research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 5,7,12,14-tetra­hydro-5,14:7,12-bis­­([1,2]benzeno)­penta­cene-6,13-dione1

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435, USA, and cDepartment of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
*Correspondence e-mail: mn468@drexel.edu

Edited by M. Zeller, Purdue University, USA (Received 8 August 2016; accepted 31 October 2016; online 4 November 2016)

The lattice of 5,7,12,14-tetra­hydro-5,14:7,12-bis­([1,2]benzeno)­penta­cene-6,13-dione, C34H20O2, at 173 K has triclinic (P-1) symmetry and crystallizes with four independent half-mol­ecules in the asymmetric unit. Each mol­ecule is generated from a C17H10O substructure through an inversion center at the centroid of the central quinone ring, generating a wide H-shaped mol­ecule, with a dihedral angle between the mean planes of the terminal benzene rings in each of the two symmetry-related pairs over the four mol­ecules of 68.6 (1) (A), 65.5 (4) (B), 62.3 (9) (C), and 65.8 (8)° (D), an average of 65.6 (1)°. This compound has applications in gas-separation membranes constructed from polymers of intrinsic microporosity (PIM). The title compound is a product of a double Diels–Alder reaction between anthracene and p-benzo­quinone followed by de­hydrogenation. It has also been characterized by cyclic voltammetry and rotating disc electrode polarography, FT–IR, high resolution mass spectrometry, elemental analysis, and 1H NMR.

1. Chemical context

Pentiptycene and its derivatives are members of the iptycene family (Hart et al., 1981[Hart, H., Shamouilian, S. & Takehira, Y. (1981). J. Org. Chem. 46, 4427-4432.]). They possess a rigid, bulky, aromatic, three-dimensional scaffold which makes them suitable for specific applications in porous material construction (Yang & Swager, 1998a[Yang, J. S. & Swager, T. M. (1998a). J. Am. Chem. Soc. 120, 11864-11873.]), fluorescent polymers, chemical sensing (Yang & Swager, 1998b[Yang, J. S. & Swager, T. M. (1998b). J. Am. Chem. Soc. 120, 5321-5322.]) and mol­ecular machines (Sun et al., 2010[Sun, W. T., Huang, Y. T., Huang, G. J., Lu, H. F., Chao, I., Huang, S. L., Huang, S. J., Lin, Y. C., Ho, J. H. & Yang, J. S. (2010). Chem. Eur. J. 16, 11594-11604.]). The first iptycene derivative was reported 85 years ago (Clar, 1931[Clar, E. (1931). Ber. Dtsch. Chem. Ges. A/B, 64, 1676-1688.]). Pentiptycene, first prepared by Theilacker et al. (1960[Theilacker, W., Berger-Brose, U. & Beyer, K. H. (1960). Chem. Ber. 93, 1658-1681.]), is readily available from inexpensive materials and is made by Clar synthesis, which involves a Diels–Alder cyclo­addition between a polycyclic diene and a benzo­quinone followed by chloranil-induced de­hydrogenation. Pentiptycene quinone is a precursor for pentiptycene-6,13-diol, which is subsequently used as a principal reactant for polymer synthesis. Gong & Zhang (2011[Gong, F. & Zhang, S. (2011). J. Power Sources, 196, 9876-9883.]) synthesized poly(aryl­ene ether sulfone)s to fabricate highly conductive polymer electrolyte membranes for high-temperature and low-humidity conditions. Pentiptycene-based di­amines have been used in the preparation of polyimides with controlled mol­ecular cavities, for application in gas separation membranes (Luo et al., 2015[Luo, S., Liu, Q., Zhang, B., Wiegand, J. R., Freeman, B. D. & Guo, R. (2015). J. Membr. Sci. 480, 20-30.], 2016[Luo, S., Wiegand, J. R., Kazanowska, B., Doherty, C. M., Konstas, K., Hill, A. J. & Guo, R. (2016). Macromolecules, 49, 3395-3405.]).

2. Structural commentary

In the title compound, C34H20O2, four independent half-mol­ecules (A, B, C, D) crystallize in the asymmetric unit. An inversion center [1 − x, 1 − y, 2 − z (mol­ecule A), 1 − x, 2 − y, 1 − z (mol­ecule B), −x, 1 − y, 2 − z (mol­ecule C) and 2 − x, −y, 1 − z (mol­ecule D)] is present at the centroid of the central quinone ring in each mol­ecule and yields a C17H10O substructure, generating mol­ecules with a concave H-shape (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The structure of mol­ecule A, C34H20O2, one of four independent mol­ecules (A, B, C, and D) in the unit cell, showing the atom-labeling scheme with 30% probability ellipsoids. H atoms are rendered as spheres of arbitrary radius. An inversion center (1 − x, 1 − y, 1 − z) at the centroid of the central quinone ring generates the complete mol­ecule from a C17H10O substructure.

The dihedral angle between the mean planes of the terminal benzene rings in each of the symmetry-related sets over the four mol­ecules is (the complement of) 68.6 (1) (A), 65.5 (4) (B), 62.3 (9) (C) and 65.8 (8)° (D), an average of 65.6 (1)°. The three six-membered carbon rings fused between the benzene rings and the central quinone ring in each of the four mol­ecules adopt a boat conformation (Table 1[link]). No classical hydrogen bonds are observed.

Table 1
Packing parameters (Å, °) for six-mol­ecule carbon rings in mol­ecules A, B, C, and D

Mol. Carbon ring Q ω φ
A C2A–C5A/C10A/C11A 0.7952 (3) 89.74 (14) 300.20 (15)
A C2A–C4A/C17A/C12A/C11A 0.788 (2) 89.94 (15) 119.27 (15)
A C4A/C5A/C10A–C12A/C17A 0.845 (2) 89.67 (14) 359.59 (14)
B C2B–C5B/C10B/C11B 0.809 (2) 89.94 (14) 120.14 (15)
B C2B–C4B/C17B/C12B/C11B 0.790 (2) 89.82 (15) 300.15 (15)
B C4B/C5B/C10B–C12B/C17B 0.845 (2) 89.67 (14) 359.59 (14)
C C2C–C5C/C10C/C11C 0.798 (2) 89.77 (14) 119.61 (55)
C C2C–C4C/C17C/C12C/C11C 0.805 (2) 89.91 (14) 300.43 (15)
C C4C/C5C/C10C–C12C/C17C 0.818 (2) 90.17 (14) 180.42 (15)
D C2D–C5D/C10D/C11D 0.789 (2) 90.00 (15) 119.35 (15)
D C2D–C4D/C17D/C12D/C11D 0.800 (2) 89.42 (14) 300.04 (15)
D C4D/C5D/C10D–C12D/C17D 0.833 (2) 90.53 (14) 179.83 (14)

The central quinone moiety and H-shaped nature of the title compound make it very similar to its hydro­quinone analogue (Nozari et al., 2016[Nozari, M., Kaur, M., Jasinski, J. P., Addison, A. W., Arabi Shamsabadi, A. & Soroush, M. (2016). IUCrData, 1, x161130.]) which crystallized in a monoclinic (P21/n) space group with a solvent DMF mol­ecule that generated O—H⋯O hydrogen bonds and weak C—H⋯O inter­molecular inter­actions in the crystal lattice. The average lengths of the C=O bonds in the title mol­ecule are shorter than the C—OH bond in the hydro­quinone, 1.219 (2) vs 1.3665 (16) Å, respectively. The average lengths of the C1—C2 and C2—C3 bonds in the central symmetry-generated quinone rings of the four mol­ecules are respectively 1.478 (1) and 1.344 (8) Å, while in the hydro­quinone analogue they are 1.395 (2) and 1.394 (2) Å. The average angle of the C1–C2–C3 group of the central core moiety of the four title quinone mol­ecules is 122.58 (16)°, whereas for the hydro­quinone analogue it is 117.31 (12)°. The oxidative conversion of the hydro­quinone to the quinone inevitably breaks the central ring's aromaticity and localizes the remaining bonding π-electrons into the C=O and flanking (C2A—C3A) bonds. This phenomenon is typified by the comparison of a known hydro­quinone (also with hydrogen-bonded OH groups; Barnes et al. 1990[Barnes, J. C., Paton, J. D. & Blyth, C. S. (1990). Acta Cryst. C46, 1183-1184.]) with a closely related quinone (Gautrot et al., 2006[Gautrot, J. E., Hodge, O., Cupertino, D. & Helliwell, M. (2006). New J. Chem. 30, 1801-1807.]). In the former case, the C—O single bonds are about 1.38 Å, while the ring C—C bonds are of like length. For the quinone, the C=O bonds are typically 1.22 Å, the four C—C bonds adjacent to C1A range from 1.48 to 1.50 Å, and the two C—C bonds flanking those in turn are 1.40 to 1.41 Å. In the hydro­quinone, the hydrogen bonds must nonetheless somewhat influence these bond lengths. In the quinone mol­ecule, only weak ππ ring inter­actions provide little if any influence toward the bonding motifs within the mol­ecule (Fig. 1[link]).

