research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 7-iodo-4-oxo-4H-chromene-3-carbaldehyde

CROSSMARK_Color_square_no_text.svg

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Edited by M. Zeller, Purdue University, USA (Received 20 October 2016; accepted 24 October 2016; online 4 November 2016)

In the title compound, C10H5IO3, an iodinated 3-formyl­chromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0344 Å), with the largest deviation from the least-squares plane [0.101 (3) Å] being found for the formyl O atom. In the crystal, mol­ecules are linked through stacking inter­actions [centroid–centroid distance between the benzene rings = 3.700 (3) Å] and C—H⋯O hydrogen bonds. Halogen bonds between the I atoms at 7-position and the formyl O atoms [I1⋯O3 = 3.056 (2) Å, C6—I1⋯O3 = 173.18 (8)° and I1⋯O3—C10 = 111.12 (18)°] are also formed along [110], resulting in sheets perpendicular to the c axis, constructed by C—H⋯O hydrogen bonds and I⋯O halogen bonds.

1. Chemical context

3-Formyl­chromone and its derivatives show versatile biological activities such as anti-inflammatory activity (Khan et al., 2010[Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058-4064.]) and the inhibition of protein tyrosine phosphatase 1B (Shim et al., 2005[Shim, Y. S., Kim, K. C., Lee, K. A., Shrestha, S., Lee, K. H., Kim, C. K. & Cho, H. (2005). Bioorg. Med. Chem. 13, 1325-1332.]), thymidine phospho­rylase (Khan et al., 2009[Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983-2988.]), carbonic anhydrase (Ekinci et al., 2012[Ekinci, D., Al-Rashida, M., Abbas, G., Şentürk, M. & Supuran, C. T. (2012). J. Enzyme Inhib. Med. Chem. 27, 744-747.]), and metallo-β-lactamase (Christopeit et al., 2016[Christopeit, T., Albert, A. & Leiros, H. K. (2016). Bioorg. Med. Chem. 24, 2947-2953.]). Inter­estingly, 6,8-di­chloro- and 6,8-di­bromo-3-formyl­chromones possess potent urease inhibitory activity, whereas 6-fluoro-, 6-chloro- and 6-bromo-3-formyl­chromones exhibit no ability to inhibit urease (Kawase et al., 2007[Kawase, M., Tanaka, T., Kan, H., Tani, S., Nakashima, H. & Sakagami, H. (2007). In Vivo, 21, 829-834.]). Thus, the position of halogen atoms on the chromone ring should be associated with the urease inhibitory activity.

[Scheme 1]

We have previously reported the crystal structures of 6,8-di­chloro-4-oxochromene-3-carbaldehyde (6,8-di­chloro-3-formyl­chromone; Ishikawa & Motohashi, 2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]) and 6,8-di­bromo-4-oxo-4H-chromene-3-carbaldehyde (6,8-di­bromo-3-formyl­chromone; Ishikawa, 2014a[Ishikawa, Y. (2014a). Acta Cryst. E70, o439.]). In these crystals, halogen bonds are observed between the formyl oxygen atoms and the halogen atoms at the 8-position. Halogen bonding is defined as a net attractive inter­action between an electrophilic region of a halogen atom in a mol­ecule and a nucleophilic region of an atom in a mol­ecule, and is characterized by a shorter contact between the two atoms. Halogen bonding has attracted much attention in medicinal chemistry, chemical biology, supra­molecular chemistry and crystal engineering (Scholfield et al., 2013[Scholfield, M. R., Zanden, C. M., Carter, M. & Ho, P. S. (2013). Protein Sci. 22, 139-152.]; Wilcken et al., 2013[Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363-1388.]; Persch et al., 2015[Persch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed. 54, 3290-3327.]; Cavallo et al., 2016[Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478-2601.]).

As part of an investigation of halogenated 3-formyl­chromones relevant to urease inhibitory activity and halogen bonding, I herein report the crystal structure of 7-iodo-4-oxo-4H-chromene-3-carbaldehyde (7-iodo-3-formyl­chromone). The main objective of this study is to reveal the inter­action mode of the iodine substituent at the 7-position of the chromone ring in the solid state.

2. Structure commentary

The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0344 Å, and the largest deviation is 0.101 (3) Å for O3, indicating that these atoms are essentially coplanar (Fig. 1[link]). All bond distances and angles are within their expected ranges.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

3. Supra­molecular features

In the crystal, the mol­ecules are linked through ππ stacking inter­actions between inversion-symmetry-equivalenti mol­ecules [centroid–centroid distance between the benzene rings of the 4H-chromene units = 3.700 (3) Å; symmetry code: (i) −x, −y, −z], and through C—H⋯O hydrogen bonds (Table 1[link]) that involve the C7/O2 atoms. In particular, significant shorter contacts are observed between the iodine atoms and the formyl oxygen atoms of translation-symmetry equivalentii mol­ecules [I1⋯O3 = 3.056 (2) Å, C6—I1⋯O3 = 173.18 (8)°, I1⋯O3—C10 = 111.12 (18)°; symmetry code: (ii) x + 1, y − 1, z] along [1 1 0], resulting in sheets perpendicular to the c-axis, constructed by C—H⋯O hydrogen bonds and I⋯O halogen bonds (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H4⋯O2i 0.95 2.35 3.208 (4) 150 (1)
Symmetry code: (i) x, y-1, z.
[Figure 2]
Figure 2
A packing view of the title compound. C—H⋯O hydrogen bonds and I⋯O halogen bonds are represented as dashed lines.

4. Database survey

A search of WebCSD (Version 1.1.2, last update Oct 2016; Groom et al., 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 7-halogeno-3-formyl­chromones gave the following three hits: 7-fluoro- (Asad et al., 2011[Asad, M., Oo, C.-W., Osman, H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o766.]), 7-chloro- (Ishikawa, 2014b[Ishikawa, Y. (2014b). Acta Cryst. E70, o831.]), and 7-bromo-3-formyl­chromone (Ishikawa, 2014c[Ishikawa, Y. (2014c). Acta Cryst. E70, o996.]). In 7-fluoro-3-formyl­chromone, no contact around the fluorine atom is seen (Fig. 3[link]a). In the crystals of 7-chloro- and 7-bromo-3-formyl­chromones, type I and type II halogen⋯halogen contacts are found, respectively (Fig. 3[link]b and 3c), and these halogen⋯halogen contacts are commonly found for Cl and Br atoms (Mukherjee et al., 2014[Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49-60.]). It should be noted that shorter contacts between oxygen atoms and halogen atoms are observed in 7-iodo-3-formyl­chromone (this work, Fig. 3[link]d), but not in 7-fluoro-, 7-chloro-, and 7-bromo-3-formyl­chromones. This is in agreement with an assumption that the iodine atom should have the largest σ-hole (Clark et al., 2007[Clark, T., Hennemann, M., Murray, J. S. & Politzer, P. (2007). J. Mol. Model. 13, 291-296.]) among the halogen atoms in 7-halogeno-3-formyl­chromones. These findings should be helpful in understanding the inter­action of halogenated 3-formyl­chromones with urease, and is thus valuable for rational drug design.

[Figure 3]
Figure 3
Sphere models of the crystal structures of (a) 7-fluoro-4-oxo-4H-chromene-3-carbaldehyde (Asad et al., 2011[Asad, M., Oo, C.-W., Osman, H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o766.]), (b) 7-chloro-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014b[Ishikawa, Y. (2014b). Acta Cryst. E70, o831.]), (c) 7-bromo-4-oxo-4H-chromene-3-carbaldehyde (Ishikawa, 2014c[Ishikawa, Y. (2014c). Acta Cryst. E70, o996.]) and (d) the title compound (this work).

5. Synthesis and crystallization

2′-Hy­droxy-4′-iodo­aceto­phenone was prepared from 3-acetoxy­iodo­benzene by a Fries rearrangement reaction. To a solution of 2′-hy­droxy-4′-iodo­aceto­phenone (4.4 mmol) in N,N-di­methyl­formamide (10 ml) was added dropwise POCl3 (13.2 mmol) at 273 K. After the mixture was stirred for 14 h at room temperature, water (100 ml) was added. The precipitates were collected, washed with water, and dried in vacuo at 333 K (yield 86%). 1H NMR (400 MHz, CDCl3): δ 7.84 (dd, 1H, J = 8.8 and 1.5 Hz), 7.96 (d, 1H, J = 1.5 Hz), 7.99 (d, 1H, J = 8.3 Hz), 8.49 (s, 1H), 10.36 (s, 1H). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a 1,2-di­chloro­ethane solution of the title compound at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound hydrogen atoms were placed in geometrical positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)].

Table 2
Experimental details

Crystal data
Chemical formula C10H5IO3
Mr 300.05
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 9.572 (4), 7.533 (4), 13.095 (9)
β (°) 103.06 (4)
V3) 919.8 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.46
Crystal size (mm) 0.25 × 0.18 × 0.15
 
Data collection
Diffractometer Rigaku AFC7R
Absorption correction ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.])
Tmin, Tmax 0.528, 0.595
No. of measured, independent and observed [F2 > 2.0σ(F2)] reflections 2538, 2119, 1916
Rint 0.017
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.053, 1.06
No. of reflections 2119
No. of parameters 128
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.56, −0.60
Computer programs: WinAFC (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]), SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and CrystalStructure (Rigaku, 2015[Rigaku (2015). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Computing details top

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC (Rigaku, 1999); data reduction: WinAFC (Rigaku, 1999); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2015); software used to prepare material for publication: CrystalStructure (Rigaku, 2015).

7-Iodo-4-oxo-4H-chromene-3-carbaldehyde top
Crystal data top
C10H5IO3F(000) = 568.00
Mr = 300.05Dx = 2.167 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 9.572 (4) ÅCell parameters from 25 reflections
b = 7.533 (4) Åθ = 15.1–17.1°
c = 13.095 (9) ŵ = 3.46 mm1
β = 103.06 (4)°T = 100 K
V = 919.8 (9) Å3Prismatic, yellow
Z = 40.25 × 0.18 × 0.15 mm
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.017
ω–2θ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: ψ scan
(North et al., 1968)
h = 1212
Tmin = 0.528, Tmax = 0.595k = 90
2538 measured reflectionsl = 917
2119 independent reflections3 standard reflections every 150 reflections
1916 reflections with F2 > 2.0σ(F2) intensity decay: 0.3%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0244P)2 + 1.8229P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2119 reflectionsΔρmax = 0.56 e Å3
128 parametersΔρmin = 0.60 e Å3
0 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0024 (4)
Secondary atom site location: difference Fourier map
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.24361 (2)0.04012 (2)0.39087 (2)0.01629 (8)
O10.2715 (2)0.3092 (3)0.39728 (15)0.0152 (4)
O20.1775 (2)0.8253 (3)0.33965 (16)0.0172 (4)
O30.5743 (2)0.7067 (3)0.39144 (17)0.0209 (4)
C10.3676 (3)0.4391 (4)0.3915 (2)0.0160 (5)
H10.46030.40760.40040.019*
C20.3435 (3)0.6125 (4)0.3740 (2)0.0135 (5)
C30.2044 (3)0.6703 (4)0.3577 (2)0.0128 (5)
C40.0421 (3)0.5595 (4)0.3565 (2)0.0143 (5)
H20.06970.67690.34340.017*
C50.1408 (3)0.4232 (4)0.3655 (2)0.0144 (5)
H30.23650.44680.36040.017*
C60.0979 (3)0.2499 (4)0.3822 (2)0.0133 (5)
C70.0402 (3)0.2124 (4)0.3922 (2)0.0135 (5)
H40.06850.09450.40390.016*
C80.0982 (3)0.5267 (4)0.3665 (2)0.0123 (5)
C90.1358 (3)0.3530 (4)0.3847 (2)0.0132 (5)
C100.4587 (3)0.7427 (4)0.3717 (2)0.0162 (5)
H50.44220.86190.35380.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01410 (10)0.01533 (11)0.01997 (11)0.00472 (7)0.00501 (7)0.00105 (7)
O10.0119 (9)0.0131 (9)0.0217 (10)0.0010 (7)0.0064 (8)0.0019 (8)
O20.0186 (10)0.0101 (9)0.0221 (10)0.0001 (8)0.0029 (8)0.0011 (8)
O30.0155 (10)0.0215 (11)0.0263 (11)0.0054 (8)0.0064 (8)0.0012 (9)
C10.0120 (12)0.0173 (14)0.0190 (13)0.0022 (10)0.0042 (10)0.0010 (11)
C20.0119 (12)0.0149 (13)0.0135 (12)0.0041 (10)0.0020 (10)0.0009 (11)
C30.0132 (12)0.0126 (12)0.0115 (12)0.0031 (10)0.0001 (9)0.0006 (10)
C40.0139 (12)0.0140 (13)0.0149 (12)0.0029 (10)0.0029 (10)0.0004 (10)
C50.0125 (12)0.0151 (14)0.0156 (13)0.0014 (10)0.0033 (10)0.0017 (10)
C60.0154 (12)0.0111 (12)0.0137 (12)0.0051 (10)0.0035 (10)0.0025 (10)
C70.0154 (12)0.0093 (12)0.0154 (12)0.0005 (10)0.0027 (10)0.0014 (10)
C80.0129 (12)0.0119 (12)0.0121 (12)0.0013 (10)0.0026 (9)0.0010 (10)
C90.0121 (12)0.0142 (13)0.0140 (12)0.0008 (10)0.0044 (10)0.0001 (10)
C100.0164 (13)0.0156 (13)0.0153 (13)0.0040 (11)0.0008 (10)0.0012 (11)
Geometric parameters (Å, º) top
I1—C62.094 (3)C4—C51.383 (4)
O1—C11.334 (3)C4—C81.400 (4)
O1—C91.386 (3)C4—H20.9500
O2—C31.230 (3)C5—C61.401 (4)
O3—C101.222 (4)C5—H30.9500
C1—C21.355 (4)C6—C71.387 (4)
C1—H10.9500C7—C91.389 (4)
C2—C31.462 (4)C7—H40.9500
C2—C101.471 (4)C8—C91.392 (4)
C3—C81.471 (4)C10—H50.9500
C1—O1—C9118.2 (2)C7—C6—C5121.6 (2)
O1—C1—C2125.1 (3)C7—C6—I1118.6 (2)
O1—C1—H1117.4C5—C6—I1119.8 (2)
C2—C1—H1117.4C6—C7—C9117.7 (3)
C1—C2—C3120.5 (2)C6—C7—H4121.2
C1—C2—C10119.4 (3)C9—C7—H4121.2
C3—C2—C10120.1 (3)C9—C8—C4118.2 (2)
O2—C3—C2123.2 (3)C9—C8—C3120.2 (2)
O2—C3—C8122.8 (2)C4—C8—C3121.5 (3)
C2—C3—C8113.9 (2)O1—C9—C7115.5 (2)
C5—C4—C8120.8 (3)O1—C9—C8122.0 (2)
C5—C4—H2119.6C7—C9—C8122.5 (2)
C8—C4—H2119.6O3—C10—C2123.9 (3)
C4—C5—C6119.1 (3)O3—C10—H5118.0
C4—C5—H3120.5C2—C10—H5118.0
C6—C5—H3120.5
C9—O1—C1—C20.1 (4)O2—C3—C8—C9178.5 (3)
O1—C1—C2—C31.1 (4)C2—C3—C8—C92.4 (4)
O1—C1—C2—C10178.8 (2)O2—C3—C8—C41.2 (4)
C1—C2—C3—O2178.6 (3)C2—C3—C8—C4177.9 (2)
C10—C2—C3—O21.5 (4)C1—O1—C9—C7179.6 (2)
C1—C2—C3—C82.3 (4)C1—O1—C9—C80.0 (4)
C10—C2—C3—C8177.6 (2)C6—C7—C9—O1178.8 (2)
C8—C4—C5—C61.6 (4)C6—C7—C9—C80.7 (4)
C4—C5—C6—C71.5 (4)C4—C8—C9—O1179.0 (2)
C4—C5—C6—I1177.9 (2)C3—C8—C9—O11.4 (4)
C5—C6—C7—C90.3 (4)C4—C8—C9—C70.6 (4)
I1—C6—C7—C9179.1 (2)C3—C8—C9—C7179.1 (2)
C5—C4—C8—C90.6 (4)C1—C2—C10—O34.9 (4)
C5—C4—C8—C3179.7 (2)C3—C2—C10—O3175.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H4···O2i0.952.353.208 (4)150 (1)
Symmetry code: (i) x, y1, z.
 

Acknowledgements

This work was supported by JSPS KAKENHI (Grant No. JP16K08199). I acknowledge University of Shizuoka for instrumental support.

References

First citationAsad, M., Oo, C.-W., Osman, H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o766.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601.  Web of Science CrossRef CAS PubMed Google Scholar
First citationChristopeit, T., Albert, A. & Leiros, H. K. (2016). Bioorg. Med. Chem. 24, 2947–2953.  Web of Science CrossRef CAS PubMed Google Scholar
First citationClark, T., Hennemann, M., Murray, J. S. & Politzer, P. (2007). J. Mol. Model. 13, 291–296.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEkinci, D., Al-Rashida, M., Abbas, G., Şentürk, M. & Supuran, C. T. (2012). J. Enzyme Inhib. Med. Chem. 27, 744–747.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CSD CrossRef CAS Google Scholar
First citationIshikawa, Y. (2014a). Acta Cryst. E70, o439.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. (2014b). Acta Cryst. E70, o831.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. (2014c). Acta Cryst. E70, o996.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.  CSD CrossRef IUCr Journals Google Scholar
First citationKawase, M., Tanaka, T., Kan, H., Tani, S., Nakashima, H. & Sakagami, H. (2007). In Vivo, 21, 829–834.  Web of Science PubMed CAS Google Scholar
First citationKhan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983–2988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPersch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed. 54, 3290–3327.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2015). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationScholfield, M. R., Zanden, C. M., Carter, M. & Ho, P. S. (2013). Protein Sci. 22, 139–152.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShim, Y. S., Kim, K. C., Lee, K. A., Shrestha, S., Lee, K. H., Kim, C. K. & Cho, H. (2005). Bioorg. Med. Chem. 13, 1325–1332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds