research communications
H-chromene-3-carbaldehyde
of 7-iodo-4-oxo-4aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp
In the title compound, C10H5IO3, an iodinated 3-formylchromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0344 Å), with the largest deviation from the least-squares plane [0.101 (3) Å] being found for the formyl O atom. In the crystal, molecules are linked through stacking interactions [centroid–centroid distance between the benzene rings = 3.700 (3) Å] and C—H⋯O hydrogen bonds. Halogen bonds between the I atoms at 7-position and the formyl O atoms [I1⋯O3 = 3.056 (2) Å, C6—I1⋯O3 = 173.18 (8)° and I1⋯O3—C10 = 111.12 (18)°] are also formed along [110], resulting in sheets perpendicular to the c axis, constructed by C—H⋯O hydrogen bonds and I⋯O halogen bonds.
Keywords: crystal structure; π–π stacking; hydrogen bond; halogen bond.
CCDC reference: 1511202
1. Chemical context
3-Formylchromone and its derivatives show versatile biological activities such as anti-inflammatory activity (Khan et al., 2010) and the inhibition of protein tyrosine phosphatase 1B (Shim et al., 2005), thymidine phosphorylase (Khan et al., 2009), carbonic anhydrase (Ekinci et al., 2012), and metallo-β-lactamase (Christopeit et al., 2016). Interestingly, 6,8-dichloro- and 6,8-dibromo-3-formylchromones possess potent urease inhibitory activity, whereas 6-fluoro-, 6-chloro- and 6-bromo-3-formylchromones exhibit no ability to inhibit urease (Kawase et al., 2007). Thus, the position of halogen atoms on the chromone ring should be associated with the urease inhibitory activity.
We have previously reported the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (6,8-dichloro-3-formylchromone; Ishikawa & Motohashi, 2013) and 6,8-dibromo-4-oxo-4H-chromene-3-carbaldehyde (6,8-dibromo-3-formylchromone; Ishikawa, 2014a). In these crystals, halogen bonds are observed between the formyl oxygen atoms and the halogen atoms at the 8-position. Halogen bonding is defined as a net attractive interaction between an electrophilic region of a halogen atom in a molecule and a nucleophilic region of an atom in a molecule, and is characterized by a shorter contact between the two atoms. Halogen bonding has attracted much attention in medicinal chemistry, chemical biology, supramolecular chemistry and crystal engineering (Scholfield et al., 2013; Wilcken et al., 2013; Persch et al., 2015; Cavallo et al., 2016).
As part of an investigation of halogenated 3-formylchromones relevant to urease inhibitory activity and halogen bonding, I herein report the H-chromene-3-carbaldehyde (7-iodo-3-formylchromone). The main objective of this study is to reveal the interaction mode of the iodine substituent at the 7-position of the chromone ring in the solid state.
of 7-iodo-4-oxo-42. Structure commentary
The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0344 Å, and the largest deviation is 0.101 (3) Å for O3, indicating that these atoms are essentially coplanar (Fig. 1). All bond distances and angles are within their expected ranges.
3. Supramolecular features
In the crystal, the molecules are linked through π–π stacking interactions between inversion-symmetry-equivalenti molecules [centroid–centroid distance between the benzene rings of the 4H-chromene units = 3.700 (3) Å; symmetry code: (i) −x, −y, −z], and through C—H⋯O hydrogen bonds (Table 1) that involve the C7/O2 atoms. In particular, significant shorter contacts are observed between the iodine atoms and the formyl oxygen atoms of translation-symmetry equivalentii molecules [I1⋯O3 = 3.056 (2) Å, C6—I1⋯O3 = 173.18 (8)°, I1⋯O3—C10 = 111.12 (18)°; symmetry code: (ii) x + 1, y − 1, z] along [1 1 0], resulting in sheets perpendicular to the c-axis, constructed by C—H⋯O hydrogen bonds and I⋯O halogen bonds (Fig. 2).
4. Database survey
A search of WebCSD (Version 1.1.2, last update Oct 2016; Groom et al., 2014) for 7-halogeno-3-formylchromones gave the following three hits: 7-fluoro- (Asad et al., 2011), 7-chloro- (Ishikawa, 2014b), and 7-bromo-3-formylchromone (Ishikawa, 2014c). In 7-fluoro-3-formylchromone, no contact around the fluorine atom is seen (Fig. 3a). In the crystals of 7-chloro- and 7-bromo-3-formylchromones, type I and type II halogen⋯halogen contacts are found, respectively (Fig. 3b and 3c), and these halogen⋯halogen contacts are commonly found for Cl and Br atoms (Mukherjee et al., 2014). It should be noted that shorter contacts between oxygen atoms and halogen atoms are observed in 7-iodo-3-formylchromone (this work, Fig. 3d), but not in 7-fluoro-, 7-chloro-, and 7-bromo-3-formylchromones. This is in agreement with an assumption that the iodine atom should have the largest σ-hole (Clark et al., 2007) among the halogen atoms in 7-halogeno-3-formylchromones. These findings should be helpful in understanding the interaction of halogenated 3-formylchromones with urease, and is thus valuable for rational drug design.
5. Synthesis and crystallization
2′-Hydroxy-4′-iodoacetophenone was prepared from 3-acetoxyiodobenzene by a Fries rearrangement reaction. To a solution of 2′-hydroxy-4′-iodoacetophenone (4.4 mmol) in N,N-dimethylformamide (10 ml) was added dropwise POCl3 (13.2 mmol) at 273 K. After the mixture was stirred for 14 h at room temperature, water (100 ml) was added. The precipitates were collected, washed with water, and dried in vacuo at 333 K (yield 86%). 1H NMR (400 MHz, CDCl3): δ 7.84 (dd, 1H, J = 8.8 and 1.5 Hz), 7.96 (d, 1H, J = 1.5 Hz), 7.99 (d, 1H, J = 8.3 Hz), 8.49 (s, 1H), 10.36 (s, 1H). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a 1,2-dichloroethane solution of the title compound at room temperature.
6. Refinement
Crystal data, data collection and structure . The C-bound hydrogen atoms were placed in geometrical positions and refined using a riding model [C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C)].
details are summarized in Table 2Supporting information
CCDC reference: 1511202
https://doi.org/10.1107/S2056989016016972/zl2682sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016016972/zl2682Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016016972/zl2682Isup3.cml
Data collection: WinAFC (Rigaku, 1999); cell
WinAFC (Rigaku, 1999); data reduction: WinAFC (Rigaku, 1999); program(s) used to solve structure: SIR2011 (Burla et al., 2012); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: CrystalStructure (Rigaku, 2015); software used to prepare material for publication: CrystalStructure (Rigaku, 2015).C10H5IO3 | F(000) = 568.00 |
Mr = 300.05 | Dx = 2.167 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
a = 9.572 (4) Å | Cell parameters from 25 reflections |
b = 7.533 (4) Å | θ = 15.1–17.1° |
c = 13.095 (9) Å | µ = 3.46 mm−1 |
β = 103.06 (4)° | T = 100 K |
V = 919.8 (9) Å3 | Prismatic, yellow |
Z = 4 | 0.25 × 0.18 × 0.15 mm |
Rigaku AFC7R diffractometer | Rint = 0.017 |
ω–2θ scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: ψ scan (North et al., 1968) | h = −12→12 |
Tmin = 0.528, Tmax = 0.595 | k = −9→0 |
2538 measured reflections | l = −9→17 |
2119 independent reflections | 3 standard reflections every 150 reflections |
1916 reflections with F2 > 2.0σ(F2) | intensity decay: −0.3% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H-atom parameters constrained |
wR(F2) = 0.053 | w = 1/[σ2(Fo2) + (0.0244P)2 + 1.8229P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2119 reflections | Δρmax = 0.56 e Å−3 |
128 parameters | Δρmin = −0.60 e Å−3 |
0 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015) |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0024 (4) |
Secondary atom site location: difference Fourier map |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
I1 | 0.24361 (2) | 0.04012 (2) | 0.39087 (2) | 0.01629 (8) | |
O1 | −0.2715 (2) | 0.3092 (3) | 0.39728 (15) | 0.0152 (4) | |
O2 | −0.1775 (2) | 0.8253 (3) | 0.33965 (16) | 0.0172 (4) | |
O3 | −0.5743 (2) | 0.7067 (3) | 0.39144 (17) | 0.0209 (4) | |
C1 | −0.3676 (3) | 0.4391 (4) | 0.3915 (2) | 0.0160 (5) | |
H1 | −0.4603 | 0.4076 | 0.4004 | 0.019* | |
C2 | −0.3435 (3) | 0.6125 (4) | 0.3740 (2) | 0.0135 (5) | |
C3 | −0.2044 (3) | 0.6703 (4) | 0.3577 (2) | 0.0128 (5) | |
C4 | 0.0421 (3) | 0.5595 (4) | 0.3565 (2) | 0.0143 (5) | |
H2 | 0.0697 | 0.6769 | 0.3434 | 0.017* | |
C5 | 0.1408 (3) | 0.4232 (4) | 0.3655 (2) | 0.0144 (5) | |
H3 | 0.2365 | 0.4468 | 0.3604 | 0.017* | |
C6 | 0.0979 (3) | 0.2499 (4) | 0.3822 (2) | 0.0133 (5) | |
C7 | −0.0402 (3) | 0.2124 (4) | 0.3922 (2) | 0.0135 (5) | |
H4 | −0.0685 | 0.0945 | 0.4039 | 0.016* | |
C8 | −0.0982 (3) | 0.5267 (4) | 0.3665 (2) | 0.0123 (5) | |
C9 | −0.1358 (3) | 0.3530 (4) | 0.3847 (2) | 0.0132 (5) | |
C10 | −0.4587 (3) | 0.7427 (4) | 0.3717 (2) | 0.0162 (5) | |
H5 | −0.4422 | 0.8619 | 0.3538 | 0.019* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01410 (10) | 0.01533 (11) | 0.01997 (11) | 0.00472 (7) | 0.00501 (7) | −0.00105 (7) |
O1 | 0.0119 (9) | 0.0131 (9) | 0.0217 (10) | 0.0010 (7) | 0.0064 (8) | 0.0019 (8) |
O2 | 0.0186 (10) | 0.0101 (9) | 0.0221 (10) | −0.0001 (8) | 0.0029 (8) | 0.0011 (8) |
O3 | 0.0155 (10) | 0.0215 (11) | 0.0263 (11) | 0.0054 (8) | 0.0064 (8) | 0.0012 (9) |
C1 | 0.0120 (12) | 0.0173 (14) | 0.0190 (13) | 0.0022 (10) | 0.0042 (10) | 0.0010 (11) |
C2 | 0.0119 (12) | 0.0149 (13) | 0.0135 (12) | 0.0041 (10) | 0.0020 (10) | 0.0009 (11) |
C3 | 0.0132 (12) | 0.0126 (12) | 0.0115 (12) | 0.0031 (10) | 0.0001 (9) | −0.0006 (10) |
C4 | 0.0139 (12) | 0.0140 (13) | 0.0149 (12) | −0.0029 (10) | 0.0029 (10) | −0.0004 (10) |
C5 | 0.0125 (12) | 0.0151 (14) | 0.0156 (13) | −0.0014 (10) | 0.0033 (10) | −0.0017 (10) |
C6 | 0.0154 (12) | 0.0111 (12) | 0.0137 (12) | 0.0051 (10) | 0.0035 (10) | −0.0025 (10) |
C7 | 0.0154 (12) | 0.0093 (12) | 0.0154 (12) | −0.0005 (10) | 0.0027 (10) | −0.0014 (10) |
C8 | 0.0129 (12) | 0.0119 (12) | 0.0121 (12) | −0.0013 (10) | 0.0026 (9) | −0.0010 (10) |
C9 | 0.0121 (12) | 0.0142 (13) | 0.0140 (12) | −0.0008 (10) | 0.0044 (10) | 0.0001 (10) |
C10 | 0.0164 (13) | 0.0156 (13) | 0.0153 (13) | 0.0040 (11) | 0.0008 (10) | −0.0012 (11) |
I1—C6 | 2.094 (3) | C4—C5 | 1.383 (4) |
O1—C1 | 1.334 (3) | C4—C8 | 1.400 (4) |
O1—C9 | 1.386 (3) | C4—H2 | 0.9500 |
O2—C3 | 1.230 (3) | C5—C6 | 1.401 (4) |
O3—C10 | 1.222 (4) | C5—H3 | 0.9500 |
C1—C2 | 1.355 (4) | C6—C7 | 1.387 (4) |
C1—H1 | 0.9500 | C7—C9 | 1.389 (4) |
C2—C3 | 1.462 (4) | C7—H4 | 0.9500 |
C2—C10 | 1.471 (4) | C8—C9 | 1.392 (4) |
C3—C8 | 1.471 (4) | C10—H5 | 0.9500 |
C1—O1—C9 | 118.2 (2) | C7—C6—C5 | 121.6 (2) |
O1—C1—C2 | 125.1 (3) | C7—C6—I1 | 118.6 (2) |
O1—C1—H1 | 117.4 | C5—C6—I1 | 119.8 (2) |
C2—C1—H1 | 117.4 | C6—C7—C9 | 117.7 (3) |
C1—C2—C3 | 120.5 (2) | C6—C7—H4 | 121.2 |
C1—C2—C10 | 119.4 (3) | C9—C7—H4 | 121.2 |
C3—C2—C10 | 120.1 (3) | C9—C8—C4 | 118.2 (2) |
O2—C3—C2 | 123.2 (3) | C9—C8—C3 | 120.2 (2) |
O2—C3—C8 | 122.8 (2) | C4—C8—C3 | 121.5 (3) |
C2—C3—C8 | 113.9 (2) | O1—C9—C7 | 115.5 (2) |
C5—C4—C8 | 120.8 (3) | O1—C9—C8 | 122.0 (2) |
C5—C4—H2 | 119.6 | C7—C9—C8 | 122.5 (2) |
C8—C4—H2 | 119.6 | O3—C10—C2 | 123.9 (3) |
C4—C5—C6 | 119.1 (3) | O3—C10—H5 | 118.0 |
C4—C5—H3 | 120.5 | C2—C10—H5 | 118.0 |
C6—C5—H3 | 120.5 | ||
C9—O1—C1—C2 | 0.1 (4) | O2—C3—C8—C9 | −178.5 (3) |
O1—C1—C2—C3 | 1.1 (4) | C2—C3—C8—C9 | 2.4 (4) |
O1—C1—C2—C10 | −178.8 (2) | O2—C3—C8—C4 | 1.2 (4) |
C1—C2—C3—O2 | 178.6 (3) | C2—C3—C8—C4 | −177.9 (2) |
C10—C2—C3—O2 | −1.5 (4) | C1—O1—C9—C7 | 179.6 (2) |
C1—C2—C3—C8 | −2.3 (4) | C1—O1—C9—C8 | 0.0 (4) |
C10—C2—C3—C8 | 177.6 (2) | C6—C7—C9—O1 | −178.8 (2) |
C8—C4—C5—C6 | 1.6 (4) | C6—C7—C9—C8 | 0.7 (4) |
C4—C5—C6—C7 | −1.5 (4) | C4—C8—C9—O1 | 179.0 (2) |
C4—C5—C6—I1 | 177.9 (2) | C3—C8—C9—O1 | −1.4 (4) |
C5—C6—C7—C9 | 0.3 (4) | C4—C8—C9—C7 | −0.6 (4) |
I1—C6—C7—C9 | −179.1 (2) | C3—C8—C9—C7 | 179.1 (2) |
C5—C4—C8—C9 | −0.6 (4) | C1—C2—C10—O3 | 4.9 (4) |
C5—C4—C8—C3 | 179.7 (2) | C3—C2—C10—O3 | −175.0 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H4···O2i | 0.95 | 2.35 | 3.208 (4) | 150 (1) |
Symmetry code: (i) x, y−1, z. |
Acknowledgements
This work was supported by JSPS KAKENHI (Grant No. JP16K08199). I acknowledge University of Shizuoka for instrumental support.
References
Asad, M., Oo, C.-W., Osman, H., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o766. Web of Science CSD CrossRef IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G. & Terraneo, G. (2016). Chem. Rev. 116, 2478–2601. Web of Science CrossRef CAS PubMed Google Scholar
Christopeit, T., Albert, A. & Leiros, H. K. (2016). Bioorg. Med. Chem. 24, 2947–2953. Web of Science CrossRef CAS PubMed Google Scholar
Clark, T., Hennemann, M., Murray, J. S. & Politzer, P. (2007). J. Mol. Model. 13, 291–296. Web of Science CrossRef PubMed CAS Google Scholar
Ekinci, D., Al-Rashida, M., Abbas, G., Şentürk, M. & Supuran, C. T. (2012). J. Enzyme Inhib. Med. Chem. 27, 744–747. Web of Science CrossRef CAS PubMed Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CSD CrossRef CAS Google Scholar
Ishikawa, Y. (2014a). Acta Cryst. E70, o439. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. (2014b). Acta Cryst. E70, o831. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. (2014c). Acta Cryst. E70, o996. CSD CrossRef IUCr Journals Google Scholar
Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416. CSD CrossRef IUCr Journals Google Scholar
Kawase, M., Tanaka, T., Kan, H., Tani, S., Nakashima, H. & Sakagami, H. (2007). In Vivo, 21, 829–834. Web of Science PubMed CAS Google Scholar
Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Choudhary, M. I. (2009). Bioorg. Med. Chem. 17, 2983–2988. Web of Science CrossRef PubMed CAS Google Scholar
Khan, K. M., Ambreen, N., Mughal, U. R., Jalil, S., Perveen, S. & Choudhary, M. I. (2010). Eur. J. Med. Chem. 45, 4058–4064. Web of Science CrossRef CAS PubMed Google Scholar
Mukherjee, A. & Desiraju, G. R. (2014). IUCrJ, 1, 49–60. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Persch, E., Dumele, O. & Diederich, F. (2015). Angew. Chem. Int. Ed. 54, 3290–3327. Web of Science CrossRef CAS Google Scholar
Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2015). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Scholfield, M. R., Zanden, C. M., Carter, M. & Ho, P. S. (2013). Protein Sci. 22, 139–152. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shim, Y. S., Kim, K. C., Lee, K. A., Shrestha, S., Lee, K. H., Kim, C. K. & Cho, H. (2005). Bioorg. Med. Chem. 13, 1325–1332. Web of Science CrossRef PubMed CAS Google Scholar
Wilcken, R., Zimmermann, M. O., Lange, A., Joerger, A. C. & Boeckler, F. M. (2013). J. Med. Chem. 56, 1363–1388. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.