3. Supra­molecular features

In the crystal, there are four independent quinone mol­ecules oriented in different directions in the lattice. Despite the variation in orientation of the quinones with respect to one another, there are prominent arrays of the mol­ecules along the a-axis direction of the lattice (Figs. 2[link] and 3[link]). The dihedral angles between the mean planes of the quinone rings, which emphasize the different orientations of the mol­ecules, range from 46 to 90°. While the hydrogen bonding found for the hydro­quinone is presumably a major lattice-structuring influence, we propose that the absence of such inter­actions for the quinone leads to a lattice geometry dominated by close packing of these exaggeratedly shaped quinone mol­ecules, and indeed the quinone crystal is more dense (1.338 g cm−3) than hydro­quinone (1.264 g cm−3). The crystal packing is influenced by weak ππ inter­molecular inter­actions involving the benzene rings from a flap of the V-shaped terminus of each of the mol­ecules B [C5B⋯C10B(1 − x, 1 − y, 1 − z) = 3.8375 (12) Å, ] and mol­ecules C [C5C⋯C10C(−x, 2 − y, 2 − z) = 3.9342 (12) Å]. Additional weak C—H⋯π inter­molecular inter­actions also contribute to the packing stability (Table 2[link]).

Table 2
Weak C—H⋯π inter­molecular inter­actions (Å, °)

Cg1, Cg2, Cg3 and Cg4 are the centroids of the C12B–C17B, C12C–C17C, C12A–C17A and C5B–C10B rings, respectively.

No. D—H⋯A d(D—H) d(DA) <(D—H⋯A)
1 C8B—H8BCgi 2.98 3.484 (2) 144
2 C7C—H7CCgii 2.70 3.417 (2) 133
3 C16C—H16CCgi 2.74 3.662 (3) 165
4 C4D—H4DCgii 2.98 3.948 (2) 163
Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −x, 2 − y, 2 − z.
[Figure 2]
Figure 2
View of the crystal packing along the a-axis direction. The mol­ecules are color-coded as green (A), yellow (B), blue (C), and red (D). All four types of mol­ecules are arrayed along the a-axis direction, though none of the quinone planes is oriented simply parallel or perpendicular to the a axis. The A and D mol­ecules also form arrays along the b-axis direction more discernibly than other directions in the lattice.
[Figure 3]
Figure 3
Crystal packing of the four independent mol­ecules (A, B, C, and D) viewed along along the c axis.

4. Electrochemistry

The quinone-hydro­quinone system is a prototype organic redox system; Q + e [\rightleftharpoons] Q·−, Q·− + e[\rightleftharpoons] Q2−. These systems have been studied electrochemically since the 1920s (Fieser, 1928[Fieser, L. P. (1928). J. Am. Chem. Soc. 50, 439-465.]). Cyclic voltammetry (CV) and rotating disc electrode (RDE) polarography were performed at 298 K on 1 mM quinone in DMF with 0.1 M tetra­butyl­ammonium hexa­fluorido­phosphate (TBAPF6) as the supporting electrolyte, at scan rates ranging from 50 to 10000 mV s−1 for CV, and 1200 to 3200 r.p.m. for the RDE. Experiments were run on a BASi–Epsilon instrument using a three-electrode cell incorporating a non-aqueous reference electrode (APE) (Pavlishchuk & Addison, 2000[Pavlishchuk, V. V. & Addison, A. W. (2000). Inorg. Chim. Acta, 298, 97-102.]) and a 3 mm diameter Pt disc working electrode (Figs. 4[link] and 5[link]). The first reduction to Q·− (E1/2a) was found by CV to b −0.741 (2) V, while formation of Q2− (E1/2b) was seen in the rotating disc polarogram at about −1.53 V; the RDE results also demonstrate unequivocally the reductive nature of these processes. The first reduction is reversible, with ΔEp° close to 59 mV, but the second reduction is complicated [similar outcomes have previously been observed for quinones in DMF solutions (Jeong et al., 2000[Jeong, H., Choi, E. M., Kang, S. O., Nam, K. C. & Jeon, S. (2000). J. Electroanal. Chem. 485, 154-160.])]. The E1/2 values are within the range reported for quinone systems in the literature with E1/2a ranging from −0.72 to −1.37 V and E1/2b from −1.18 to −1.90 V vs AgCl/Ag (Bauscher & Mäntele 1992[Bauscher, M. & Mäntele, W. (1992). J. Phys. Chem. 96, 11101-11108.]). From the CV results, the diffusion coefficient value of the title compound is estimated to be 5.4 × 10−06 cm2 s−1 in DMF, corresponding to a Dη value of 4.7 × 10 −08 g cm s−2, consistent with the n = 1 assignment.

[Figure 4]
Figure 4
Cyclic voltammogram for reduction of 1 mM quinone versus the APE in DMF containing 0.1 M TBAPF6 as the supporting electrolyte, at a scan rate of 100 mV s−1. The APE potential is 340 mV more positive than that of the AgCl/Ag electrode (Pavlishchuk & Addison, 2000[Pavlishchuk, V. V. & Addison, A. W. (2000). Inorg. Chim. Acta, 298, 97-102.]).
[Figure 5]
Figure 5
Rotating disc electrode polarogram for reduction of 1 mM quinone versus the APE in DMF containing 0.1 M TBAPF6 as the supporting electrolyte at a rotation rate of 2400 r.p.m. The APE potential is 340 mV more positive than the AgCl/Ag electrode (Pavlishchuk & Addison, 2000[Pavlishchuk, V. V. & Addison, A. W. (2000). Inorg. Chim. Acta, 298, 97-102.]).

5. Database survey

X-ray structures for some hydro­quinone derivatives of the corresponding quinone compound have been reported. We recently described the undecorated hydro­quinone (Nozari et al., 2016[Nozari, M., Kaur, M., Jasinski, J. P., Addison, A. W., Arabi Shamsabadi, A. & Soroush, M. (2016). IUCrData, 1, x161130.]). Bis(tri­methyl­silylethyn­yl)pentiptycene was reported by Yang & Swager (1998b[Yang, J. S. & Swager, T. M. (1998b). J. Am. Chem. Soc. 120, 5321-5322.]), while a long-chain ether and an aryl­sulfonyl di­amide derivative were reported by Yang et al. (2000a[Yang, J. S., Lee, C. C., Yau, S. L., Chang, C. C., Lee, C. C. & Leu, J. M. (2000a). J. Org. Chem. 65, 871-877.],b[Yang, J. S., Liu, C. & Lee, G. (2000b). Tetrahedron Lett. 41, 7911-7915.]). The hydro­quinone triflate ester was reported by Zyryanov et al. (2008[Zyryanov, G. V., Palacios, M. A. & Anzenbacher, P. Jr (2008). Org. Lett. 10, 3681-3684.]), and a 4′-carb­oxy­benzyl ether derivative by Crane et al. (2013[Crane, A. K., Wong, E. Y. L. & MacLachlan, M. J. (2013). CrystEngComm, 15, 9811-9819.]).

6. Synthesis and crystallization

The title pentiptycene quinone was prepared using a double Diels–Alder reaction between anthracene and p-benzo­quinone (Fig. 6[link]). The procedure reported by Cao et al. (2009[Cao, J., Lu, H. Y. & Chen, C. F. (2009). Tetrahedron, 65, 8104-8112.]) was followed. For this synthesis, 7.12 g (40 mmol) of anthracene and 2.16 g (20 mmol) of p-benzo­quinone were added to glacial acetic acid (250 mL), followed by addition of 9.84 g (40 mmol) of chloranil. The mixture was refluxed for 18 h, following which the solution was allowed to cool to room temperature. The resulting dark-yellow solid was filtered off, washed with diethyl ether, and vacuum desiccated, yielding the crude product (8.22 g, 89%), which was then recrystallized from DMF, washed with diethyl ether, and air-dried. Analysis calculated for C34H20O2: C, 88.7, H, 4.38. O, 6.95. Found: C, 88.4, H, 4.50, O, 7.09 (by difference). 1H NMR (500 MHz, chloro­form-d) δ 7.44–7.21 (m, 4H), 7.11–6.85 (m, 4H), 5.86 (s, 1H), 5.65 (s, 1H); FT–IR 1640 (C=O), 1579, 1456, 1293, 1200, 1137, 1019, 886, 742 cm−1; mass spectrum calculated for C34H21O2 (m + 1)+ m/z 461.154, found 461.153.

[Figure 6]
Figure 6
Synthesis of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All of the H atoms were refined using a riding-model approximation with C—H = 0.95 Å or 1.0 Å. Isotropic displacement parameters for these atoms were set to 1.2Ueq of the parent atom.

Table 3
Experimental details

Crystal data
Chemical formula C34H20O2
Mr 460.50
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 10.3419 (4), 11.7885 (6), 19.2267 (11)
α, β, γ (°) 77.606 (5), 89.306 (4), 86.658 (4)
V3) 2285.5 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.64
Crystal size (mm) 0.38 × 0.14 × 0.08
 
Data collection
Diffractometer Rigaku Oxford Diffaction Eos Gemini
Absorption correction Multi-scan (CrysAlis PRO and CrysAlis RED; Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO and CrysAlis RED. Rigaku Americas Corporation, The Woodlands, Texas, USA.])
No. of measured, independent and observed [I > 2σ(I)] reflections 16688, 8703, 7068
Rint 0.038
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.161, 1.05
No. of reflections 8703
No. of parameters 649
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.31
Computer programs: CrysAlis PRO and CrysAlis RED (Rigaku OD, 2012[Rigaku OD (2012). CrysAlis PRO and CrysAlis RED. Rigaku Americas Corporation, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2012); cell refinement: CrysAlis PRO (Rigaku OD, 2012); data reduction: CrysAlis RED (Rigaku OD, 2012); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

5,7,12,14-Tetrahydro-5,14:7,12-bis([1,2]benzeno)pentacene-6,13-dione top
Crystal data top
C34H20O2Z = 4
Mr = 460.50F(000) = 960
Triclinic, P1Dx = 1.338 Mg m3
a = 10.3419 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.7885 (6) ÅCell parameters from 2655 reflections
c = 19.2267 (11) Åθ = 3.9–71.4°
α = 77.606 (5)°µ = 0.64 mm1
β = 89.306 (4)°T = 173 K
γ = 86.658 (4)°Prism, yellow
V = 2285.5 (2) Å30.38 × 0.14 × 0.08 mm
Data collection top
Rigaku Oxford Diffaction Eos Gemini
diffractometer
8703 independent reflections
Radiation source: Enhance (Cu) X-ray Source7068 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.0416 pixels mm-1θmax = 71.5°, θmin = 3.9°
ω scansh = 126
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Rigaku OD, 2012)
k = 1414
l = 2321
16688 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0938P)2 + 0.3137P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
8703 reflectionsΔρmax = 0.41 e Å3
649 parametersΔρmin = 0.31 e Å3
0 restraints
Special details top

Experimental. 1H NMR (500 MHz, chloroform-d) δ 7.44-7.21 (m, 4H), 7.11-6.85 (m, 4H), 5.86 (s,1H), 5.65 (s, 1H). ; IR 1640 (C=O), 1579, 1456, 1293, 1200, 1137, 1019, 886, 742 cm-1; mass spectrum calcd for C34H21O2 (m+1)+ m/z 461.1536, found 461.1529 (4).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.67598 (14)0.64743 (13)0.93841 (7)0.0337 (3)
C1A0.59748 (17)0.57908 (15)0.96675 (9)0.0229 (3)
C2A0.52423 (17)0.51065 (16)0.92620 (9)0.0235 (4)
C3A0.43357 (18)0.43896 (16)0.95639 (9)0.0249 (4)
C4A0.36776 (19)0.37687 (17)0.90550 (10)0.0282 (4)
H4A0.29980.32440.92870.034*
C5A0.31656 (19)0.47330 (18)0.84369 (10)0.0300 (4)
C6A0.1929 (2)0.4858 (2)0.81612 (12)0.0374 (5)
H6A0.12830.43520.83720.045*
C7A0.1644 (2)0.5749 (2)0.75612 (13)0.0448 (6)
H7A0.07950.58510.73660.054*
C8A0.2583 (2)0.6477 (2)0.72533 (12)0.0423 (5)
H8A0.23800.70700.68440.051*
C9A0.3831 (2)0.63521 (19)0.75371 (10)0.0345 (4)
H9A0.44750.68640.73300.041*
C10A0.41176 (19)0.54718 (17)0.81254 (10)0.0282 (4)
C11A0.54511 (18)0.51449 (16)0.84738 (9)0.0262 (4)
H11A0.61350.56760.82550.031*
C12A0.57305 (19)0.38856 (17)0.84075 (9)0.0271 (4)
C13A0.6777 (2)0.3465 (2)0.80621 (10)0.0333 (4)
H13A0.74300.39650.78540.040*
C14A0.6855 (2)0.2293 (2)0.80242 (12)0.0426 (5)
H14A0.75700.19930.77910.051*
C15A0.5903 (3)0.1565 (2)0.83218 (12)0.0442 (5)
H15A0.59640.07710.82880.053*
C16A0.4848 (2)0.19892 (19)0.86725 (11)0.0366 (5)
H16A0.41950.14890.88790.044*
C17A0.47715 (19)0.31436 (17)0.87140 (10)0.0285 (4)
O1C0.10862 (14)0.53082 (12)0.87054 (7)0.0301 (3)
C1C0.06219 (17)0.51755 (15)0.93001 (9)0.0233 (3)
C2C0.00715 (18)0.61326 (16)0.95641 (9)0.0249 (4)
C3C0.05255 (18)0.59679 (16)1.01992 (10)0.0258 (4)
C4C0.10523 (19)0.70623 (16)1.03611 (10)0.0289 (4)
H4C0.14980.69281.08330.035*
C5C0.01092 (19)0.79431 (16)1.02907 (10)0.0285 (4)
C6C0.0546 (2)0.85554 (18)1.07934 (11)0.0365 (5)
H6C0.01220.84481.12400.044*
C7C0.1621 (2)0.93336 (19)1.06320 (14)0.0427 (5)
H7C0.19300.97621.09720.051*
C8C0.2243 (2)0.94899 (19)0.99840 (14)0.0419 (5)
H8C0.29791.00190.98840.050*
C9C0.1802 (2)0.88804 (17)0.94772 (12)0.0343 (4)
H9C0.22250.89940.90300.041*
C10C0.07360 (19)0.81053 (16)0.96344 (10)0.0275 (4)
C11C0.01140 (19)0.73785 (16)0.91421 (10)0.0267 (4)
H11C0.05650.74900.86730.032*
C12C0.12981 (19)0.76996 (16)0.90756 (10)0.0285 (4)
C13C0.1940 (2)0.81458 (17)0.84526 (12)0.0352 (4)
H13C0.15080.82720.80070.042*
C14C0.3226 (2)0.8409 (2)0.84845 (14)0.0434 (5)
H14C0.36740.87150.80570.052*
C15C0.3864 (2)0.82302 (19)0.91309 (15)0.0432 (5)
H15C0.47450.84110.91460.052*
C16C0.3209 (2)0.77832 (17)0.97621 (13)0.0357 (5)
H16C0.36420.76581.02080.043*
C17C0.1929 (2)0.75262 (16)0.97313 (11)0.0294 (4)
O1D1.16824 (14)0.17465 (13)0.55887 (7)0.0339 (3)
C1D1.09380 (17)0.09392 (16)0.53194 (9)0.0237 (4)
C2D1.01696 (18)0.02375 (16)0.57483 (9)0.0247 (4)
C3D0.92860 (18)0.06052 (16)0.54596 (9)0.0249 (4)
C4D0.85470 (18)0.11861 (17)0.59908 (9)0.0271 (4)
H4D0.78870.18060.57670.033*
C5D0.95849 (19)0.16186 (17)0.64165 (9)0.0282 (4)
C6D0.9632 (2)0.27375 (18)0.65312 (11)0.0365 (5)
H6D0.89940.33250.63310.044*
C7D1.0633 (3)0.2985 (2)0.69466 (13)0.0451 (5)
H7D1.06790.37480.70280.054*
C8D1.1557 (2)0.2126 (2)0.72407 (12)0.0418 (5)
H8D1.22330.23050.75230.050*
C9D1.1507 (2)0.09976 (19)0.71257 (10)0.0337 (4)
H9D1.21430.04090.73280.040*
C10D1.05177 (19)0.07511 (17)0.67134 (9)0.0282 (4)
C11D1.02761 (19)0.04370 (16)0.65518 (9)0.0274 (4)
H11D1.09430.10620.67610.033*
C12D0.8906 (2)0.06857 (17)0.68249 (9)0.0287 (4)
C13D0.8553 (2)0.16378 (18)0.73347 (10)0.0352 (5)
H13D0.91790.22400.75300.042*
C14D0.7271 (3)0.1700 (2)0.75565 (12)0.0451 (6)
H14D0.70210.23400.79130.054*
C15D0.6355 (2)0.0831 (2)0.72593 (13)0.0472 (6)
H15D0.54790.08880.74110.057*
C16D0.6699 (2)0.0127 (2)0.67405 (12)0.0378 (5)
H16D0.60680.07210.65380.045*
C17D0.79803 (19)0.01873 (18)0.65302 (10)0.0293 (4)
O1B0.36832 (14)0.94275 (12)0.62240 (7)0.0332 (3)
C1B0.42572 (18)0.96821 (16)0.56576 (10)0.0248 (4)
C2B0.50197 (18)0.88122 (16)0.53524 (10)0.0258 (4)
C3B0.57432 (19)0.91049 (16)0.47596 (10)0.0278 (4)
C4B0.6456 (2)0.80840 (16)0.45309 (11)0.0303 (4)
H4B0.69890.83160.40910.036*
C5B0.5396 (2)0.72624 (16)0.44506 (10)0.0295 (4)
C6B0.5156 (2)0.68273 (18)0.38563 (11)0.0371 (5)
H6B0.56590.70410.34370.044*
C7B0.4165 (3)0.60711 (18)0.38805 (12)0.0414 (5)
H7B0.39880.57710.34730.050*
C8B0.3432 (2)0.57501 (17)0.44943 (12)0.0366 (5)
H8B0.27670.52240.45060.044*
C9B0.36681 (19)0.61968 (16)0.50941 (11)0.0304 (4)
H9B0.31650.59840.55140.036*
C10B0.46500 (19)0.69565 (15)0.50657 (10)0.0263 (4)
C11B0.50641 (18)0.75110 (15)0.56702 (10)0.0259 (4)
H11B0.45240.73020.61090.031*
C12B0.64921 (19)0.71316 (16)0.57920 (10)0.0281 (4)
C13B0.7044 (2)0.64890 (17)0.64158 (11)0.0324 (4)
H13B0.65330.62810.68320.039*
C14B0.8359 (2)0.61507 (19)0.64261 (13)0.0406 (5)
H14B0.87450.57080.68520.049*
C15B0.9105 (2)0.6454 (2)0.58232 (15)0.0443 (5)
H15B1.00020.62250.58370.053*
C16B0.8548 (2)0.70972 (19)0.51912 (13)0.0395 (5)
H16B0.90610.73000.47740.047*
C17B0.7247 (2)0.74353 (16)0.51782 (11)0.0314 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0373 (7)0.0377 (7)0.0279 (7)0.0125 (6)0.0087 (6)0.0090 (6)
C1A0.0230 (8)0.0239 (8)0.0218 (8)0.0010 (6)0.0017 (6)0.0055 (6)
C2A0.0258 (8)0.0257 (8)0.0185 (8)0.0022 (7)0.0004 (6)0.0043 (6)
C3A0.0290 (9)0.0254 (8)0.0205 (8)0.0003 (7)0.0015 (7)0.0062 (7)
C4A0.0315 (9)0.0322 (9)0.0229 (9)0.0051 (8)0.0003 (7)0.0093 (7)
C5A0.0317 (10)0.0370 (10)0.0242 (9)0.0027 (8)0.0016 (7)0.0143 (8)
C6A0.0311 (10)0.0506 (13)0.0360 (11)0.0023 (9)0.0031 (8)0.0228 (10)
C7A0.0403 (12)0.0579 (14)0.0411 (12)0.0187 (10)0.0179 (10)0.0264 (11)
C8A0.0538 (14)0.0442 (12)0.0289 (10)0.0175 (10)0.0114 (9)0.0128 (9)
C9A0.0442 (11)0.0366 (10)0.0224 (9)0.0101 (9)0.0022 (8)0.0088 (8)
C10A0.0336 (10)0.0324 (10)0.0193 (8)0.0049 (8)0.0014 (7)0.0088 (7)
C11A0.0294 (9)0.0299 (9)0.0189 (8)0.0008 (7)0.0016 (7)0.0046 (7)
C12A0.0327 (9)0.0318 (9)0.0169 (8)0.0029 (7)0.0040 (7)0.0069 (7)
C13A0.0329 (10)0.0452 (12)0.0225 (9)0.0037 (8)0.0007 (7)0.0102 (8)
C14A0.0487 (13)0.0496 (13)0.0321 (11)0.0122 (10)0.0008 (9)0.0185 (10)
C15A0.0659 (15)0.0347 (11)0.0353 (11)0.0069 (10)0.0038 (10)0.0168 (9)
C16A0.0479 (12)0.0337 (10)0.0305 (10)0.0041 (9)0.0022 (8)0.0116 (8)
C17A0.0336 (10)0.0323 (10)0.0207 (8)0.0006 (8)0.0037 (7)0.0090 (7)
O1C0.0384 (7)0.0295 (7)0.0221 (6)0.0014 (5)0.0059 (5)0.0046 (5)
C1C0.0258 (8)0.0239 (8)0.0202 (8)0.0015 (7)0.0004 (6)0.0057 (7)
C2C0.0304 (9)0.0226 (8)0.0211 (8)0.0008 (7)0.0011 (7)0.0039 (7)
C3C0.0322 (9)0.0228 (8)0.0228 (8)0.0003 (7)0.0020 (7)0.0062 (7)
C4C0.0389 (10)0.0232 (9)0.0249 (9)0.0021 (8)0.0058 (7)0.0052 (7)
C5C0.0367 (10)0.0214 (8)0.0279 (9)0.0047 (7)0.0011 (7)0.0058 (7)
C6C0.0506 (12)0.0300 (10)0.0321 (10)0.0096 (9)0.0057 (9)0.0118 (8)
C7C0.0489 (13)0.0310 (10)0.0536 (14)0.0067 (9)0.0149 (10)0.0208 (10)
C8C0.0378 (11)0.0284 (10)0.0613 (15)0.0013 (8)0.0041 (10)0.0147 (10)
C9C0.0359 (10)0.0248 (9)0.0415 (11)0.0013 (8)0.0020 (8)0.0056 (8)
C10C0.0326 (10)0.0216 (8)0.0288 (9)0.0044 (7)0.0016 (7)0.0056 (7)
C11C0.0360 (10)0.0217 (8)0.0220 (8)0.0002 (7)0.0023 (7)0.0038 (7)
C12C0.0360 (10)0.0208 (8)0.0290 (9)0.0010 (7)0.0015 (7)0.0071 (7)
C13C0.0459 (12)0.0270 (9)0.0337 (10)0.0010 (8)0.0088 (9)0.0092 (8)
C14C0.0447 (12)0.0342 (11)0.0516 (14)0.0014 (9)0.0189 (10)0.0113 (10)
C15C0.0289 (10)0.0311 (10)0.0700 (16)0.0010 (8)0.0060 (10)0.0128 (10)
C16C0.0348 (10)0.0231 (9)0.0497 (12)0.0012 (8)0.0076 (9)0.0090 (8)
C17C0.0357 (10)0.0208 (8)0.0320 (10)0.0019 (7)0.0029 (8)0.0067 (7)
O1D0.0385 (8)0.0355 (7)0.0259 (7)0.0091 (6)0.0053 (5)0.0055 (6)
C1D0.0273 (9)0.0243 (8)0.0193 (8)0.0026 (7)0.0007 (6)0.0040 (7)
C2D0.0310 (9)0.0253 (8)0.0174 (8)0.0034 (7)0.0012 (6)0.0034 (7)
C3D0.0293 (9)0.0253 (8)0.0204 (8)0.0019 (7)0.0009 (6)0.0053 (7)
C4D0.0317 (9)0.0300 (9)0.0201 (8)0.0011 (7)0.0028 (7)0.0072 (7)
C5D0.0369 (10)0.0307 (9)0.0178 (8)0.0046 (8)0.0053 (7)0.0066 (7)
C6D0.0520 (13)0.0292 (10)0.0293 (10)0.0018 (9)0.0042 (9)0.0092 (8)
C7D0.0640 (15)0.0377 (11)0.0388 (12)0.0126 (11)0.0021 (10)0.0174 (9)
C8D0.0492 (13)0.0498 (13)0.0310 (10)0.0160 (10)0.0001 (9)0.0151 (9)
C9D0.0377 (11)0.0412 (11)0.0224 (9)0.0071 (9)0.0018 (7)0.0060 (8)
C10D0.0368 (10)0.0312 (9)0.0170 (8)0.0060 (8)0.0052 (7)0.0050 (7)
C11D0.0357 (10)0.0274 (9)0.0187 (8)0.0006 (7)0.0009 (7)0.0045 (7)
C12D0.0402 (11)0.0309 (9)0.0168 (8)0.0075 (8)0.0021 (7)0.0080 (7)
C13D0.0551 (13)0.0323 (10)0.0208 (9)0.0156 (9)0.0011 (8)0.0078 (8)
C14D0.0660 (15)0.0462 (13)0.0281 (10)0.0286 (12)0.0119 (10)0.0127 (9)
C15D0.0449 (13)0.0669 (16)0.0379 (12)0.0250 (12)0.0169 (10)0.0238 (11)
C16D0.0360 (11)0.0499 (13)0.0326 (10)0.0089 (9)0.0061 (8)0.0184 (9)
C17D0.0351 (10)0.0347 (10)0.0210 (8)0.0059 (8)0.0038 (7)0.0115 (7)
O1B0.0418 (8)0.0287 (7)0.0293 (7)0.0056 (6)0.0113 (6)0.0063 (5)
C1B0.0289 (9)0.0236 (8)0.0233 (8)0.0068 (7)0.0023 (7)0.0071 (7)
C2B0.0311 (9)0.0227 (8)0.0240 (9)0.0044 (7)0.0010 (7)0.0053 (7)
C3B0.0342 (10)0.0245 (9)0.0260 (9)0.0040 (7)0.0046 (7)0.0081 (7)
C4B0.0397 (10)0.0226 (9)0.0295 (9)0.0038 (8)0.0099 (8)0.0074 (7)
C5B0.0416 (11)0.0201 (8)0.0267 (9)0.0002 (7)0.0002 (8)0.0055 (7)
C6B0.0603 (14)0.0259 (9)0.0251 (9)0.0007 (9)0.0003 (9)0.0066 (7)
C7B0.0686 (15)0.0263 (10)0.0310 (11)0.0003 (10)0.0140 (10)0.0102 (8)
C8B0.0432 (12)0.0235 (9)0.0434 (12)0.0026 (8)0.0130 (9)0.0070 (8)
C9B0.0348 (10)0.0212 (8)0.0342 (10)0.0008 (7)0.0037 (8)0.0040 (7)
C10B0.0332 (9)0.0200 (8)0.0255 (9)0.0012 (7)0.0023 (7)0.0047 (7)
C11B0.0320 (9)0.0218 (8)0.0239 (9)0.0040 (7)0.0018 (7)0.0045 (7)
C12B0.0326 (10)0.0224 (8)0.0318 (10)0.0051 (7)0.0000 (7)0.0107 (7)
C13B0.0390 (11)0.0286 (9)0.0320 (10)0.0041 (8)0.0050 (8)0.0106 (8)
C14B0.0429 (12)0.0336 (11)0.0468 (13)0.0035 (9)0.0122 (10)0.0114 (9)
C15B0.0302 (10)0.0376 (11)0.0674 (16)0.0019 (9)0.0061 (10)0.0160 (11)
C16B0.0373 (11)0.0298 (10)0.0528 (13)0.0072 (8)0.0094 (9)0.0114 (9)
C17B0.0365 (10)0.0232 (9)0.0359 (10)0.0054 (8)0.0036 (8)0.0084 (8)
Geometric parameters (Å, º) top
O1A—C1A1.217 (2)O1D—C1D1.216 (2)
C1A—C2A1.479 (3)C1D—C2D1.482 (3)
C1A—C3Ai1.481 (2)C1D—C3Diii1.482 (2)
C2A—C3A1.341 (3)C2D—C3D1.342 (3)
C2A—C11A1.520 (2)C2D—C11D1.516 (2)
C3A—C1Ai1.481 (2)C3D—C1Diii1.482 (2)
C3A—C4A1.529 (2)C3D—C4D1.522 (2)
C4A—H4A1.0000C4D—H4D1.0000
C4A—C5A1.533 (3)C4D—C5D1.532 (3)
C4A—C17A1.531 (3)C4D—C17D1.532 (3)
C5A—C6A1.379 (3)C5D—C6D1.387 (3)
C5A—C10A1.396 (3)C5D—C10D1.396 (3)
C6A—H6A0.9500C6D—H6D0.9500
C6A—C7A1.405 (3)C6D—C7D1.396 (3)
C7A—H7A0.9500C7D—H7D0.9500
C7A—C8A1.377 (4)C7D—C8D1.383 (4)
C8A—H8A0.9500C8D—H8D0.9500
C8A—C9A1.395 (3)C8D—C9D1.399 (3)
C9A—H9A0.9500C9D—H9D0.9500
C9A—C10A1.383 (3)C9D—C10D1.383 (3)
C10A—C11A1.533 (3)C10D—C11D1.533 (3)
C11A—H11A1.0000C11D—H11D1.0000
C11A—C12A1.528 (3)C11D—C12D1.527 (3)
C12A—C13A1.386 (3)C12D—C13D1.386 (3)
C12A—C17A1.401 (3)C12D—C17D1.395 (3)
C13A—H13A0.9500C13D—H13D0.9500
C13A—C14A1.397 (3)C13D—C14D1.389 (3)
C14A—H14A0.9500C14D—H14D0.9500
C14A—C15A1.381 (4)C14D—C15D1.386 (4)
C15A—H15A0.9500C15D—H15D0.9500
C15A—C16A1.399 (3)C15D—C16D1.396 (4)
C16A—H16A0.9500C16D—H16D0.9500
C16A—C17A1.378 (3)C16D—C17D1.383 (3)
O1C—C1C1.221 (2)O1B—C1B1.222 (2)
C1C—C2C1.477 (3)C1B—C2B1.473 (3)
C1C—C3Cii1.477 (2)C1B—C3Biv1.482 (3)
C2C—C3C1.346 (3)C2B—C3B1.349 (3)
C2C—C11C1.516 (2)C2B—C11B1.523 (2)
C3C—C1Cii1.478 (2)C3B—C1Biv1.482 (3)
C3C—C4C1.522 (3)C3B—C4B1.517 (3)
C4C—H4C1.0000C4B—H4B1.0000
C4C—C5C1.529 (3)C4B—C5B1.535 (3)
C4C—C17C1.528 (3)C4B—C17B1.532 (3)
C5C—C6C1.382 (3)C5B—C6B1.380 (3)
C5C—C10C1.397 (3)C5B—C10B1.397 (3)
C6C—H6C0.9500C6B—H6B0.9500
C6C—C7C1.393 (3)C6B—C7B1.390 (3)
C7C—H7C0.9500C7B—H7B0.9500
C7C—C8C1.381 (4)C7B—C8B1.390 (3)
C8C—H8C0.9500C8B—H8B0.9500
C8C—C9C1.388 (3)C8B—C9B1.396 (3)
C9C—H9C0.9500C9B—H9B0.9500
C9C—C10C1.383 (3)C9B—C10B1.386 (3)
C10C—C11C1.521 (3)C10B—C11B1.527 (3)
C11C—H11C1.0000C11B—H11B1.0000
C11C—C12C1.527 (3)C11B—C12B1.524 (3)
C12C—C13C1.380 (3)C12B—C13B1.384 (3)
C12C—C17C1.397 (3)C12B—C17B1.400 (3)
C13C—H13C0.9500C13B—H13B0.9500
C13C—C14C1.388 (3)C13B—C14B1.394 (3)
C14C—H14C0.9500C14B—H14B0.9500
C14C—C15C1.384 (4)C14B—C15B1.378 (4)
C15C—H15C0.9500C15B—H15B0.9500
C15C—C16C1.398 (3)C15B—C16B1.398 (4)
C16C—H16C0.9500C16B—H16B0.9500
C16C—C17C1.380 (3)C16B—C17B1.380 (3)
O1A—C1A—C2A122.10 (16)O1D—C1D—C2D122.37 (16)
O1A—C1A—C3Ai122.37 (17)O1D—C1D—C3Diii122.32 (17)
C2A—C1A—C3Ai115.52 (16)C2D—C1D—C3Diii115.30 (16)
C1A—C2A—C11A123.36 (16)C1D—C2D—C11D123.09 (16)
C3A—C2A—C1A122.48 (16)C3D—C2D—C1D122.69 (16)
C3A—C2A—C11A114.16 (16)C3D—C2D—C11D114.19 (17)
C1Ai—C3A—C4A123.36 (16)C1Diii—C3D—C4D123.13 (16)
C2A—C3A—C1Ai121.99 (17)C2D—C3D—C1Diii121.93 (17)
C2A—C3A—C4A114.64 (16)C2D—C3D—C4D114.94 (16)
C3A—C4A—H4A113.6C3D—C4D—H4D113.8
C3A—C4A—C5A105.66 (15)C3D—C4D—C5D105.49 (15)
C3A—C4A—C17A105.90 (15)C3D—C4D—C17D105.10 (15)
C5A—C4A—H4A113.6C5D—C4D—H4D113.8
C17A—C4A—H4A113.6C5D—C4D—C17D103.74 (15)
C17A—C4A—C5A103.40 (15)C17D—C4D—H4D113.8
C6A—C5A—C4A125.9 (2)C6D—C5D—C4D125.99 (19)
C6A—C5A—C10A120.8 (2)C6D—C5D—C10D120.70 (19)
C10A—C5A—C4A113.12 (17)C10D—C5D—C4D113.29 (17)
C5A—C6A—H6A120.7C5D—C6D—H6D120.6
C5A—C6A—C7A118.6 (2)C5D—C6D—C7D118.9 (2)
C7A—C6A—H6A120.7C7D—C6D—H6D120.6
C6A—C7A—H7A119.7C6D—C7D—H7D119.8
C8A—C7A—C6A120.6 (2)C8D—C7D—C6D120.5 (2)
C8A—C7A—H7A119.7C8D—C7D—H7D119.8
C7A—C8A—H8A119.7C7D—C8D—H8D119.7
C7A—C8A—C9A120.6 (2)C7D—C8D—C9D120.6 (2)
C9A—C8A—H8A119.7C9D—C8D—H8D119.7
C8A—C9A—H9A120.5C8D—C9D—H9D120.5
C10A—C9A—C8A119.0 (2)C10D—C9D—C8D119.0 (2)
C10A—C9A—H9A120.5C10D—C9D—H9D120.5
C5A—C10A—C11A113.17 (17)C5D—C10D—C11D113.14 (17)
C9A—C10A—C5A120.45 (19)C9D—C10D—C5D120.35 (19)
C9A—C10A—C11A126.28 (19)C9D—C10D—C11D126.48 (19)
C2A—C11A—C10A105.63 (15)C2D—C11D—C10D105.91 (14)
C2A—C11A—H11A113.5C2D—C11D—H11D113.6
C2A—C11A—C12A106.17 (14)C2D—C11D—C12D104.82 (15)
C10A—C11A—H11A113.5C10D—C11D—H11D113.6
C12A—C11A—C10A103.76 (15)C12D—C11D—C10D104.51 (15)
C12A—C11A—H11A113.5C12D—C11D—H11D113.6
C13A—C12A—C11A126.30 (19)C13D—C12D—C11D126.31 (19)
C13A—C12A—C17A120.31 (19)C13D—C12D—C17D120.29 (19)
C17A—C12A—C11A113.34 (17)C17D—C12D—C11D113.35 (16)
C12A—C13A—H13A120.6C12D—C13D—H13D120.4
C12A—C13A—C14A118.9 (2)C12D—C13D—C14D119.2 (2)
C14A—C13A—H13A120.6C14D—C13D—H13D120.4
C13A—C14A—H14A119.6C13D—C14D—H14D119.9
C15A—C14A—C13A120.7 (2)C15D—C14D—C13D120.2 (2)
C15A—C14A—H14A119.6C15D—C14D—H14D119.9
C14A—C15A—H15A119.8C14D—C15D—H15D119.4
C14A—C15A—C16A120.4 (2)C14D—C15D—C16D121.1 (2)
C16A—C15A—H15A119.8C16D—C15D—H15D119.4
C15A—C16A—H16A120.5C15D—C16D—H16D120.9
C17A—C16A—C15A119.1 (2)C17D—C16D—C15D118.2 (2)
C17A—C16A—H16A120.5C17D—C16D—H16D120.9
C12A—C17A—C4A112.86 (17)C12D—C17D—C4D113.24 (17)
C16A—C17A—C4A126.48 (19)C16D—C17D—C4D125.70 (19)
C16A—C17A—C12A120.63 (19)C16D—C17D—C12D121.03 (19)
O1C—C1C—C2C122.70 (17)O1B—C1B—C2B122.41 (17)
O1C—C1C—C3Cii122.33 (17)O1B—C1B—C3Biv122.03 (17)
C2C—C1C—C3Cii114.93 (15)C2B—C1B—C3Biv115.54 (16)
C1C—C2C—C11C123.12 (16)C1B—C2B—C11B123.61 (16)
C3C—C2C—C1C122.65 (17)C3B—C2B—C1B122.50 (17)
C3C—C2C—C11C114.23 (16)C3B—C2B—C11B113.90 (17)
C1Cii—C3C—C4C123.37 (16)C1Biv—C3B—C4B123.54 (16)
C2C—C3C—C1Cii122.35 (17)C2B—C3B—C1Biv121.81 (17)
C2C—C3C—C4C114.26 (16)C2B—C3B—C4B114.48 (17)
C3C—C4C—H4C113.5C3B—C4B—H4B113.5
C3C—C4C—C5C105.24 (16)C3B—C4B—C5B104.83 (16)
C3C—C4C—C17C105.07 (15)C3B—C4B—C17B106.07 (16)
C5C—C4C—H4C113.5C5B—C4B—H4B113.5
C17C—C4C—H4C113.5C17B—C4B—H4B113.5
C17C—C4C—C5C105.15 (15)C17B—C4B—C5B104.71 (15)
C6C—C5C—C4C126.77 (19)C6B—C5B—C4B126.60 (19)
C6C—C5C—C10C120.41 (19)C6B—C5B—C10B120.60 (19)
C10C—C5C—C4C112.82 (17)C10B—C5B—C4B112.80 (17)
C5C—C6C—H6C120.6C5B—C6B—H6B120.5
C5C—C6C—C7C118.7 (2)C5B—C6B—C7B119.0 (2)
C7C—C6C—H6C120.6C7B—C6B—H6B120.5
C6C—C7C—H7C119.6C6B—C7B—H7B119.7
C8C—C7C—C6C120.8 (2)C8B—C7B—C6B120.68 (19)
C8C—C7C—H7C119.6C8B—C7B—H7B119.7
C7C—C8C—H8C119.7C7B—C8B—H8B119.8
C7C—C8C—C9C120.6 (2)C7B—C8B—C9B120.38 (19)
C9C—C8C—H8C119.7C9B—C8B—H8B119.8
C8C—C9C—H9C120.6C8B—C9B—H9B120.6
C10C—C9C—C8C118.9 (2)C10B—C9B—C8B118.7 (2)
C10C—C9C—H9C120.6C10B—C9B—H9B120.6
C5C—C10C—C11C113.41 (17)C5B—C10B—C11B113.23 (16)
C9C—C10C—C5C120.59 (19)C9B—C10B—C5B120.62 (18)
C9C—C10C—C11C125.99 (18)C9B—C10B—C11B126.13 (18)
C2C—C11C—C10C105.50 (15)C2B—C11B—C10B105.02 (14)
C2C—C11C—H11C113.5C2B—C11B—H11B113.4
C2C—C11C—C12C105.00 (15)C2B—C11B—C12B105.99 (15)
C10C—C11C—H11C113.5C10B—C11B—H11B113.4
C10C—C11C—C12C105.13 (15)C12B—C11B—C10B104.96 (15)
C12C—C11C—H11C113.5C12B—C11B—H11B113.4
C13C—C12C—C11C126.32 (18)C13B—C12B—C11B126.45 (18)
C13C—C12C—C17C120.44 (19)C13B—C12B—C17B120.27 (19)
C17C—C12C—C11C113.22 (17)C17B—C12B—C11B113.16 (17)
C12C—C13C—H13C120.4C12B—C13B—H13B120.4
C12C—C13C—C14C119.2 (2)C12B—C13B—C14B119.3 (2)
C14C—C13C—H13C120.4C14B—C13B—H13B120.4
C13C—C14C—H14C119.6C13B—C14B—H14B119.7
C15C—C14C—C13C120.8 (2)C15B—C14B—C13B120.5 (2)
C15C—C14C—H14C119.6C15B—C14B—H14B119.7
C14C—C15C—H15C120.0C14B—C15B—H15B119.8
C14C—C15C—C16C119.9 (2)C14B—C15B—C16B120.4 (2)
C16C—C15C—H15C120.0C16B—C15B—H15B119.8
C15C—C16C—H16C120.3C15B—C16B—H16B120.3
C17C—C16C—C15C119.3 (2)C17B—C16B—C15B119.4 (2)
C17C—C16C—H16C120.3C17B—C16B—H16B120.3
C12C—C17C—C4C112.92 (17)C12B—C17B—C4B112.86 (17)
C16C—C17C—C4C126.77 (18)C16B—C17B—C4B126.84 (19)
C16C—C17C—C12C120.30 (19)C16B—C17B—C12B120.2 (2)
O1A—C1A—C2A—C3A177.04 (18)O1D—C1D—C2D—C3D175.59 (18)
O1A—C1A—C2A—C11A3.3 (3)O1D—C1D—C2D—C11D2.1 (3)
C1A—C2A—C3A—C1Ai1.6 (3)C1D—C2D—C3D—C1Diii3.3 (3)
C1A—C2A—C3A—C4A179.42 (15)C1D—C2D—C3D—C4D176.98 (16)
C1A—C2A—C11A—C10A124.72 (18)C1D—C2D—C11D—C10D127.96 (18)
C1A—C2A—C11A—C12A125.51 (18)C1D—C2D—C11D—C12D121.86 (18)
C1Ai—C3A—C4A—C5A126.87 (18)C1Diii—C3D—C4D—C5D124.63 (18)
C1Ai—C3A—C4A—C17A123.85 (18)C1Diii—C3D—C4D—C17D126.10 (18)
C2A—C3A—C4A—C5A54.1 (2)C2D—C3D—C4D—C5D55.1 (2)
C2A—C3A—C4A—C17A55.1 (2)C2D—C3D—C4D—C17D54.2 (2)
C2A—C11A—C12A—C13A127.88 (19)C2D—C11D—C12D—C13D127.22 (19)
C2A—C11A—C12A—C17A54.7 (2)C2D—C11D—C12D—C17D55.4 (2)
C3Ai—C1A—C2A—C3A1.5 (3)C3Diii—C1D—C2D—C3D3.1 (3)
C3Ai—C1A—C2A—C11A178.16 (16)C3Diii—C1D—C2D—C11D179.23 (16)
C3A—C2A—C11A—C10A55.6 (2)C3D—C2D—C11D—C10D54.2 (2)
C3A—C2A—C11A—C12A54.1 (2)C3D—C2D—C11D—C12D56.0 (2)
C3A—C4A—C5A—C6A130.6 (2)C3D—C4D—C5D—C6D128.4 (2)
C3A—C4A—C5A—C10A53.7 (2)C3D—C4D—C5D—C10D53.14 (19)
C3A—C4A—C17A—C12A53.0 (2)C3D—C4D—C17D—C12D53.2 (2)
C3A—C4A—C17A—C16A129.0 (2)C3D—C4D—C17D—C16D128.7 (2)
C4A—C5A—C6A—C7A175.77 (19)C4D—C5D—C6D—C7D178.60 (19)
C4A—C5A—C10A—C9A176.68 (17)C4D—C5D—C10D—C9D178.70 (16)
C4A—C5A—C10A—C11A0.1 (2)C4D—C5D—C10D—C11D0.7 (2)
C5A—C4A—C17A—C12A57.9 (2)C5D—C4D—C17D—C12D57.3 (2)
C5A—C4A—C17A—C16A120.1 (2)C5D—C4D—C17D—C16D120.8 (2)
C5A—C6A—C7A—C8A0.4 (3)C5D—C6D—C7D—C8D0.3 (3)
C5A—C10A—C11A—C2A54.5 (2)C5D—C10D—C11D—C2D54.5 (2)
C5A—C10A—C11A—C12A56.94 (19)C5D—C10D—C11D—C12D55.92 (19)
C6A—C5A—C10A—C9A0.7 (3)C6D—C5D—C10D—C9D0.2 (3)
C6A—C5A—C10A—C11A175.96 (17)C6D—C5D—C10D—C11D177.79 (17)
C6A—C7A—C8A—C9A0.8 (3)C6D—C7D—C8D—C9D0.1 (4)
C7A—C8A—C9A—C10A1.1 (3)C7D—C8D—C9D—C10D0.0 (3)
C8A—C9A—C10A—C5A1.1 (3)C8D—C9D—C10D—C5D0.0 (3)
C8A—C9A—C10A—C11A175.08 (18)C8D—C9D—C10D—C11D177.64 (18)
C9A—C10A—C11A—C2A129.1 (2)C9D—C10D—C11D—C2D127.7 (2)
C9A—C10A—C11A—C12A119.4 (2)C9D—C10D—C11D—C12D121.9 (2)
C10A—C5A—C6A—C7A0.3 (3)C10D—C5D—C6D—C7D0.3 (3)
C10A—C11A—C12A—C13A121.0 (2)C10D—C11D—C12D—C13D121.6 (2)
C10A—C11A—C12A—C17A56.41 (19)C10D—C11D—C12D—C17D55.80 (19)
C11A—C2A—C3A—C1Ai178.10 (16)C11D—C2D—C3D—C1Diii178.84 (16)
C11A—C2A—C3A—C4A0.9 (2)C11D—C2D—C3D—C4D0.9 (2)
C11A—C12A—C13A—C14A177.13 (18)C11D—C12D—C13D—C14D176.09 (18)
C11A—C12A—C17A—C4A1.0 (2)C11D—C12D—C17D—C4D0.9 (2)
C11A—C12A—C17A—C16A177.15 (17)C11D—C12D—C17D—C16D177.26 (17)
C12A—C13A—C14A—C15A0.4 (3)C12D—C13D—C14D—C15D1.4 (3)
C13A—C12A—C17A—C4A178.57 (16)C13D—C12D—C17D—C4D178.51 (17)
C13A—C12A—C17A—C16A0.5 (3)C13D—C12D—C17D—C16D0.3 (3)
C13A—C14A—C15A—C16A0.6 (3)C13D—C14D—C15D—C16D0.8 (3)
C14A—C15A—C16A—C17A0.3 (3)C14D—C15D—C16D—C17D0.1 (3)
C15A—C16A—C17A—C4A178.09 (19)C15D—C16D—C17D—C4D177.67 (19)
C15A—C16A—C17A—C12A0.3 (3)C15D—C16D—C17D—C12D0.3 (3)
C17A—C4A—C5A—C6A118.4 (2)C17D—C4D—C5D—C6D121.3 (2)
C17A—C4A—C5A—C10A57.4 (2)C17D—C4D—C5D—C10D57.1 (2)
C17A—C12A—C13A—C14A0.2 (3)C17D—C12D—C13D—C14D1.1 (3)
O1C—C1C—C2C—C3C174.98 (18)O1B—C1B—C2B—C3B174.18 (18)
O1C—C1C—C2C—C11C4.3 (3)O1B—C1B—C2B—C11B6.0 (3)
C1C—C2C—C3C—C1Cii3.1 (3)C1B—C2B—C3B—C1Biv4.7 (3)
C1C—C2C—C3C—C4C178.55 (17)C1B—C2B—C3B—C4B179.98 (17)
C1C—C2C—C11C—C10C125.93 (18)C1B—C2B—C11B—C10B124.21 (19)
C1C—C2C—C11C—C12C123.29 (18)C1B—C2B—C11B—C12B125.00 (18)
C1Cii—C3C—C4C—C5C122.69 (19)C1Biv—C3B—C4B—C5B119.42 (19)
C1Cii—C3C—C4C—C17C126.58 (18)C1Biv—C3B—C4B—C17B130.11 (18)
C2C—C3C—C4C—C5C55.7 (2)C2B—C3B—C4B—C5B55.8 (2)
C2C—C3C—C4C—C17C55.1 (2)C2B—C3B—C4B—C17B54.6 (2)
C2C—C11C—C12C—C13C126.79 (19)C2B—C11B—C12B—C13B129.40 (19)
C2C—C11C—C12C—C17C54.7 (2)C2B—C11B—C12B—C17B54.5 (2)
C3Cii—C1C—C2C—C3C2.9 (3)C3Biv—C1B—C2B—C3B4.4 (3)
C3Cii—C1C—C2C—C11C177.90 (16)C3Biv—C1B—C2B—C11B175.40 (16)
C3C—C2C—C11C—C10C54.8 (2)C3B—C2B—C11B—C10B55.6 (2)
C3C—C2C—C11C—C12C56.0 (2)C3B—C2B—C11B—C12B55.2 (2)
C3C—C4C—C5C—C6C126.4 (2)C3B—C4B—C5B—C6B125.7 (2)
C3C—C4C—C5C—C10C54.2 (2)C3B—C4B—C5B—C10B55.0 (2)
C3C—C4C—C17C—C12C54.8 (2)C3B—C4B—C17B—C12B53.9 (2)
C3C—C4C—C17C—C16C126.0 (2)C3B—C4B—C17B—C16B129.6 (2)
C4C—C5C—C6C—C7C179.44 (19)C4B—C5B—C6B—C7B178.78 (19)
C4C—C5C—C10C—C9C179.44 (17)C4B—C5B—C10B—C9B178.40 (17)
C4C—C5C—C10C—C11C0.5 (2)C4B—C5B—C10B—C11B0.0 (2)
C5C—C4C—C17C—C12C55.9 (2)C5B—C4B—C17B—C12B56.7 (2)
C5C—C4C—C17C—C16C123.2 (2)C5B—C4B—C17B—C16B119.9 (2)
C5C—C6C—C7C—C8C0.2 (3)C5B—C6B—C7B—C8B0.4 (3)
C5C—C10C—C11C—C2C54.9 (2)C5B—C10B—C11B—C2B55.0 (2)
C5C—C10C—C11C—C12C55.8 (2)C5B—C10B—C11B—C12B56.57 (19)
C6C—C5C—C10C—C9C0.0 (3)C6B—C5B—C10B—C9B1.0 (3)
C6C—C5C—C10C—C11C179.03 (17)C6B—C5B—C10B—C11B179.43 (18)
C6C—C7C—C8C—C9C0.5 (3)C6B—C7B—C8B—C9B0.9 (3)
C7C—C8C—C9C—C10C0.6 (3)C7B—C8B—C9B—C10B0.5 (3)
C8C—C9C—C10C—C5C0.4 (3)C8B—C9B—C10B—C5B0.5 (3)
C8C—C9C—C10C—C11C179.21 (19)C8B—C9B—C10B—C11B178.72 (17)
C9C—C10C—C11C—C2C126.2 (2)C9B—C10B—C11B—C2B126.70 (19)
C9C—C10C—C11C—C12C123.1 (2)C9B—C10B—C11B—C12B121.8 (2)
C10C—C5C—C6C—C7C0.0 (3)C10B—C5B—C6B—C7B0.5 (3)
C10C—C11C—C12C—C13C122.2 (2)C10B—C11B—C12B—C13B119.8 (2)
C10C—C11C—C12C—C17C56.3 (2)C10B—C11B—C12B—C17B56.32 (19)
C11C—C2C—C3C—C1Cii177.63 (16)C11B—C2B—C3B—C1Biv175.14 (16)
C11C—C2C—C3C—C4C0.8 (2)C11B—C2B—C3B—C4B0.2 (2)
C11C—C12C—C13C—C14C179.07 (18)C11B—C12B—C13B—C14B176.00 (18)
C11C—C12C—C17C—C4C0.4 (2)C11B—C12B—C17B—C4B0.3 (2)
C11C—C12C—C17C—C16C179.57 (17)C11B—C12B—C17B—C16B176.46 (18)
C12C—C13C—C14C—C15C0.1 (3)C12B—C13B—C14B—C15B0.2 (3)
C13C—C12C—C17C—C4C178.23 (17)C13B—C12B—C17B—C4B176.70 (17)
C13C—C12C—C17C—C16C1.0 (3)C13B—C12B—C17B—C16B0.1 (3)
C13C—C14C—C15C—C16C0.2 (3)C13B—C14B—C15B—C16B0.5 (3)
C14C—C15C—C16C—C17C0.1 (3)C14B—C15B—C16B—C17B0.6 (3)
C15C—C16C—C17C—C4C178.44 (18)C15B—C16B—C17B—C4B176.58 (19)
C15C—C16C—C17C—C12C0.7 (3)C15B—C16B—C17B—C12B0.3 (3)
C17C—C4C—C5C—C6C123.0 (2)C17B—C4B—C5B—C6B122.9 (2)
C17C—C4C—C5C—C10C56.5 (2)C17B—C4B—C5B—C10B56.4 (2)
C17C—C12C—C13C—C14C0.7 (3)C17B—C12B—C13B—C14B0.2 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x+2, y, z+1; (iv) x+1, y+2, z+1.
Packing parameters (Å, °) for six-molecule carbon rings in molecules A, B, C, and D top
MoleculeCarbon ringQωφ
AC2A/C3A/C4A/C5A/C10A/C11A0.7952 (3)89.74 (14)300.20 (15)
AC2A/C3A/C4A/C17A/C12A/C11A0.788 (2)89.94 (15)119.27 (15)
AC4A/C5A/C10A/C11A/C12A/C17A0.845 (2)89.67 (14)359.59 (14)
BC2B/C3B/C4B/C5B/C10B/C11B0.809 (2)89.94 (14)120.14 (15)
BC2B/C3B/C4B/C17B/C12B/C11B0.790 (2)89.82 (15)300.15 (15)
BC4B/C5B/C10B/C11B/C12B/C17B0.845 (2)89.67 (14)359.59 (14)
CC2C/C3C/C4C/C5C/C10C/C11C0.798 (2)89.77 (14)119.61 (55)
CC2C/C3C/C4C/C17C/C12C/C11C0.805 (2)89.91 (14)300.43 (15)
CC4C/C5C/C10C/C11C/C12C/C17C0.818 (2)90.17 (14)180.42 (15)
DC2D/C3D/C4D/C5D/C10D/C11D0.789 (2)90.00 (15)119.35 (15)
DC2D/C3D/C4D/C17D/C12D/C11D0.800 (2)89.42 (14)300.04 (15)
DC4D/C5D/C10D/C11D/C12D/C17D0.833 (2)90.53 (14)179.83 (14)
Weak Cgπ intermolecular interactions (Å, °) top
Cg1, Cg2, Cg3 and Cg4 are the centroids of the C12B–C17B, C12C–C17C, C12A–C17A and C5B–C10B rings, respectively.
No.D—H···Ad(D—H)d(D···A)<(D—H···A)
1C8B—H8B···Cgi2.983.484 (2)144
2C7C—H7C···Cgii2.703.417 (2)133
3C16C—H16C···Cgi2.743.662 (3)165
4C4D—H4D···Cgii2.983.948 (2)163
Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 2 - y, 2 - z.
 

Footnotes

1Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Acknowledgements

MN and AWA thank the College of Arts and Sciences of Drexel University for support. JPJ acknowledges the NSF–MRI program (grant No. 1039027) for funds to purchase the X-ray diffractometer. AAS and MS acknowledge support from the NSF under grant CBET-1160169.

References

First citationBarnes, J. C., Paton, J. D. & Blyth, C. S. (1990). Acta Cryst. C46, 1183–1184.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBauscher, M. & Mäntele, W. (1992). J. Phys. Chem. 96, 11101–11108.  CrossRef CAS Web of Science Google Scholar
First citationCao, J., Lu, H. Y. & Chen, C. F. (2009). Tetrahedron, 65, 8104–8112.  Web of Science CSD CrossRef CAS Google Scholar
First citationClar, E. (1931). Ber. Dtsch. Chem. Ges. A/B, 64, 1676–1688.  CrossRef Google Scholar
First citationCrane, A. K., Wong, E. Y. L. & MacLachlan, M. J. (2013). CrystEngComm, 15, 9811–9819.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFieser, L. P. (1928). J. Am. Chem. Soc. 50, 439–465.  CrossRef CAS Google Scholar
First citationGautrot, J. E., Hodge, O., Cupertino, D. & Helliwell, M. (2006). New J. Chem. 30, 1801–1807.  Web of Science CSD CrossRef CAS Google Scholar
First citationGong, F. & Zhang, S. (2011). J. Power Sources, 196, 9876–9883.  Web of Science CrossRef CAS Google Scholar
First citationHart, H., Shamouilian, S. & Takehira, Y. (1981). J. Org. Chem. 46, 4427–4432.  CSD CrossRef CAS Web of Science Google Scholar
First citationJeong, H., Choi, E. M., Kang, S. O., Nam, K. C. & Jeon, S. (2000). J. Electroanal. Chem. 485, 154–160.  Web of Science CrossRef CAS Google Scholar
First citationLuo, S., Liu, Q., Zhang, B., Wiegand, J. R., Freeman, B. D. & Guo, R. (2015). J. Membr. Sci. 480, 20–30.  Web of Science CrossRef CAS Google Scholar
First citationLuo, S., Wiegand, J. R., Kazanowska, B., Doherty, C. M., Konstas, K., Hill, A. J. & Guo, R. (2016). Macromolecules, 49, 3395–3405.  Web of Science CrossRef CAS Google Scholar
First citationNozari, M., Kaur, M., Jasinski, J. P., Addison, A. W., Arabi Shamsabadi, A. & Soroush, M. (2016). IUCrData, 1, x161130.  Google Scholar
First citationPavlishchuk, V. V. & Addison, A. W. (2000). Inorg. Chim. Acta, 298, 97–102.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2012). CrysAlis PRO and CrysAlis RED. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSun, W. T., Huang, Y. T., Huang, G. J., Lu, H. F., Chao, I., Huang, S. L., Huang, S. J., Lin, Y. C., Ho, J. H. & Yang, J. S. (2010). Chem. Eur. J. 16, 11594–11604.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTheilacker, W., Berger-Brose, U. & Beyer, K. H. (1960). Chem. Ber. 93, 1658–1681.  CrossRef CAS Web of Science Google Scholar
First citationYang, J. S., Lee, C. C., Yau, S. L., Chang, C. C., Lee, C. C. & Leu, J. M. (2000a). J. Org. Chem. 65, 871–877.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, J. S., Liu, C. & Lee, G. (2000b). Tetrahedron Lett. 41, 7911–7915.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, J. S. & Swager, T. M. (1998a). J. Am. Chem. Soc. 120, 11864–11873.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, J. S. & Swager, T. M. (1998b). J. Am. Chem. Soc. 120, 5321–5322.  Web of Science CrossRef CAS Google Scholar
First citationZyryanov, G. V., Palacios, M. A. & Anzenbacher, P. Jr (2008). Org. Lett. 10, 3681–3684.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds