. Mol. Struct. 1115, 161-170.]). The amine trans-1,2-cyclo­hexa­nedi­amine (chxn), C6H14N2, is strongly basic and readily captures two protons to form a dication, (C6H16N2)2+. Crystal structures of this amine or the dication have been determined for trans-1,2-cyclo­hexa­nedi­amine hydro­bromide (Morse & Chesick, 1976[Morse, M. D. & Chesick, J. P. (1976). Acta Cryst. B32, 954-956.]), trans-cyclo­hexane-1,2-di­ammonium dichloride (Farrugia et al., 2001[Farrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, o992-o993.]) and trans-cyclo­hexane-1,2-di­ammonium bis­(3′-nitro-trans-cinnamate) (Hosomi et al., 2000[Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e260-e261.]). With respect to complex inorganic anions of the types ZnCl42−, CrO42− or Cr2O72−, the crystal structures of hybrid compounds with organic ammonium cations have been determined for propane-1,3-di­ammonium tetra­chlorido­zincate (Kallel et al., 1980[Kallel, A., Fail, J., Fuess, H. & Daoud, A. (1980). Acta Cryst. B36, 2788-2790.]), propane-1,3-di­ammonium dichromate(VI) (Trabelsi et al., 2012[Trabelsi, S., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, m1056.]) and propane-1,2-di­ammonium chromate(VI) (Trabelsi et al., 2014[Trabelsi, S., Essid, M., Roisnel, T., Rzaigui, M. & Marouani, H. (2014). Acta Cryst. E70, m84-m85.]). However, a combination of trans-cyclo­hexane-1,2-di­ammonium and CrO42− has not been reported. In this communication, we present details on the preparation of the new organic chromate(VI), (C6H16N2)[CrO4], (I)[link] and its structural characterization by synchrotron single-crystal X-ray diffraction.

2. Structural commentary

Fig. 1[link] shows an ellipsoid plot of the mol­ecular components of (I)[link]. The organic di­ammonium cation adopts a stable chair conformation with respect to the cyclo­hexane ring. The C—C and N—C distances range from 1.506 (5) to 1.525 (4) Å and from 1.492 (3) to 1.493 (3) Å, respectively; the range of N—C—C and C—C—C angles is 108.3 (2) to 113.7 (2)° and 109.2 (2) to 112.0 (3)°, respectively.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structures of the organic cation and the inorganic anion in (I)[link], drawn with displacement ellipsoids at the 30% probability level. The dashed line represents a hydrogen-bonding inter­action.

The bond lengths and angles are very similar than in the structure of the bis­(3′-nitro-trans-cinnamate) compound with the same cation (Hosomi et al., 2000[Hosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e260-e261.]). The cyclo­hexane ring C—C bond lengths and angles and the torsion angles involving the C and N atoms are in essential agreement with the values obtained for [Cr(chxn)3](ZnCl4)Cl·3H2O (Moon & Choi, 2016[Moon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 671-674.]). The CrVI atom in the CrO42− anion has the characteristic tetra­hedral coordination environment of four O atoms, with Cr—O bond lengths ranging from 1.628 (2) to 1.6654 (19) Å and O—Cr—O angles ranging from 108.30 (10)–111.43 (11)° (Table 1[link]). The distortion from ideal values is due to the influence of hydrogen bonding. For O atoms that are acceptor atoms of two hydrogen bonds (O1 and O4), the Cr—O bond lengths are slightly longer than those of the other two O atoms (O2 and O3) which are each involved in only one hydrogen-bonding inter­action.

Table 1
Selected geometric parameters (Å, °)

Cr1—O3 1.628 (2) Cr1—O1 1.6584 (19)
Cr1—O2 1.6394 (19) Cr1—O4 1.6654 (19)
       
O3—Cr1—O2 108.60 (11) O3—Cr1—O4 109.76 (10)
O3—Cr1—O1 111.43 (11) O2—Cr1—O4 108.30 (10)
O2—Cr1—O1 109.72 (10) O1—Cr1—O4 108.97 (10)

3. Supra­molecular features

In the crystal structure, the cations and anions are arranged in layers parallel to (001). The ammonium group is directed towards the anion, hence causing polar and non-polar sections in the crystal structure, alternating along [001]. As mentioned above, each of the O atoms is involved in N—H⋯O hydrogen bonds that hold the polar (001) sheets together (Fig. 2[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.91 1.99 2.896 (3) 172
N1—H3N1⋯O1ii 0.91 2.00 2.884 (3) 164
N1—H2N1⋯O4 0.91 1.81 2.713 (3) 175
N2—H1N2⋯O4i 0.91 1.87 2.771 (3) 169
N2—H3N2⋯O2iii 0.91 2.56 3.104 (3) 119
N2—H3N2⋯O3iii 0.91 2.04 2.927 (3) 166
N2—H2N2⋯O1iv 0.91 1.86 2.748 (3) 165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) x, y-1, z.
[Figure 2]
Figure 2
The crystal packing in (I)[link], viewed along [010]. Hydrogen-bonding inter­actions are indicated by dashed lines.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with three updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicates a total of 31 hits for compounds containing the cyclo­hexa­nedi­ammonium cation (C6H16N2)2+.

5. Synthesis and crystallization

Compound (I)[link] was prepared by dissolving 5 mmol of chromium trioxide (0.50 g, Sigma–Aldrich) and 0.5 mmol of trans-1,2-cyclo­hexa­nedi­amine (0.6 mL, Sigma-Aldrich) in 40 mL of distilled water with a molar ratio of 1:1. The mixture was stirred for 30 minutes and the resulting solution was allowed to stand at room temperature for one day to give plate-like yellow crystals suitable for X-ray structural analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99-1.00 Å and N—H = 0.91 Å, and with Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.

Table 3
Experimental details

Crystal data
Chemical formula (C6H16N2)[CrO4]
Mr 232.21
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 173
a, b, c (Å) 9.910 (2), 8.3730 (17), 22.999 (5)
V3) 1908.4 (7)
Z 8
Radiation type Synchrotron, λ = 0.650 Å
μ (mm−1) 0.92
Crystal size (mm) 0.10 × 0.09 × 0.01
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.794, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16426, 2383, 1749
Rint 0.069
(sin θ/λ)max−1) 0.674
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.160, 0.99
No. of reflections 2383
No. of parameters 121
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.95, −1.53
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

trans-Cyclohexane-1,2-diammonium chromate(VI) top
Crystal data top
(C6H16N2)[CrO4]Dx = 1.616 Mg m3
Mr = 232.21Synchrotron radiation, λ = 0.650 Å
Orthorhombic, PbcaCell parameters from 49521 reflections
a = 9.910 (2) Åθ = 0.4–33.4°
b = 8.3730 (17) ŵ = 0.92 mm1
c = 22.999 (5) ÅT = 173 K
V = 1908.4 (7) Å3Plate, yellow
Z = 80.10 × 0.09 × 0.01 mm
F(000) = 976
Data collection top
ADSC Q210 CCD area detector
diffractometer
1749 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.069
ω scanθmax = 26.0°, θmin = 2.5°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski & Minor, 1997)
h = 1212
Tmin = 0.794, Tmax = 1.000k = 1111
16426 measured reflectionsl = 3131
2383 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.116P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.160(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.95 e Å3
2383 reflectionsΔρmin = 1.53 e Å3
121 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.017 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6842 (2)0.3903 (3)0.43614 (9)0.0245 (5)
H1N10.66730.31560.46390.037*
H2N10.64440.48420.44630.037*
H3N10.77490.40490.43280.037*
N20.4159 (3)0.2284 (3)0.42353 (10)0.0279 (5)
H1N20.42730.27580.45880.042*
H2N20.45750.13150.42350.042*
H3N20.32620.21510.41650.042*
C10.6285 (3)0.3349 (3)0.37930 (11)0.0249 (6)
H10.66220.22410.37210.030*
C20.4758 (3)0.3313 (3)0.37730 (12)0.0247 (5)
H20.44130.44270.38230.030*
C30.4292 (3)0.2686 (4)0.31840 (13)0.0342 (7)
H3A0.46000.15690.31370.041*
H3B0.32930.26880.31710.041*
C40.4833 (3)0.3687 (4)0.26844 (14)0.0410 (8)
H4A0.45700.31920.23100.049*
H4B0.44300.47680.27010.049*
C50.6347 (3)0.3820 (4)0.27138 (13)0.0357 (7)
H5A0.66650.45630.24080.043*
H5B0.67540.27600.26380.043*
C60.6808 (3)0.4421 (4)0.33063 (12)0.0318 (6)
H6A0.64750.55230.33660.038*
H6B0.78070.44470.33180.038*
Cr10.44912 (4)0.79269 (5)0.43056 (2)0.0227 (2)
O10.53896 (18)0.9403 (2)0.40203 (9)0.0308 (5)
O20.34508 (19)0.8641 (2)0.47950 (9)0.0330 (5)
O30.3616 (2)0.6998 (2)0.38110 (10)0.0362 (5)
O40.55315 (18)0.6648 (2)0.46324 (9)0.0311 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0243 (12)0.0215 (11)0.0278 (11)0.0015 (9)0.0012 (8)0.0002 (8)
N20.0267 (13)0.0252 (12)0.0316 (13)0.0024 (10)0.0025 (9)0.0012 (9)
C10.0249 (14)0.0217 (12)0.0279 (13)0.0026 (10)0.0002 (10)0.0011 (10)
C20.0257 (14)0.0195 (12)0.0289 (13)0.0000 (10)0.0010 (10)0.0009 (10)
C30.0314 (18)0.0406 (16)0.0307 (15)0.0072 (12)0.0047 (11)0.0009 (13)
C40.0376 (18)0.055 (2)0.0309 (15)0.0053 (16)0.0050 (12)0.0073 (14)
C50.0317 (16)0.0437 (17)0.0315 (15)0.0018 (13)0.0024 (11)0.0029 (12)
C60.0298 (16)0.0322 (14)0.0334 (15)0.0062 (12)0.0000 (11)0.0044 (11)
Cr10.0223 (3)0.0167 (3)0.0290 (3)0.00140 (14)0.00086 (15)0.00134 (14)
O10.0285 (11)0.0233 (10)0.0405 (12)0.0002 (8)0.0062 (8)0.0049 (8)
O20.0305 (11)0.0285 (10)0.0402 (11)0.0053 (8)0.0078 (9)0.0010 (8)
O30.0349 (12)0.0293 (11)0.0444 (13)0.0026 (8)0.0129 (10)0.0053 (8)
O40.0356 (12)0.0224 (9)0.0354 (11)0.0087 (8)0.0053 (8)0.0010 (8)
Geometric parameters (Å, º) top
N1—C11.493 (3)C3—H3A0.9900
N1—H1N10.9100C3—H3B0.9900
N1—H2N10.9100C4—C51.506 (5)
N1—H3N10.9100C4—H4A0.9900
N2—C21.492 (3)C4—H4B0.9900
N2—H1N20.9100C5—C61.523 (4)
N2—H2N20.9100C5—H5A0.9900
N2—H3N20.9100C5—H5B0.9900
C1—C21.514 (4)C6—H6A0.9900
C1—C61.525 (4)C6—H6B0.9900
C1—H11.0000Cr1—O31.628 (2)
C2—C31.525 (4)Cr1—O21.6394 (19)
C2—H21.0000Cr1—O11.6584 (19)
C3—C41.520 (4)Cr1—O41.6654 (19)
C1—N1—H1N1109.5C4—C3—H3B109.2
C1—N1—H2N1109.5C2—C3—H3B109.2
H1N1—N1—H2N1109.5H3A—C3—H3B107.9
C1—N1—H3N1109.5C5—C4—C3111.0 (3)
H1N1—N1—H3N1109.5C5—C4—H4A109.4
H2N1—N1—H3N1109.5C3—C4—H4A109.4
C2—N2—H1N2109.5C5—C4—H4B109.4
C2—N2—H2N2109.5C3—C4—H4B109.4
H1N2—N2—H2N2109.5H4A—C4—H4B108.0
C2—N2—H3N2109.5C4—C5—C6111.3 (2)
H1N2—N2—H3N2109.5C4—C5—H5A109.4
H2N2—N2—H3N2109.5C6—C5—H5A109.4
N1—C1—C2113.7 (2)C4—C5—H5B109.4
N1—C1—C6109.5 (2)C6—C5—H5B109.4
C2—C1—C6109.2 (2)H5A—C5—H5B108.0
N1—C1—H1108.1C5—C6—C1111.1 (2)
C2—C1—H1108.1C5—C6—H6A109.4
C6—C1—H1108.1C1—C6—H6A109.4
N2—C2—C1112.8 (2)C5—C6—H6B109.4
N2—C2—C3108.3 (2)C1—C6—H6B109.4
C1—C2—C3109.7 (2)H6A—C6—H6B108.0
N2—C2—H2108.7O3—Cr1—O2108.60 (11)
C1—C2—H2108.7O3—Cr1—O1111.43 (11)
C3—C2—H2108.7O2—Cr1—O1109.72 (10)
C4—C3—C2112.0 (3)O3—Cr1—O4109.76 (10)
C4—C3—H3A109.2O2—Cr1—O4108.30 (10)
C2—C3—H3A109.2O1—Cr1—O4108.97 (10)
N1—C1—C2—N257.5 (3)C2—C3—C4—C554.6 (4)
C6—C1—C2—N2179.8 (2)C3—C4—C5—C653.4 (4)
N1—C1—C2—C3178.3 (2)C4—C5—C6—C156.5 (3)
C6—C1—C2—C359.0 (3)N1—C1—C6—C5175.7 (2)
N2—C2—C3—C4178.8 (3)C2—C1—C6—C559.1 (3)
C1—C2—C3—C457.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.911.992.896 (3)172
N1—H3N1···O1ii0.912.002.884 (3)164
N1—H2N1···O40.911.812.713 (3)175
N2—H1N2···O4i0.911.872.771 (3)169
N2—H3N2···O2iii0.912.563.104 (3)119
N2—H3N2···O3iii0.912.042.927 (3)166
N2—H2N2···O1iv0.911.862.748 (3)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z; (iii) x+1/2, y1/2, z; (iv) x, y1, z.
 

Acknowledgements

This work was supported by a grant from the 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationFarrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, o992–o993.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHosomi, H., Ohba, S. & Ito, Y. (2000). Acta Cryst. C56, e260–e261.  CrossRef CAS IUCr Journals Google Scholar
First citationKallel, A., Fail, J., Fuess, H. & Daoud, A. (1980). Acta Cryst. B36, 2788–2790.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMkaouar, I., Karâa, N., Hamdi, B. & Zouari, R. (2016). J. Mol. Struct. 1115, 161–170.  CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2016). Acta Cryst. E72, 671–674.  CrossRef IUCr Journals Google Scholar
First citationMorse, M. D. & Chesick, J. P. (1976). Acta Cryst. B32, 954–956.  CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTrabelsi, S., Essid, M., Roisnel, T., Rzaigui, M. & Marouani, H. (2014). Acta Cryst. E70, m84–m85.  CrossRef IUCr Journals Google Scholar
First citationTrabelsi, S., Marouani, H., Al-Deyab, S. S. & Rzaigui, M. (2012). Acta Cryst. E68, m1056.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds