research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three bicyclic carbohydrate derivatives

CROSSMARK_Color_square_no_text.svg

aUniversität Potsdam, Institut für Chemie, Anorganische Chemie, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany
*Correspondence e-mail: us@chem.uni-potsdam.de

Edited by M. Zeller, Purdue University, USA (Received 11 November 2016; accepted 23 November 2016; online 29 November 2016)

The title compounds, [(1R,3R,4R,5R,6S)-4,5-bis­(acet­yloxy)-7-oxo-2-oxabi­cyclo[4.2.0]octan-3-yl]methyl acetate, C14H18O8, (I), [(1S,4R,5S,6R)-5-acet­yloxy-7-hy­droxy­imino-2-oxobi­cyclo­[4.2.0]octan-4-yl acetate, C11H15NO6, (II), and [(3aR,5R,6R,7R,7aS)-6,7-bis­(acet­yloxy)-2-oxo­octa­hydro­pyrano[3,2-b]pyrrol-5-yl]methyl acetate, C14H19NO8, (III), are stable bicyclic carbohydrate derivatives. They can easily be synthesized in a few steps from commercially available glycals. As a result of the ring strain from the four-membered rings in (I) and (II), the conformations of the carbohydrates deviate strongly from the ideal chair form. Compound (II) occurs in the boat form. In the five-membered lactam (III), on the other hand, the carbohydrate adopts an almost ideal chair conformation. As a result of the distortion of the sugar rings, the configurations of the three bicyclic carbohydrate derivatives could not be determined from their NMR coupling constants. From our three crystal structure determinations, we were able to establish for the first time the absolute configurations of all new stereocenters of the carbohydrate rings.

1. Chemical context

Bicyclic carbohydrate derivatives have become attractive as inhibitors of glycoside hydro­lases (Lahiri et al., 2013[Lahiri, R., Ansari, A. A. & Vankar, Y. D. (2013). Chem. Soc. Rev. 42, 5102-5118.]). In particular, the enzyme O-GlcNAcase (OGA) is a promising target for such small-mol­ecule inhibitors, since the level of O-GlcNAc in our body influences diseases such as Alzheim­er's (Yuzwa et al., 2012[Yuzwa, S. A., Shan, X., Macauley, M. S., Clark, T., Skorobogatko, Y., Vosseller, K. & Vocadlo, D. J. (2012). Nat. Chem. Biol. 8, 393-399.]) or cancer (Ma & Vosseller, 2013[Ma, Z. & Vosseller, K. (2013). Amino Acids, 45, 719-733.]). However, the synthesis of bicyclic carbohydrate derivatives is usually a multi-step procedure. During our studies on the syntheses of carbohydrate analogs (Yin & Linker, 2012[Yin, J. & Linker, T. (2012). Org. Biomol. Chem. 10, 2351-2362.]), we developed an easy entry to such compounds by radical additions to commercially available glycals (Linker et al., 1997[Linker, T., Sommermann, T. & Kahlenberg, F. (1997). J. Am. Chem. Soc. 119, 9377-9384.]).

[Scheme 1]

More recently, we became inter­ested in cyclo­additions to glycals, affording bicyclic carbohydrate derivatives in one single step (Linker & Umbreen, 2012[Linker, T. & Umbreen, S. (2012). Patent DE 10 2012 110 740.8.]; Umbreen & Linker, 2015[Umbreen, S. & Linker, T. (2015). Chem. Eur. J. 21, 7340-7344.]). Using this procedure the products (I)[link], (II)[link], and (III)[link] were isolated in good yields in analytically pure form by column chromatography. However, their conformations and absolute configurations could not be determined by NMR spectroscopy, due to distortion of the sugar rings. Herein we report their crystal structures, which establish their absolute configurations and conformations in the solid state.

2. Structural commentary

Crystals of (I)[link] and (II)[link] are monoclinic, space group P21. There are two mol­ecules in the asymmetric unit of compound (I)[link], which show small conformational differences, especially the two acet­yloxy substituents in the 4- and 5-positions (Fig. 1[link]). The largest differences occur for the corresponding torsion angles C6—C5—O6—C13 [mol­ecule A −118.6 (2)°, mol­ecule B −147.5 (2)°]. The conformation of the pyran­ose rings deviates from the ideal chair. The puckering amplitudes and smallest displacement parameters for mol­ecules A and B are q = 0.467 (2)/0.473 (3) Å, θ = 151.9 (4)/150.7 (4)° and φ = 114.1 (6)/114.3 (6)°. The main feature is the absolute configuration of the new stereocenters being 1R and 6S. Surprisingly, the acet­yloxy substituents are positioned axially, in contrast to the usual D-gluco arrangement. Obviously the cyclo­butanone ring, with its bis­ectional positioned (C1—C8) and axial bonds (C6—C7) – in relation to the pyran­ose ring – enforces a flipping of the chair from 4C1 into 1C4. The cyclo­butane ring is almost planar [maximum deviation from the best plane of C7 = 0.0762 (15) Å in A and 0.0815 (15) Å in B] and can be described by the dihedral angles, forming by folding along the C6⋯C8 and C1⋯C7 line, between the planes C1–C6–C8/C6–C7–C8 [A 15.5 (2)°, B 17.0 (2)°] and C1–C6–C7/C1–C7–C8 [A 15.5 (2)°, B 16.6 (2)°]. The deviation of the carbonyl O atoms (O8A/O8B) from the mean plane of the pyran ring are 0.253 (5) and 0.303 (6) Å in mol­ecules A and B, respectively. The dihedral angles between the pyran­ose rings and the cyclo­butane rings are 61.3 (1) and 62.1 (1)° for mol­ecules A and B, respectively. Four non-classical intra­molecular hydrogen bonds for each of the both mol­ecules can be observed (see Fig. 1[link] and Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A⋯O3A 0.98 (3) 2.41 (3) 3.184 (3) 135 (2)
C2A—H22A⋯O3A 0.93 (3) 2.31 (3) 2.697 (3) 104 (2)
C2A—H22A⋯O6A 0.93 (3) 2.46 (3) 2.876 (3) 107 (2)
C5A—H5A⋯O7A 0.95 (3) 2.27 (3) 2.701 (3) 106.8 (19)
C1B—H1B⋯O3B 1.02 (3) 2.44 (3) 3.237 (3) 134 (2)
C2B—H22B⋯O3B 0.92 (4) 2.34 (3) 2.699 (3) 103 (2)
C2B—H22B⋯O6B 0.92 (4) 2.52 (3) 2.929 (3) 108 (2)
C5B—H5B⋯O7B 0.95 (3) 2.34 (3) 2.688 (3) 101 (2)
C4A—H4A⋯O3Ai 0.95 (3) 2.44 (3) 3.333 (3) 157 (2)
C2B—H21B⋯O3Bii 1.00 (4) 2.49 (4) 3.400 (3) 150 (2)
C4B—H4B⋯O3Bii 0.98 (3) 2.46 (3) 3.338 (3) 148 (2)
C10B—H104⋯O8Aii 0.97 2.55 3.306 (4) 135
C10B—H106⋯O7Aii 0.97 2.52 3.472 (4) 169
C12B—H125⋯O1Biii 0.97 2.52 3.476 (3) 167
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iii) [-x+2, y+{\script{1\over 2}}, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of the two independent mol­ecules (A and B) of compound (I)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius and hydrogen bonds are shown as blue dashed lines.

Compound (II)[link] also crystallizes with two mol­ecules in the asymmetric unit. Mol­ecule A is disordered (the minor component is labelled with the letter C; for details - see Refinement section). Mol­ecules A, B and C mainly differ in the torsion angles C10—O4—C5—C6 [A 115.6 (4)°, B: 149.4 (2)°] and O4—C5—C6—C1 [A 165.1 (5)°, B 167.6 (2)°, C 155 (2)°] of the acet­yloxy substituents in the 5-position (Fig. 2[link]). The pyran­ose rings adopt a twisted-boat conformation, characterized by the puckering parameters q = 0.755 (8)/0.763 (3)/0.75 (3) Å, θ = 90.9 (6)/91.0 (2)/91 (2)° and φ = 12.6 (6)/12.7 (2)/28 (3)° for mol­ecules A, B and C, and not the usual chair conformation. This arrangement is caused by the cyclo­butane ring with the C1—C8 and C6—C7 bonds, which are bis­ectional related to the arabinose ring. The absolute configuration on the stereocenters of the shared ring atoms is C1S and C6R. The cyclo­butane rings are almost planar with maximum deviations from the best plane of 0.045 (3) Å (C7A), 0.039 (1) Å (C7B) and 0.072 (12) Å (C7C). The nitro­gen atoms deviate marginally from these planes [N1A −0.224 (9) Å, N1B 0.199 (4) Å, N1C 0.30 (4) Å. The dihedral angles within the four-membered rings between C1/C6/C8 and C6/C7/C8 are 9.4 (5)° (A), 8.2 (2)°, (B) and 15 (2)° (C), and between C1/C6/C7 and C1/C7/C8 they are 9.0 (5)° (A), 7.9 (3)° (B) and 14 (2)° (C). The hydroxyl group of the oxime substit­uent can adopt two different configurations. Mol­ecule B exhibits an E configuration. For disordered mol­ecules A and C, the E/Z ratio of the isomers is 0.802 (7):0.198 (7). Thus, the major component (A) is E configured, with the hydroxyl group pointing away from the six-membered ring. In the minor Z isomer (C), the hydroxyl group exhibits a sterically unfavourable inter­action with the carbohydrate ring. An intra­molecular hydrogen bond between C5A/C5C and O5A is observed (Fig. 2[link], Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5A—H5A⋯O5A 0.98 (4) 2.21 (4) 2.691 (6) 109 (3)
C11B—H115⋯O3A 0.97 2.65 3.417 (4) 136
C9A—H92A⋯N1Ai 0.97 2.54 3.482 (6) 163
C4B—H4B⋯O6Ai 0.99 2.64 3.407 (3) 135
C9A—H92A⋯O6Ci 0.97 2.15 3.115 (15) 175
C1C—H1C⋯O4Ci 0.99 2.56 3.52 (4) 165
C11A—H112⋯O3Bii 0.97 2.59 3.413 (4) 142
C11B—H116⋯O5Aiii 0.97 2.36 3.312 (3) 169
C3A—H32A⋯O5Biv 1.01 (4) 2.50 (4) 3.176 (12) 124 (3)
C3C—H32C⋯O5Biv 0.98 2.25 3.05 (5) 138
C8A—H82A⋯O5Av 0.92 (5) 2.73 (5) 3.329 (5) 124 (3)
C8C—H82C⋯O5Av 0.98 2.62 3.27 (2) 123
C8C—H82C⋯O6Cv 0.98 2.50 3.32 (3) 141
O6B—H62⋯O1Bvi 0.89 (5) 1.96 (5) 2.852 (3) 175 (4)
O6A—H61A⋯O1Avii 0.90 (5) 1.86 (5) 2.757 (9) 175 (5)
C11A—H113⋯O6Avii 0.97 2.61 3.199 (4) 120
O6C—H61C⋯O1Cvii 0.83 2.35 2.96 (5) 131
C8B—H81B⋯O3Aviii 0.98 2.62 3.498 (4) 150
C9B—H92B⋯N1Bviii 0.97 2.69 3.635 (4) 164
C3B—H32B⋯O5Aix 0.98 2.61 3.430 (3) 142
C8B—H82B⋯N1Bx 0.98 2.67 3.569 (4) 152
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) x, y+1, z; (iii) x-1, y, z; (iv) x+1, y, z; (v) [-x+3, y-{\script{1\over 2}}, -z+1]; (vi) [-x, y+{\script{1\over 2}}, -z]; (vii) [-x+3, y+{\script{1\over 2}}, -z+1]; (viii) [-x+1, y-{\script{1\over 2}}, -z]; (ix) x-1, y-1, z; (x) [-x, y-{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
The mol­ecular structure of the two independent mol­ecules (A and B) of compound (II)[link], showing the atom labelling, rendering the disorder of mol­ecule A [occupancy ratio = 0.802 (7):0.198 (7)] with open bonds for the minor component. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius and hydrogen bonds are shown as blue dashed lines.

Compound (III)[link] contains one mol­ecule in the asymmetric unit (Fig. 3[link]). The new stereocenter at C7a obtained during synthesis is S configured. The six-membered and the five-membered rings are fused in the cis configuration. The C3a—C3 bond is axial and the C7a—N1 bond is bis­ectionally positioned with respect to the pyran­ose ring. The pyran­ose ring exhibits a strongly distorted chair conformation, with puckering parameters q = 0.555 (3) Å, θ = 20.4 (3)° and φ = 267.9 (9)°. The usual D-gluco configuration in the chair form 4C1 is found, in contrast to (I)[link]. The pyrrolidonyl ring is in an envelope conformation, closed puckering on C3a with a maximum deviation for that atom of 0.466 (5) Å from the plane formed by N1, C2, C3 and C7a. An intra­molecular hydrogen bond is observed between C7 and O7 (Fig. 3[link], Table 3[link]). In (I)[link] and (II)[link], the correct absolute configuration was assigned in agreement with the known chirality of the glycal precursors. Compound (III)[link] was synthesized from (I)[link] and thus its absolute configuration is known as well.

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O7 0.94 (4) 2.32 (3) 2.695 (4) 103 (3)
C3A—H3A⋯O7i 0.97 (4) 2.42 (4) 3.243 (4) 143 (3)
C5—H5⋯O5ii 0.98 (4) 2.27 (4) 3.230 (4) 167 (3)
C10—H10A⋯O1iii 0.97 2.47 3.386 (4) 158
C12—H12C⋯O8iv 0.97 2.58 3.468 (4) 152
N1—H1⋯O8v 0.87 (4) 1.96 (4) 2.826 (3) 174 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) x-1, y, z; (iv) x-1, y+1, z; (v) [-x+1, y+{\script{1\over 2}}, -z+1].
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius and hydrogen bonds are shown as blue dashed lines.

3. Supra­molecular features

The crystal packing of (I)[link] features weak non-classical C—H⋯O hydrogen bonds, which are illustrated in Fig. 4[link] and listed in Table 1[link]. The A mol­ecules are hydrogen-bonded via C4A—H4A⋯O3Ai inter­actions screwing around the b-axis direction (Fig. 4[link]). Between two infinite chains of A mol­ecules (above and below in in Fig. 4[link]) , the B mol­ecules are located, again forming a screw via three hydrogen bonds (C2B—H21B⋯O3Bii, C4B—H4B⋯O3Bii and C12B—H125⋯O1Biii). The A and B mol­ecules are linked by two further hydrogen bonds (C10B—H104⋯O8Aii and C10B—H106⋯O7Aii).

[Figure 4]
Figure 4
Part of the crystal of (I)[link], with inter­molecular hydrogen bonds shown as blue dashed lines. The view is along the a axis.

The crystal packing of (II)[link] is similar to that of (I)[link]. Chains consisting only of A mol­ecules are in an alternating arrangement with those consisting only of B mol­ecules, both screwing along the b-axis direction (Fig. 5[link]). In contrast to (I)[link], more inter­molecular hydrogen bonds can be observed. Strong hydrogen bonds occur between the OH groups and the oxygen atoms of the pyran­ose rings within each chain. Weak C—H⋯O and C—H⋯N hydrogen bonds act as linkers between the chains of mol­ecules. The chains are further connected via a large number of hydrogen bonds. Hydrogen bond geometries are summarized in Table 2[link].

[Figure 5]
Figure 5
Part of the crystal of (II)[link], with inter­molecular hydrogen bonds shown as blue dashed lines. The minor disorder component has been omitted for clarity. The view is along the a axis.

In the crystal packing of (III)[link], mol­ecules are linked via weak C—H⋯O hydrogen bonds running along the a-axis direction. The chains formed this way are connected in a pairwise fashion by strong N1—H1A⋯O8 bonds along c (see Fig. 6[link] and Table 3[link]).

[Figure 6]
Figure 6
Part of the crystal of (III)[link], with inter­molecular hydrogen bonds shown as blue dashed lines. The view is along the b axis.

4. Database survey

For structures containing the 2-oxabi­cyclo­[4.2.0]octane unit, see Tsao & Isobe (2010[Tsao, K.-W. & Isobe, M. (2010). Org. Lett. 12, 5338-5341.]) and Li et al. (2012[Li, X.-X., Zhu, L.-L., Zhou, W. & Chen, Z. (2012). Org. Lett. 14, 436-439.]). For a structure with the octa­hydro­pyrano[3,2b]pyrrol-2-one moiety, see Nastopoulos et al. (1997[Nastopoulos, V., Gourgioti, O., Balayiannis, G., Karigiannis, G., Papaioannou, D. & Kavounis, C. (1997). Acta Cryst. C53, 1971-1973.]).

5. Synthesis and crystallization

Cyclo­butanone (I) was synthesized from tri-O-acetyl-D-glucal, commercially available or obtained by the procedure of Ferrier (1965[Ferrier, R. J. (1965). Adv. Carbohydr. Chem. 20, 67-137.]). Tri­chloro­acetyl chloride (2.18 g, 10 mmol) in diethyl ether (12 mL) was added to a mixture of zinc–copper couple (3.87 g, 30 mmol) and tri-O-acetyl-D-glucal (1.36 g, 5 mmol) in dry diethyl ether (30 mL) at room temperature over 30 min under an N2 atmosphere. After completion of the reaction (TLC control), zinc dust (3.27 g, 50 mmol) was added at 273 K. Acetic acid (13 mL) was added within 10 min and the reaction mixture was stirred for 60 min. The reaction mixture was diluted with diethyl ether (60 mL) and the insoluble materials were filtered off through Celite, which was washed with diethyl ether (5 × 50 mL) and methanol (50 mL). The filtrate was extracted with (3 × 100 mL) water. The organic layer was dried over MgSO4 and concentrated in vacuo. The resulting residue was purified by column chromatography (hexa­ne/ethyl acetate 5:1) to afford pure cyclo­butanone (I)[link] (1.41 g, 90%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of (I)[link] in ethanol at room temperature.

Oxime (II) was synthesized from di-O-acetyl-D-arabinal, obtained by the procedure of Ferrier (1965[Ferrier, R. J. (1965). Adv. Carbohydr. Chem. 20, 67-137.]). Starting from di-O-acetyl-D-arabinal (1.0 g, 5.0 mmol) the corresponding cyclo­butanone was synthesized as described above and isolated by column chromatography (hexa­ne/ethyl acetate 5:1) in 83% yield. 242 mg (1.0 mmol) of this cyclo­butanone was dissolved in ethanol (2 mL) and then added to a solution of sodium acetate (246 mg, 3.0 mmol) and hydroxyl­amine hydro­chloride (208 mg, 3.0 mmol) in water (2 mL). The reaction mixture was stirred at 327 K for 2 h and then for 1 h at room temperature. The reaction mixture was washed with water (30 mL) and extracted with CH2Cl2 (3 × 50 mL). The organic layers were combined, dried over MgSO4, filtered and concentrated in vacuo. The oxime (II)[link] was directly recrystallized from ethanol solution, whereupon single crystals suitable for X-ray diffraction were obtained.

Lactam (III) was synthesized from cyclo­butanone (I)[link] (314 mg, 1 mmol). This cyclo­butanone was dissolved in ethanol (2 mL) and then added to a solution of sodium acetate (246 mg, 3.0 mmol) and hydroxyl­amine hydro­chloride (208 mg, 3.0 mmol) in water (2 mL). The reaction mixture was stirred at 327 K for 2 h and then for 1 h at room temperature. The reaction mixture was washed with water (30 mL) and extracted with CH2Cl2 (3 × 50 mL). The organic layers were combined, dried over MgSO4, filtered and concentrated in vacuo. Thionyl chloride (217.5 µL, 3.0 mmol) was added to a solution of the crude oxime in 1,4-dioxane (4 mL), and stirred for 10 min at room temperature. The reaction was quenched with saturated aqueous NaHCO3 (50 mL), and extracted with EtOAc (3 × 100 mL). The organic extracts were washed with brine, dried over MgSO4, and concentrated in vacuo. The residue was purified by column chromatography (hexa­ne/ethyl acetate 1:4) to afford the lactam in analytically pure form (244 mg, 74%). Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of (III)[link] in ethanol at room temperature.

6. Refinement

In compound (II)[link], disorder was observed for mol­ecule A, caused by flipping of the N—OH group. That disorder also causes disorder of the nearby ring atoms. Therefore the ring atoms of both the five- and six-membered rings were included in the disorder (but the OAc groups were left out). The geometry of the minor component was restrained to be similar to that of the major one with SAME, SADI and SIMU 0.01 restraints. The refinement of the occupation factors revealed an occupation ratio of 0.802 (7)/0.198 (7) for the two disordered components (see Fig. 2[link]). H atoms in the structures of (I)[link], (III)[link] and the ordered and major components of (II)[link] were located from difference Fourier maps and refined as riding with Uiso(H) = 1.2Ueq(C) with the exception of methyl hydrogen atoms, which were placed in their expected positions with HFIX 137 and refined with Uiso(H) = 1.5Ueq(C). For the minor disordered component in compound (II)[link], all H atoms were placed in their expected positions with C—H distances of 0.99 and 0.98 for CH and CH2 groups (HFIX 13 and 23) and 0.83 Å for OH groups (HFIX 147), and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O). Crystal data, data collection and structure refinement details are summarized in Table 4[link].

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C14H18O8 C11H15NO6 C14H19NO8
Mr 314.28 257.24 329.30
Crystal system, space group Monoclinic, P21 Monoclinic, P21 Monoclinic, P21
Temperature (K) 210 210 210
a, b, c (Å) 9.5538 (6), 8.3655 (3), 19.1395 (10) 8.9910 (3), 9.6231 (5), 14.4915 (6) 7.0784 (5), 6.1454 (3), 18.5176 (12)
β (°) 96.837 (4) 101.742 (3) 100.476 (5)
V3) 1518.80 (14) 1227.59 (9) 792.08 (9)
Z 4 4 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.11 0.11 0.11
Crystal size (mm) 0.78 × 0.37 × 0.14 0.65 × 0.55 × 0.40 1.30 × 0.58 × 0.22
 
Data collection
Diffractometer Stoe IPDS 2 Stoe IPDS 2 Stoe IPDS 2
Absorption correction Integration (X-RED; Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Integration (X-RED; Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Integration (X-RED; Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.800, 0.890 0.780, 0.997 0.423, 0.607
No. of measured, independent and observed [I > 2σ(I)] reflections 10373, 5034, 4398 8812, 4765, 4363 5216, 2527, 2394
Rint 0.026 0.038 0.037
(sin θ/λ)max−1) 0.606 0.617 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.082, 1.03 0.037, 0.103, 1.03 0.042, 0.112, 1.08
No. of reflections 5034 4765 2527
No. of parameters 458 460 242
No. of restraints 1 401 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.16, −0.18 0.28, −0.20 0.24, −0.20
Computer programs: X-AREA and X-RED (Stoe & Cie, 2011[Stoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2016[Brandenburg, K. (2016). DIAMOND. Crystal Impact, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2011); cell refinement: X-AREA (Stoe & Cie, 2011); data reduction: X-RED (Stoe & Cie, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2016); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and publCIF (Westrip, 2010).

(I) [(1R,3R,4R,5R,6S)-4,5-Bis(acetyloxy)-7-oxo-2-oxabicyclo[4.2.0]octan-3-yl]methyl acetate top
Crystal data top
C14H18O8F(000) = 664
Mr = 314.28Dx = 1.374 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.5538 (6) ÅCell parameters from 15828 reflections
b = 8.3655 (3) Åθ = 2.1–29.6°
c = 19.1395 (10) ŵ = 0.11 mm1
β = 96.837 (4)°T = 210 K
V = 1518.80 (14) Å3Prism, colourless
Z = 40.78 × 0.37 × 0.14 mm
Data collection top
Stoe IPDS 2
diffractometer
5034 independent reflections
Radiation source: sealed X-ray tube4398 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.026
rotation method scansθmax = 25.5°, θmin = 2.1°
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
h = 1111
Tmin = 0.800, Tmax = 0.890k = 109
10373 measured reflectionsl = 2321
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.0259P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.056
5034 reflectionsΔρmax = 0.16 e Å3
458 parametersΔρmin = 0.18 e Å3
1 restraintExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0067 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.2095 (3)0.0487 (3)0.02643 (14)0.0311 (5)
H1A0.249 (3)0.114 (4)0.0088 (16)0.037*
C2A0.4221 (3)0.1880 (4)0.01979 (14)0.0333 (6)
H21A0.495 (3)0.272 (4)0.0057 (17)0.040*
H22A0.454 (3)0.084 (4)0.0100 (16)0.040*
C3A0.2922 (2)0.2231 (3)0.01673 (14)0.0300 (5)
H3A0.248 (3)0.322 (4)0.0017 (16)0.036*
C4A0.3247 (2)0.2420 (3)0.09606 (14)0.0290 (5)
H4A0.396 (3)0.320 (4)0.1075 (15)0.035*
C5A0.3705 (2)0.0867 (3)0.13265 (13)0.0297 (5)
H5A0.369 (3)0.094 (4)0.1822 (16)0.036*
C6A0.2818 (2)0.0534 (3)0.10354 (14)0.0303 (5)
H6A0.329 (3)0.156 (4)0.1096 (16)0.036*
C7A0.1355 (3)0.0826 (3)0.12591 (15)0.0363 (6)
C8A0.0717 (3)0.1125 (4)0.05072 (16)0.0411 (7)
H81A0.015 (3)0.047 (4)0.0315 (17)0.049*
H82A0.057 (3)0.223 (5)0.0436 (17)0.049*
C9A0.3597 (3)0.0744 (4)0.13316 (13)0.0341 (6)
C10A0.3165 (4)0.1147 (4)0.20872 (16)0.0542 (8)
H1010.39980.12610.23270.081*
H1020.26420.21440.21180.081*
H1030.25750.03000.23070.081*
C11A0.1685 (3)0.4453 (4)0.12575 (16)0.0396 (6)
C12A0.0374 (4)0.4765 (4)0.15925 (19)0.0527 (8)
H1210.02640.39410.19390.079*
H1220.04360.47530.12350.079*
H1230.04430.58010.18210.079*
C13A0.6163 (3)0.0545 (3)0.17332 (14)0.0341 (6)
C14A0.7591 (3)0.0614 (4)0.15023 (16)0.0432 (7)
H1410.77590.16780.13290.065*
H1420.76540.01590.11300.065*
H1430.82910.03680.18970.065*
C1B0.8060 (3)0.1601 (3)0.46463 (14)0.0342 (6)
H1B0.759 (3)0.085 (4)0.4973 (16)0.041*
C2B0.5757 (3)0.3730 (4)0.50869 (14)0.0346 (6)
H21B0.495 (4)0.447 (4)0.4929 (17)0.042*
H22B0.547 (3)0.270 (4)0.4971 (17)0.042*
C3B0.7071 (3)0.4238 (3)0.47699 (14)0.0301 (5)
H3B0.740 (3)0.525 (4)0.4984 (16)0.036*
C4B0.6819 (2)0.4485 (3)0.39728 (13)0.0285 (5)
H4B0.606 (3)0.526 (4)0.3844 (14)0.034*
C5B0.6479 (2)0.2944 (3)0.35714 (14)0.0302 (5)
H5B0.658 (3)0.314 (4)0.3089 (17)0.036*
C6B0.7401 (3)0.1586 (3)0.38603 (13)0.0308 (5)
H6B0.694 (3)0.060 (4)0.3727 (15)0.037*
C7B0.8903 (3)0.1465 (4)0.36648 (16)0.0410 (7)
C8B0.9501 (3)0.1105 (4)0.44202 (18)0.0464 (7)
H81B1.042 (3)0.187 (4)0.4664 (17)0.056*
H82B0.968 (4)0.000 (5)0.4508 (19)0.056*
C9B0.6282 (3)0.2577 (4)0.62289 (14)0.0341 (6)
C10B0.6537 (4)0.2963 (4)0.69939 (16)0.0535 (8)
H1040.74070.35630.70900.080*
H1050.66090.19790.72640.080*
H1060.57590.35970.71260.080*
C11B0.8400 (3)0.6613 (4)0.37799 (14)0.0367 (6)
C12B0.9765 (3)0.6992 (4)0.35068 (16)0.0468 (7)
H1241.01190.60430.32960.070*
H1251.04460.73490.38920.070*
H1260.96160.78310.31560.070*
C13B0.4024 (3)0.3092 (3)0.31491 (15)0.0361 (6)
C14B0.2604 (3)0.2601 (4)0.33094 (19)0.0547 (8)
H1440.21880.34580.35560.082*
H1450.26860.16510.36030.082*
H1460.20090.23710.28740.082*
O1A0.18233 (17)0.1092 (2)0.00005 (9)0.0314 (4)
O2A0.3858 (2)0.2071 (2)0.09450 (10)0.0366 (4)
O3A0.3709 (2)0.0591 (2)0.10975 (11)0.0420 (5)
O4A0.19707 (17)0.2879 (2)0.12476 (9)0.0323 (4)
O5A0.2391 (3)0.5442 (3)0.10160 (14)0.0595 (6)
O6A0.51487 (16)0.0650 (2)0.11827 (9)0.0331 (4)
O7A0.5913 (2)0.0400 (3)0.23252 (11)0.0547 (6)
O8A0.0895 (2)0.0812 (3)0.18155 (12)0.0540 (6)
O1B0.82288 (18)0.3164 (2)0.49431 (9)0.0329 (4)
O2B0.6021 (2)0.3904 (2)0.58421 (10)0.0400 (4)
O3B0.6300 (2)0.1255 (2)0.59829 (10)0.0411 (5)
O4B0.81215 (17)0.5039 (2)0.37353 (9)0.0322 (4)
O5B0.7642 (2)0.7555 (3)0.40164 (14)0.0577 (6)
O6B0.50348 (16)0.2534 (2)0.36506 (9)0.0327 (4)
O7B0.4278 (2)0.3865 (3)0.26526 (11)0.0478 (5)
O8B0.9393 (2)0.1651 (4)0.31262 (12)0.0636 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0304 (12)0.0259 (13)0.0362 (14)0.0017 (10)0.0006 (10)0.0029 (12)
C2A0.0349 (13)0.0311 (14)0.0333 (14)0.0036 (11)0.0017 (10)0.0015 (12)
C3A0.0283 (12)0.0245 (14)0.0365 (14)0.0003 (10)0.0001 (10)0.0003 (11)
C4A0.0248 (12)0.0256 (12)0.0363 (13)0.0007 (10)0.0020 (10)0.0049 (11)
C5A0.0249 (12)0.0334 (14)0.0300 (12)0.0032 (10)0.0006 (9)0.0037 (11)
C6A0.0295 (13)0.0256 (13)0.0355 (14)0.0042 (10)0.0021 (10)0.0015 (11)
C7A0.0304 (13)0.0363 (16)0.0413 (15)0.0021 (10)0.0012 (11)0.0104 (12)
C8A0.0326 (14)0.0413 (17)0.0478 (17)0.0102 (12)0.0009 (12)0.0021 (14)
C9A0.0320 (13)0.0373 (16)0.0336 (13)0.0021 (11)0.0070 (10)0.0029 (13)
C10A0.072 (2)0.056 (2)0.0346 (15)0.0015 (16)0.0057 (14)0.0039 (15)
C11A0.0454 (15)0.0307 (15)0.0424 (16)0.0087 (12)0.0041 (12)0.0049 (13)
C12A0.0566 (19)0.0470 (19)0.057 (2)0.0182 (14)0.0155 (15)0.0022 (16)
C13A0.0304 (13)0.0312 (14)0.0380 (15)0.0021 (10)0.0067 (10)0.0038 (12)
C14A0.0278 (13)0.0438 (17)0.0558 (17)0.0030 (12)0.0039 (11)0.0054 (15)
C1B0.0345 (13)0.0293 (13)0.0369 (14)0.0036 (10)0.0037 (11)0.0005 (12)
C2B0.0365 (14)0.0336 (15)0.0333 (14)0.0027 (12)0.0020 (10)0.0017 (12)
C3B0.0323 (13)0.0238 (13)0.0334 (14)0.0020 (10)0.0005 (10)0.0022 (11)
C4B0.0246 (12)0.0265 (13)0.0343 (13)0.0004 (10)0.0023 (9)0.0025 (11)
C5B0.0265 (12)0.0331 (14)0.0303 (13)0.0041 (10)0.0004 (9)0.0005 (11)
C6B0.0305 (12)0.0253 (13)0.0356 (14)0.0022 (10)0.0006 (10)0.0051 (11)
C7B0.0324 (14)0.0421 (17)0.0473 (17)0.0015 (11)0.0001 (12)0.0137 (13)
C8B0.0350 (15)0.0453 (19)0.0566 (18)0.0133 (12)0.0038 (12)0.0096 (15)
C9B0.0311 (13)0.0389 (16)0.0333 (13)0.0047 (11)0.0074 (10)0.0006 (12)
C10B0.071 (2)0.055 (2)0.0342 (15)0.0090 (16)0.0094 (14)0.0037 (15)
C11B0.0443 (15)0.0299 (14)0.0352 (14)0.0086 (12)0.0013 (11)0.0012 (12)
C12B0.0500 (16)0.0489 (18)0.0429 (16)0.0209 (14)0.0109 (12)0.0051 (14)
C13B0.0318 (14)0.0347 (15)0.0388 (15)0.0015 (10)0.0077 (11)0.0037 (13)
C14B0.0304 (15)0.055 (2)0.076 (2)0.0004 (13)0.0061 (14)0.0057 (18)
O1A0.0268 (9)0.0286 (10)0.0368 (9)0.0021 (7)0.0050 (7)0.0004 (8)
O2A0.0473 (10)0.0299 (10)0.0329 (10)0.0014 (8)0.0060 (7)0.0004 (8)
O3A0.0499 (12)0.0338 (12)0.0429 (11)0.0033 (8)0.0076 (9)0.0037 (9)
O4A0.0298 (9)0.0282 (10)0.0391 (10)0.0032 (7)0.0053 (7)0.0053 (8)
O5A0.0665 (14)0.0283 (11)0.0885 (17)0.0045 (10)0.0293 (12)0.0019 (12)
O6A0.0227 (8)0.0427 (11)0.0327 (9)0.0037 (7)0.0019 (7)0.0046 (9)
O7A0.0413 (11)0.0849 (18)0.0355 (11)0.0043 (11)0.0057 (8)0.0007 (12)
O8A0.0421 (11)0.0744 (18)0.0471 (13)0.0039 (10)0.0124 (9)0.0110 (12)
O1B0.0306 (9)0.0303 (10)0.0356 (9)0.0026 (7)0.0050 (7)0.0037 (8)
O2B0.0528 (11)0.0331 (10)0.0355 (10)0.0009 (8)0.0114 (8)0.0024 (9)
O3B0.0534 (12)0.0322 (12)0.0376 (10)0.0055 (8)0.0047 (8)0.0000 (9)
O4B0.0316 (9)0.0288 (10)0.0364 (10)0.0056 (7)0.0049 (7)0.0001 (8)
O5B0.0628 (14)0.0280 (11)0.0859 (17)0.0037 (10)0.0241 (12)0.0034 (12)
O6B0.0242 (8)0.0356 (10)0.0368 (10)0.0036 (7)0.0026 (7)0.0033 (8)
O7B0.0463 (11)0.0540 (14)0.0404 (11)0.0035 (10)0.0056 (9)0.0062 (11)
O8B0.0405 (12)0.100 (2)0.0519 (14)0.0025 (12)0.0115 (10)0.0186 (14)
Geometric parameters (Å, º) top
C1A—O1A1.427 (3)C1B—O1B1.427 (3)
C1A—C8A1.543 (4)C1B—C8B1.548 (4)
C1A—C6A1.554 (4)C1B—C6B1.560 (4)
C1A—H1A0.98 (3)C1B—H1B1.02 (3)
C2A—O2A1.440 (3)C2B—O2B1.445 (3)
C2A—C3A1.523 (4)C2B—C3B1.519 (4)
C2A—H21A1.00 (3)C2B—H21B1.00 (4)
C2A—H22A0.93 (3)C2B—H22B0.92 (4)
C3A—O1A1.426 (3)C3B—O1B1.433 (3)
C3A—C4A1.521 (4)C3B—C4B1.530 (4)
C3A—H3A0.96 (3)C3B—H3B0.97 (3)
C4A—O4A1.447 (3)C4B—O4B1.451 (3)
C4A—C5A1.516 (4)C4B—C5B1.516 (4)
C4A—H4A0.95 (3)C4B—H4B0.98 (3)
C5A—O6A1.450 (3)C5B—O6B1.447 (3)
C5A—C6A1.513 (4)C5B—C6B1.502 (4)
C5A—H5A0.95 (3)C5B—H5B0.95 (3)
C6A—C7A1.530 (4)C6B—C7B1.529 (4)
C6A—H6A0.97 (3)C6B—H6B0.96 (3)
C7A—O8A1.199 (4)C7B—O8B1.192 (4)
C7A—C8A1.515 (4)C7B—C8B1.520 (5)
C8A—H81A1.02 (3)C8B—H81B1.14 (3)
C8A—H82A0.94 (4)C8B—H82B0.96 (4)
C9A—O3A1.203 (4)C9B—O3B1.203 (3)
C9A—O2A1.341 (3)C9B—O2B1.341 (4)
C9A—C10A1.494 (4)C9B—C10B1.491 (4)
C10A—H1010.9700C10B—H1040.9700
C10A—H1020.9700C10B—H1050.9700
C10A—H1030.9700C10B—H1060.9700
C11A—O5A1.195 (4)C11B—O5B1.195 (4)
C11A—O4A1.346 (3)C11B—O4B1.344 (3)
C11A—C12A1.497 (4)C11B—C12B1.496 (4)
C12A—H1210.9700C12B—H1240.9700
C12A—H1220.9700C12B—H1250.9700
C12A—H1230.9700C12B—H1260.9700
C13A—O7A1.192 (3)C13B—O7B1.198 (3)
C13A—O6A1.347 (3)C13B—O6B1.361 (3)
C13A—C14A1.484 (4)C13B—C14B1.484 (4)
C14A—H1410.9700C14B—H1440.9700
C14A—H1420.9700C14B—H1450.9700
C14A—H1430.9700C14B—H1460.9700
O1A—C1A—C8A107.5 (2)C8B—C1B—H1B118.3 (18)
O1A—C1A—C6A113.7 (2)C6B—C1B—H1B115.4 (17)
C8A—C1A—C6A90.2 (2)O2B—C2B—C3B108.5 (2)
O1A—C1A—H1A110.0 (18)O2B—C2B—H21B106.0 (19)
C8A—C1A—H1A115.4 (18)C3B—C2B—H21B110.2 (19)
C6A—C1A—H1A118.4 (17)O2B—C2B—H22B110 (2)
O2A—C2A—C3A108.8 (2)C3B—C2B—H22B113.5 (19)
O2A—C2A—H21A105.4 (18)H21B—C2B—H22B108 (3)
C3A—C2A—H21A108.4 (18)O1B—C3B—C2B112.6 (2)
O2A—C2A—H22A109.6 (19)O1B—C3B—C4B109.9 (2)
C3A—C2A—H22A110.5 (18)C2B—C3B—C4B113.4 (2)
H21A—C2A—H22A114 (2)O1B—C3B—H3B104.3 (18)
O1A—C3A—C4A110.6 (2)C2B—C3B—H3B108.2 (17)
O1A—C3A—C2A112.7 (2)C4B—C3B—H3B108.0 (18)
C4A—C3A—C2A113.4 (2)O4B—C4B—C5B104.65 (19)
O1A—C3A—H3A103.1 (18)O4B—C4B—C3B108.45 (19)
C4A—C3A—H3A103.9 (18)C5B—C4B—C3B112.9 (2)
C2A—C3A—H3A112.4 (18)O4B—C4B—H4B110.4 (17)
O4A—C4A—C5A105.2 (2)C5B—C4B—H4B109.0 (17)
O4A—C4A—C3A108.99 (18)C3B—C4B—H4B111.3 (16)
C5A—C4A—C3A112.7 (2)O6B—C5B—C6B107.9 (2)
O4A—C4A—H4A110.4 (18)O6B—C5B—C4B107.3 (2)
C5A—C4A—H4A108.6 (18)C6B—C5B—C4B112.1 (2)
C3A—C4A—H4A110.9 (18)O6B—C5B—H5B110.4 (17)
O6A—C5A—C4A104.4 (2)C6B—C5B—H5B111.2 (18)
O6A—C5A—C6A109.7 (2)C4B—C5B—H5B107.9 (19)
C4A—C5A—C6A112.08 (19)C5B—C6B—C7B119.1 (2)
O6A—C5A—H5A108.8 (16)C5B—C6B—C1B120.0 (2)
C4A—C5A—H5A111.6 (18)C7B—C6B—C1B87.35 (19)
C6A—C5A—H5A110.2 (18)C5B—C6B—H6B108.8 (18)
C5A—C6A—C7A120.7 (2)C7B—C6B—H6B107.2 (17)
C5A—C6A—C1A119.7 (2)C1B—C6B—H6B112.6 (18)
C7A—C6A—C1A87.25 (19)O8B—C7B—C8B134.9 (3)
C5A—C6A—H6A114.2 (18)O8B—C7B—C6B132.8 (3)
C7A—C6A—H6A104.6 (18)C8B—C7B—C6B92.2 (2)
C1A—C6A—H6A106.5 (18)C7B—C8B—C1B88.1 (2)
O8A—C7A—C8A134.1 (3)C7B—C8B—H81B117.4 (17)
O8A—C7A—C6A133.7 (3)C1B—C8B—H81B113.7 (17)
C8A—C7A—C6A92.2 (2)C7B—C8B—H82B114 (2)
C7A—C8A—C1A88.15 (19)C1B—C8B—H82B111 (2)
C7A—C8A—H81A118.0 (19)H81B—C8B—H82B111 (3)
C1A—C8A—H81A112.8 (19)O3B—C9B—O2B123.7 (2)
C7A—C8A—H82A110 (2)O3B—C9B—C10B125.1 (3)
C1A—C8A—H82A115 (2)O2B—C9B—C10B111.2 (3)
H81A—C8A—H82A112 (3)C9B—C10B—H104109.5
O3A—C9A—O2A124.1 (2)C9B—C10B—H105109.5
O3A—C9A—C10A124.9 (3)H104—C10B—H105109.5
O2A—C9A—C10A111.0 (3)C9B—C10B—H106109.5
C9A—C10A—H101109.5H104—C10B—H106109.5
C9A—C10A—H102109.5H105—C10B—H106109.5
H101—C10A—H102109.5O5B—C11B—O4B123.1 (3)
C9A—C10A—H103109.5O5B—C11B—C12B125.8 (3)
H101—C10A—H103109.5O4B—C11B—C12B111.1 (3)
H102—C10A—H103109.5C11B—C12B—H124109.5
O5A—C11A—O4A123.2 (3)C11B—C12B—H125109.5
O5A—C11A—C12A125.8 (3)H124—C12B—H125109.5
O4A—C11A—C12A111.0 (3)C11B—C12B—H126109.5
C11A—C12A—H121109.5H124—C12B—H126109.5
C11A—C12A—H122109.5H125—C12B—H126109.5
H121—C12A—H122109.5O7B—C13B—O6B123.4 (2)
C11A—C12A—H123109.5O7B—C13B—C14B126.2 (3)
H121—C12A—H123109.5O6B—C13B—C14B110.4 (3)
H122—C12A—H123109.5C13B—C14B—H144109.5
O7A—C13A—O6A122.9 (2)C13B—C14B—H145109.5
O7A—C13A—C14A125.6 (2)H144—C14B—H145109.5
O6A—C13A—C14A111.4 (2)C13B—C14B—H146109.5
C13A—C14A—H141109.5H144—C14B—H146109.5
C13A—C14A—H142109.5H145—C14B—H146109.5
H141—C14A—H142109.5C1A—O1A—C3A116.15 (17)
C13A—C14A—H143109.5C9A—O2A—C2A117.6 (2)
H141—C14A—H143109.5C11A—O4A—C4A116.5 (2)
H142—C14A—H143109.5C13A—O6A—C5A118.15 (19)
O1B—C1B—C8B107.2 (2)C1B—O1B—C3B115.80 (18)
O1B—C1B—C6B113.9 (2)C9B—O2B—C2B117.9 (2)
C8B—C1B—C6B89.9 (2)C11B—O4B—C4B117.6 (2)
O1B—C1B—H1B110.7 (18)C13B—O6B—C5B116.8 (2)
O2A—C2A—C3A—O1A65.9 (3)C8B—C1B—C6B—C5B134.1 (3)
O2A—C2A—C3A—C4A167.5 (2)O1B—C1B—C6B—C7B97.1 (2)
O1A—C3A—C4A—O4A57.0 (3)C8B—C1B—C6B—C7B11.7 (2)
C2A—C3A—C4A—O4A175.3 (2)C5B—C6B—C7B—O8B42.2 (5)
O1A—C3A—C4A—C5A59.4 (3)C1B—C6B—C7B—O8B165.4 (4)
C2A—C3A—C4A—C5A68.3 (3)C5B—C6B—C7B—C8B135.2 (2)
O4A—C4A—C5A—O6A165.16 (18)C1B—C6B—C7B—C8B11.9 (2)
C3A—C4A—C5A—O6A76.2 (2)O8B—C7B—C8B—C1B165.2 (4)
O4A—C4A—C5A—C6A76.2 (2)C6B—C7B—C8B—C1B12.0 (2)
C3A—C4A—C5A—C6A42.4 (3)O1B—C1B—C8B—C7B103.3 (2)
O6A—C5A—C6A—C7A165.3 (2)C6B—C1B—C8B—C7B11.8 (2)
C4A—C5A—C6A—C7A79.2 (3)C8A—C1A—O1A—C3A140.7 (2)
O6A—C5A—C6A—C1A88.7 (3)C6A—C1A—O1A—C3A42.5 (3)
C4A—C5A—C6A—C1A26.7 (3)C4A—C3A—O1A—C1A60.0 (3)
O1A—C1A—C6A—C5A25.8 (3)C2A—C3A—O1A—C1A68.1 (3)
C8A—C1A—C6A—C5A135.1 (2)O3A—C9A—O2A—C2A3.5 (4)
O1A—C1A—C6A—C7A98.3 (2)C10A—C9A—O2A—C2A177.1 (2)
C8A—C1A—C6A—C7A11.0 (2)C3A—C2A—O2A—C9A100.7 (2)
C5A—C6A—C7A—O8A45.2 (5)O5A—C11A—O4A—C4A3.5 (4)
C1A—C6A—C7A—O8A168.5 (4)C12A—C11A—O4A—C4A177.7 (2)
C5A—C6A—C7A—C8A134.5 (3)C5A—C4A—O4A—C11A152.2 (2)
C1A—C6A—C7A—C8A11.2 (2)C3A—C4A—O4A—C11A86.8 (3)
O8A—C7A—C8A—C1A168.4 (4)O7A—C13A—O6A—C5A10.7 (4)
C6A—C7A—C8A—C1A11.3 (2)C14A—C13A—O6A—C5A170.0 (2)
O1A—C1A—C8A—C7A104.0 (2)C4A—C5A—O6A—C13A121.1 (2)
C6A—C1A—C8A—C7A11.1 (2)C6A—C5A—O6A—C13A118.6 (2)
O2B—C2B—C3B—O1B68.0 (3)C8B—C1B—O1B—C3B140.4 (2)
O2B—C2B—C3B—C4B166.4 (2)C6B—C1B—O1B—C3B42.6 (3)
O1B—C3B—C4B—O4B55.8 (3)C2B—C3B—O1B—C1B67.0 (3)
C2B—C3B—C4B—O4B177.3 (2)C4B—C3B—O1B—C1B60.3 (3)
O1B—C3B—C4B—C5B59.8 (3)O3B—C9B—O2B—C2B0.5 (4)
C2B—C3B—C4B—C5B67.2 (3)C10B—C9B—O2B—C2B179.8 (2)
O4B—C4B—C5B—O6B166.29 (19)C3B—C2B—O2B—C9B103.5 (3)
C3B—C4B—C5B—O6B76.0 (2)O5B—C11B—O4B—C4B1.5 (4)
O4B—C4B—C5B—C6B75.5 (2)C12B—C11B—O4B—C4B179.3 (2)
C3B—C4B—C5B—C6B42.3 (3)C5B—C4B—O4B—C11B155.0 (2)
O6B—C5B—C6B—C7B162.9 (2)C3B—C4B—O4B—C11B84.2 (3)
C4B—C5B—C6B—C7B79.1 (3)O7B—C13B—O6B—C5B1.3 (4)
O6B—C5B—C6B—C1B91.9 (3)C14B—C13B—O6B—C5B179.0 (2)
C4B—C5B—C6B—C1B26.0 (3)C6B—C5B—O6B—C13B147.5 (2)
O1B—C1B—C6B—C5B25.3 (3)C4B—C5B—O6B—C13B91.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···O3A0.98 (3)2.41 (3)3.184 (3)135 (2)
C2A—H22A···O3A0.93 (3)2.31 (3)2.697 (3)104 (2)
C2A—H22A···O6A0.93 (3)2.46 (3)2.876 (3)107 (2)
C5A—H5A···O7A0.95 (3)2.27 (3)2.701 (3)106.8 (19)
C1B—H1B···O3B1.02 (3)2.44 (3)3.237 (3)134 (2)
C2B—H22B···O3B0.92 (4)2.34 (3)2.699 (3)103 (2)
C2B—H22B···O6B0.92 (4)2.52 (3)2.929 (3)108 (2)
C5B—H5B···O7B0.95 (3)2.34 (3)2.688 (3)101 (2)
C4A—H4A···O3Ai0.95 (3)2.44 (3)3.333 (3)157 (2)
C2B—H21B···O3Bii1.00 (4)2.49 (4)3.400 (3)150 (2)
C4B—H4B···O3Bii0.98 (3)2.46 (3)3.338 (3)148 (2)
C10B—H104···O8Aii0.972.553.306 (4)135
C10B—H106···O7Aii0.972.523.472 (4)169
C12B—H125···O1Biii0.972.523.476 (3)167
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y+1/2, z+1; (iii) x+2, y+1/2, z+1.
(II) (1S,4R,5S,6R)-5-Acetyloxy-7-hydroxyimino-2-oxabicyclo[4.2.0]octan-4-yl acetate top
Crystal data top
C11H15NO6F(000) = 544
Mr = 257.24Dx = 1.392 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.9910 (3) ÅCell parameters from 16172 reflections
b = 9.6231 (5) Åθ = 2.1–29.6°
c = 14.4915 (6) ŵ = 0.11 mm1
β = 101.742 (3)°T = 210 K
V = 1227.59 (9) Å3Block, colourless
Z = 40.65 × 0.55 × 0.40 mm
Data collection top
Stoe IPDS 2
diffractometer
4765 independent reflections
Radiation source: sealed X-ray tube4363 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.038
rotation method scansθmax = 26.0°, θmin = 2.3°
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
h = 1011
Tmin = 0.780, Tmax = 0.997k = 1111
8812 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0759P)2]
where P = (Fo2 + 2Fc2)/3
4765 reflections(Δ/σ)max < 0.001
460 parametersΔρmax = 0.28 e Å3
401 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C2A0.7624 (3)0.8659 (3)0.34319 (18)0.0462 (6)
C9A0.6416 (4)0.8926 (4)0.3973 (2)0.0555 (8)
H91A0.68430.94310.45450.083*
H92A0.60040.80480.41350.083*
H93A0.56130.94730.35920.083*
C10A1.1829 (3)1.1956 (3)0.34588 (17)0.0360 (5)
C11A1.1085 (4)1.3350 (3)0.3341 (3)0.0552 (8)
H1111.10871.37480.39560.083*
H1121.00471.32520.29960.083*
H1131.16391.39550.29940.083*
C1B0.2924 (3)0.3975 (3)0.00453 (17)0.0366 (5)
H1B0.36710.34760.02490.044*
C2B0.7382 (3)0.5086 (3)0.16720 (18)0.0399 (6)
C3B0.4218 (3)0.3777 (3)0.16338 (18)0.0411 (6)
H31B0.50220.31670.15010.049*
H32B0.40660.35570.22680.049*
C4B0.4739 (3)0.5290 (3)0.16135 (16)0.0346 (5)
H4B0.50180.56590.22630.042*
C5B0.3464 (3)0.6151 (3)0.10397 (16)0.0333 (5)
H5B0.25590.60960.13290.040*
C6B0.3074 (3)0.5587 (3)0.00420 (16)0.0331 (5)
H6B0.37880.59110.03490.040*
C7B0.1444 (3)0.5633 (3)0.04794 (16)0.0381 (5)
C8B0.1315 (3)0.4083 (3)0.05803 (19)0.0442 (6)
H81B0.12490.37500.12270.053*
H82B0.05150.36740.02970.053*
C9B0.8617 (3)0.5288 (4)0.1139 (2)0.0504 (7)
H91B0.82050.57270.05390.076*
H92B0.90490.43940.10310.076*
H93B0.94010.58760.15000.076*
C10B0.3613 (3)0.8438 (3)0.16639 (18)0.0406 (6)
C11B0.4184 (3)0.9870 (3)0.15495 (19)0.0435 (6)
H1140.38291.01750.09040.065*
H1150.52860.98680.16960.065*
H1160.38101.04980.19740.065*
N1B0.0567 (3)0.6686 (3)0.06732 (15)0.0438 (5)
O2A0.9009 (2)0.8930 (2)0.39572 (12)0.0433 (4)
O3A0.7437 (3)0.8226 (3)0.26428 (16)0.0717 (8)
O5A1.2974 (2)1.1641 (2)0.32135 (13)0.0438 (4)
O1A1.2131 (13)0.7019 (9)0.4315 (5)0.0375 (14)0.802 (7)
O4A1.0968 (5)1.1064 (4)0.3838 (3)0.0393 (9)0.802 (7)
C3A1.0769 (10)0.7171 (8)0.3612 (7)0.0399 (15)0.802 (7)
H31A0.993 (5)0.657 (5)0.381 (3)0.048*0.802 (7)
H32A1.112 (5)0.682 (5)0.303 (3)0.048*0.802 (7)
C4A1.0257 (6)0.8686 (7)0.3488 (4)0.0357 (12)0.802 (7)
H4A0.993 (4)0.893 (4)0.284 (3)0.043*0.802 (7)
C5A1.1497 (6)0.9650 (6)0.3974 (4)0.0321 (11)0.802 (7)
H5A1.239 (4)0.957 (4)0.369 (2)0.038*0.802 (7)
C6A1.1871 (6)0.9305 (5)0.5018 (4)0.0303 (10)0.802 (7)
H6A1.109 (4)0.978 (4)0.538 (2)0.036*0.802 (7)
C7A1.3507 (5)0.9418 (5)0.5534 (3)0.0335 (9)0.802 (7)
C8A1.3628 (6)0.7904 (5)0.5800 (3)0.0415 (10)0.802 (7)
H81A1.365 (5)0.777 (5)0.648 (3)0.050*0.802 (7)
H82A1.436 (5)0.737 (5)0.562 (3)0.050*0.802 (7)
C1A1.2032 (8)0.7699 (7)0.5178 (4)0.0318 (11)0.802 (7)
H1A1.127 (5)0.725 (5)0.545 (3)0.038*0.802 (7)
N1A1.4390 (4)1.0471 (5)0.5612 (3)0.0389 (8)0.802 (7)
O6A1.5842 (3)1.0113 (3)0.61381 (17)0.0462 (8)0.802 (7)
H61A1.647 (5)1.078 (6)0.601 (3)0.055*0.802 (7)
O1C1.212 (6)0.692 (4)0.445 (2)0.037 (4)0.198 (7)
O4C1.1360 (19)1.1097 (19)0.4153 (11)0.035 (3)0.198 (7)
C3C1.098 (5)0.730 (3)0.365 (3)0.037 (4)0.198 (7)
H31C1.00840.67080.36380.045*0.198 (7)
H32C1.13600.71100.30790.045*0.198 (7)
C4C1.047 (2)0.884 (3)0.3635 (19)0.035 (3)0.198 (7)
H4C1.02890.91680.29730.042*0.198 (7)
C5C1.178 (3)0.964 (2)0.4187 (17)0.032 (3)0.198 (7)
H5C1.26810.95180.38960.039*0.198 (7)
C6C1.217 (3)0.919 (3)0.5190 (17)0.032 (3)0.198 (7)
H6C1.15590.97150.55690.039*0.198 (7)
C7C1.3738 (17)0.8967 (19)0.5741 (12)0.031 (3)0.198 (7)
C8C1.348 (2)0.752 (2)0.6025 (15)0.041 (3)0.198 (7)
H81C1.33780.74250.66830.049*0.198 (7)
H82C1.42050.68440.58670.049*0.198 (7)
C1C1.194 (4)0.758 (3)0.530 (2)0.035 (3)0.198 (7)
H1C1.10350.73030.55480.042*0.198 (7)
N1C1.4971 (15)0.9694 (13)0.5907 (8)0.038 (3)0.198 (7)
O6C1.4713 (16)1.1029 (15)0.5499 (10)0.045 (3)0.198 (7)
H61C1.53411.11830.51630.055*0.198 (7)
O1B0.2839 (2)0.3495 (2)0.09659 (12)0.0391 (4)
O2B0.60131 (18)0.54196 (19)0.11464 (11)0.0353 (4)
O3B0.7546 (3)0.4639 (3)0.24570 (15)0.0639 (7)
O4B0.3909 (2)0.75818 (19)0.09905 (12)0.0375 (4)
O5B0.3004 (3)0.8057 (3)0.22778 (17)0.0681 (7)
O6B0.0881 (2)0.6224 (3)0.11490 (15)0.0538 (5)
H620.146 (5)0.697 (5)0.111 (3)0.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C2A0.0436 (15)0.0508 (17)0.0432 (14)0.0043 (12)0.0060 (11)0.0000 (12)
C9A0.0423 (16)0.064 (2)0.0627 (17)0.0009 (14)0.0156 (13)0.0046 (15)
C10A0.0349 (13)0.0320 (12)0.0417 (11)0.0021 (10)0.0092 (10)0.0021 (10)
C11A0.0509 (17)0.0357 (16)0.082 (2)0.0051 (13)0.0213 (15)0.0132 (14)
C1B0.0394 (13)0.0332 (13)0.0373 (11)0.0040 (10)0.0081 (10)0.0000 (9)
C2B0.0330 (13)0.0411 (14)0.0443 (13)0.0003 (10)0.0044 (10)0.0038 (11)
C3B0.0369 (13)0.0408 (15)0.0430 (12)0.0041 (11)0.0020 (10)0.0106 (10)
C4B0.0301 (12)0.0402 (14)0.0341 (10)0.0018 (10)0.0077 (9)0.0030 (9)
C5B0.0340 (12)0.0308 (12)0.0368 (11)0.0015 (9)0.0113 (9)0.0011 (9)
C6B0.0337 (12)0.0330 (12)0.0334 (10)0.0046 (10)0.0085 (9)0.0031 (9)
C7B0.0386 (13)0.0399 (14)0.0350 (11)0.0051 (11)0.0058 (9)0.0012 (10)
C8B0.0443 (15)0.0438 (15)0.0403 (13)0.0003 (12)0.0016 (11)0.0052 (11)
C9B0.0390 (14)0.0549 (18)0.0588 (15)0.0016 (13)0.0132 (12)0.0079 (13)
C10B0.0456 (15)0.0361 (14)0.0426 (12)0.0038 (11)0.0147 (11)0.0023 (10)
C11B0.0479 (15)0.0358 (15)0.0497 (13)0.0010 (12)0.0166 (11)0.0014 (11)
N1B0.0382 (12)0.0462 (13)0.0441 (11)0.0019 (10)0.0018 (9)0.0009 (10)
O2A0.0387 (10)0.0518 (12)0.0411 (9)0.0010 (8)0.0125 (7)0.0014 (8)
O3A0.0579 (14)0.102 (2)0.0530 (13)0.0026 (14)0.0060 (10)0.0175 (13)
O5A0.0452 (11)0.0352 (10)0.0552 (10)0.0039 (8)0.0198 (9)0.0002 (8)
O1A0.0395 (17)0.030 (2)0.045 (2)0.0031 (16)0.014 (2)0.0052 (19)
O4A0.034 (2)0.0297 (14)0.057 (2)0.0048 (13)0.0166 (15)0.0089 (17)
C3A0.043 (3)0.033 (2)0.043 (2)0.008 (2)0.007 (2)0.0079 (17)
C4A0.037 (2)0.040 (2)0.031 (2)0.0025 (17)0.0078 (16)0.0053 (16)
C5A0.033 (2)0.0275 (17)0.037 (2)0.0026 (16)0.0103 (16)0.0016 (16)
C6A0.027 (2)0.0267 (18)0.038 (2)0.0022 (15)0.0068 (14)0.0044 (15)
C7A0.0346 (19)0.031 (2)0.0357 (17)0.0032 (15)0.0084 (14)0.0014 (14)
C8A0.038 (2)0.039 (3)0.045 (2)0.0017 (18)0.0025 (16)0.0071 (17)
C1A0.0311 (18)0.0293 (19)0.036 (2)0.0019 (14)0.0102 (15)0.0011 (15)
N1A0.0386 (19)0.039 (2)0.0381 (15)0.0032 (17)0.0047 (12)0.0015 (16)
O6A0.0376 (16)0.0499 (16)0.0473 (13)0.0141 (12)0.0001 (11)0.0078 (11)
O1C0.038 (6)0.033 (6)0.043 (6)0.003 (5)0.017 (5)0.002 (5)
O4C0.034 (6)0.027 (4)0.045 (7)0.001 (5)0.013 (5)0.003 (5)
C3C0.042 (6)0.034 (6)0.040 (6)0.007 (6)0.018 (5)0.008 (6)
C4C0.042 (6)0.034 (6)0.033 (6)0.002 (5)0.015 (5)0.001 (5)
C5C0.034 (5)0.022 (5)0.041 (6)0.001 (5)0.010 (5)0.005 (5)
C6C0.034 (5)0.032 (5)0.033 (5)0.007 (4)0.010 (4)0.001 (4)
C7C0.027 (4)0.029 (5)0.035 (5)0.000 (4)0.006 (4)0.002 (4)
C8C0.036 (5)0.037 (6)0.050 (6)0.002 (5)0.010 (5)0.007 (5)
C1C0.038 (5)0.030 (5)0.038 (5)0.003 (5)0.011 (5)0.005 (5)
N1C0.034 (6)0.036 (5)0.041 (5)0.002 (5)0.002 (4)0.002 (4)
O6C0.041 (7)0.042 (7)0.050 (6)0.006 (5)0.004 (4)0.007 (6)
O1B0.0358 (9)0.0391 (10)0.0412 (9)0.0047 (8)0.0054 (7)0.0061 (7)
O2B0.0312 (9)0.0391 (10)0.0363 (8)0.0004 (7)0.0082 (7)0.0039 (7)
O3B0.0443 (12)0.096 (2)0.0504 (11)0.0114 (12)0.0078 (9)0.0217 (12)
O4B0.0415 (10)0.0326 (9)0.0422 (8)0.0006 (7)0.0171 (7)0.0004 (7)
O5B0.1031 (19)0.0468 (12)0.0710 (14)0.0122 (13)0.0571 (14)0.0118 (11)
O6B0.0421 (11)0.0508 (12)0.0611 (12)0.0074 (10)0.0070 (9)0.0028 (10)
Geometric parameters (Å, º) top
C2A—O3A1.196 (4)O2A—C4A1.444 (6)
C2A—O2A1.346 (3)O2A—C4C1.48 (2)
C2A—C9A1.485 (4)O1A—C1A1.430 (6)
C9A—H91A0.9700O1A—C3A1.433 (7)
C9A—H92A0.9700O4A—C5A1.441 (5)
C9A—H93A0.9700C3A—C4A1.528 (7)
C10A—O5A1.194 (3)C3A—H31A1.03 (5)
C10A—O4A1.345 (5)C3A—H32A1.01 (4)
C10A—O4C1.431 (18)C4A—C5A1.510 (6)
C10A—C11A1.493 (4)C4A—H4A0.96 (4)
C11A—H1110.9700C5A—C6A1.518 (6)
C11A—H1120.9700C5A—H5A0.98 (4)
C11A—H1130.9700C6A—C7A1.512 (5)
C1B—O1B1.429 (3)C6A—C1A1.565 (6)
C1B—C8B1.546 (4)C6A—H6A1.06 (4)
C1B—C6B1.557 (3)C7A—N1A1.278 (6)
C1B—H1B0.9900C7A—C8A1.505 (6)
C2B—O3B1.197 (3)C8A—C1A1.544 (6)
C2B—O2B1.348 (3)C8A—H81A0.99 (4)
C2B—C9B1.489 (4)C8A—H82A0.92 (5)
C3B—O1B1.435 (3)C1A—H1A0.96 (4)
C3B—C4B1.531 (4)N1A—O6A1.414 (5)
C3B—H31B0.9800O6A—H61A0.90 (5)
C3B—H32B0.9800O1C—C1C1.43 (2)
C4B—O2B1.450 (3)O1C—C3C1.43 (2)
C4B—C5B1.518 (3)O4C—C5C1.45 (2)
C4B—H4B0.9900C3C—C4C1.55 (2)
C5B—O4B1.439 (3)C3C—H31C0.9800
C5B—C6B1.517 (3)C3C—H32C0.9800
C5B—H5B0.9900C4C—C5C1.50 (2)
C6B—C7B1.507 (3)C4C—H4C0.9900
C6B—H6B0.9900C5C—C6C1.49 (2)
C7B—N1B1.279 (4)C5C—H5C0.9900
C7B—C8B1.501 (4)C6C—C7C1.489 (19)
C8B—H81B0.9800C6C—C1C1.57 (2)
C8B—H82B0.9800C6C—H6C0.9900
C9B—H91B0.9700C7C—N1C1.291 (17)
C9B—H92B0.9700C7C—C8C1.483 (19)
C9B—H93B0.9700C8C—C1C1.56 (2)
C10B—O5B1.193 (3)C8C—H81C0.9800
C10B—O4B1.345 (3)C8C—H82C0.9800
C10B—C11B1.492 (4)C1C—H1C0.9900
C11B—H1140.9700N1C—O6C1.414 (15)
C11B—H1150.9700O6C—H61C0.8300
C11B—H1160.9700O6B—H620.89 (5)
N1B—O6B1.415 (3)
O3A—C2A—O2A122.8 (3)O1A—C3A—H32A101 (2)
O3A—C2A—C9A126.1 (3)C4A—C3A—H32A111 (3)
O2A—C2A—C9A111.1 (2)H31A—C3A—H32A114 (3)
C2A—C9A—H91A109.5O2A—C4A—C5A104.6 (4)
C2A—C9A—H92A109.5O2A—C4A—C3A110.2 (6)
H91A—C9A—H92A109.5C5A—C4A—C3A110.8 (4)
C2A—C9A—H93A109.5O2A—C4A—H4A108 (2)
H91A—C9A—H93A109.5C5A—C4A—H4A111 (2)
H92A—C9A—H93A109.5C3A—C4A—H4A112 (2)
O5A—C10A—O4A124.2 (3)O4A—C5A—C4A108.9 (4)
O5A—C10A—O4C117.3 (7)O4A—C5A—C6A110.1 (4)
O5A—C10A—C11A126.0 (2)C4A—C5A—C6A108.8 (4)
O4A—C10A—C11A109.8 (3)O4A—C5A—H5A107 (2)
O4C—C10A—C11A114.2 (8)C4A—C5A—H5A111 (2)
C10A—C11A—H111109.5C6A—C5A—H5A111 (2)
C10A—C11A—H112109.5C7A—C6A—C5A118.2 (4)
H111—C11A—H112109.5C7A—C6A—C1A86.9 (4)
C10A—C11A—H113109.5C5A—C6A—C1A111.0 (4)
H111—C11A—H113109.5C7A—C6A—H6A113.5 (19)
H112—C11A—H113109.5C5A—C6A—H6A111.4 (19)
O1B—C1B—C8B110.4 (2)C1A—C6A—H6A114 (2)
O1B—C1B—C6B110.25 (19)N1A—C7A—C8A137.2 (4)
C8B—C1B—C6B90.1 (2)N1A—C7A—C6A128.7 (4)
O1B—C1B—H1B114.5C8A—C7A—C6A94.0 (3)
C8B—C1B—H1B114.5C7A—C8A—C1A87.9 (3)
C6B—C1B—H1B114.5C7A—C8A—H81A112 (3)
O3B—C2B—O2B123.0 (2)C1A—C8A—H81A113 (3)
O3B—C2B—C9B125.4 (2)C7A—C8A—H82A119 (3)
O2B—C2B—C9B111.5 (2)C1A—C8A—H82A113 (3)
O1B—C3B—C4B113.1 (2)H81A—C8A—H82A110 (4)
O1B—C3B—H31B109.0O1A—C1A—C8A110.7 (6)
C4B—C3B—H31B109.0O1A—C1A—C6A110.1 (5)
O1B—C3B—H32B109.0C8A—C1A—C6A90.4 (4)
C4B—C3B—H32B109.0O1A—C1A—H1A109 (2)
H31B—C3B—H32B107.8C8A—C1A—H1A118 (2)
O2B—C4B—C5B106.10 (18)C6A—C1A—H1A117 (2)
O2B—C4B—C3B111.4 (2)C7A—N1A—O6A110.1 (4)
C5B—C4B—C3B109.3 (2)N1A—O6A—H61A105 (3)
O2B—C4B—H4B110.0C1C—O1C—C3C114 (3)
C5B—C4B—H4B110.0C10A—O4C—C5C117.9 (16)
C3B—C4B—H4B110.0O1C—C3C—C4C115 (2)
O4B—C5B—C6B107.93 (19)O1C—C3C—H31C108.6
O4B—C5B—C4B111.3 (2)C4C—C3C—H31C108.6
C6B—C5B—C4B109.2 (2)O1C—C3C—H32C108.6
O4B—C5B—H5B109.5C4C—C3C—H32C108.6
C6B—C5B—H5B109.5H31C—C3C—H32C107.6
C4B—C5B—H5B109.5O2A—C4C—C5C117.1 (19)
C7B—C6B—C5B118.7 (2)O2A—C4C—C3C109 (2)
C7B—C6B—C1B87.4 (2)C5C—C4C—C3C106.5 (19)
C5B—C6B—C1B110.9 (2)O2A—C4C—H4C107.9
C7B—C6B—H6B112.5C5C—C4C—H4C107.9
C5B—C6B—H6B112.5C3C—C4C—H4C107.9
C1B—C6B—H6B112.5O4C—C5C—C6C108.9 (17)
N1B—C7B—C8B137.2 (3)O4C—C5C—C4C107.7 (17)
N1B—C7B—C6B128.8 (3)C6C—C5C—C4C111.8 (19)
C8B—C7B—C6B93.9 (2)O4C—C5C—H5C109.5
C7B—C8B—C1B88.0 (2)C6C—C5C—H5C109.5
C7B—C8B—H81B114.0C4C—C5C—H5C109.5
C1B—C8B—H81B114.0C7C—C6C—C5C125 (2)
C7B—C8B—H82B114.0C7C—C6C—C1C86.0 (14)
C1B—C8B—H82B114.0C5C—C6C—C1C112.5 (17)
H81B—C8B—H82B111.2C7C—C6C—H6C110.3
C2B—C9B—H91B109.5C5C—C6C—H6C110.3
C2B—C9B—H92B109.5C1C—C6C—H6C110.3
H91B—C9B—H92B109.5N1C—C7C—C8C129.3 (16)
C2B—C9B—H93B109.5N1C—C7C—C6C134.9 (18)
H91B—C9B—H93B109.5C8C—C7C—C6C95.7 (13)
H92B—C9B—H93B109.5C7C—C8C—C1C86.9 (14)
O5B—C10B—O4B122.8 (3)C7C—C8C—H81C114.2
O5B—C10B—C11B126.0 (2)C1C—C8C—H81C114.2
O4B—C10B—C11B111.2 (2)C7C—C8C—H82C114.2
C10B—C11B—H114109.5C1C—C8C—H82C114.2
C10B—C11B—H115109.5H81C—C8C—H82C111.3
H114—C11B—H115109.5O1C—C1C—C8C109 (2)
C10B—C11B—H116109.5O1C—C1C—C6C108 (2)
H114—C11B—H116109.5C8C—C1C—C6C89.5 (15)
H115—C11B—H116109.5O1C—C1C—H1C115.8
C7B—N1B—O6B108.9 (2)C8C—C1C—H1C115.8
C2A—O2A—C4A114.9 (3)C6C—C1C—H1C115.8
C2A—O2A—C4C125.9 (10)C7C—N1C—O6C110.7 (14)
C1A—O1A—C3A112.3 (7)N1C—O6C—H61C109.5
C10A—O4A—C5A117.2 (4)C1B—O1B—C3B111.43 (19)
O1A—C3A—C4A111.9 (5)C2B—O2B—C4B115.65 (17)
O1A—C3A—H31A108 (2)C10B—O4B—C5B116.91 (19)
C4A—C3A—H31A110 (2)N1B—O6B—H62102 (3)
O1B—C3B—C4B—O2B104.5 (2)C7A—C8A—C1A—O1A105.3 (5)
O1B—C3B—C4B—C5B12.4 (3)C7A—C8A—C1A—C6A6.4 (4)
O2B—C4B—C5B—O4B59.1 (2)C7A—C6A—C1A—O1A105.9 (6)
C3B—C4B—C5B—O4B179.27 (19)C5A—C6A—C1A—O1A13.3 (7)
O2B—C4B—C5B—C6B60.0 (3)C7A—C6A—C1A—C8A6.4 (4)
C3B—C4B—C5B—C6B60.2 (3)C5A—C6A—C1A—C8A125.5 (4)
O4B—C5B—C6B—C7B93.5 (3)C8A—C7A—N1A—O6A4.5 (7)
C4B—C5B—C6B—C7B145.4 (2)C6A—C7A—N1A—O6A178.6 (4)
O4B—C5B—C6B—C1B167.6 (2)O5A—C10A—O4C—C5C29.0 (15)
C4B—C5B—C6B—C1B46.5 (3)C11A—C10A—O4C—C5C168.1 (11)
O1B—C1B—C6B—C7B106.2 (2)C1C—O1C—C3C—C4C37 (6)
C8B—C1B—C6B—C7B5.59 (19)C2A—O2A—C4C—C5C159.0 (14)
O1B—C1B—C6B—C5B13.6 (3)C2A—O2A—C4C—C3C80 (2)
C8B—C1B—C6B—C5B125.4 (2)O1C—C3C—C4C—O2A101 (4)
C5B—C6B—C7B—N1B58.0 (4)O1C—C3C—C4C—C5C27 (4)
C1B—C6B—C7B—N1B170.5 (3)C10A—O4C—C5C—C6C142.3 (16)
C5B—C6B—C7B—C8B118.3 (2)C10A—O4C—C5C—C4C96 (2)
C1B—C6B—C7B—C8B5.77 (19)O2A—C4C—C5C—O4C60 (3)
N1B—C7B—C8B—C1B169.9 (3)C3C—C4C—C5C—O4C178 (2)
C6B—C7B—C8B—C1B5.8 (2)O2A—C4C—C5C—C6C60 (3)
O1B—C1B—C8B—C7B106.1 (2)C3C—C4C—C5C—C6C63 (3)
C6B—C1B—C8B—C7B5.61 (19)O4C—C5C—C6C—C7C104 (2)
C8B—C7B—N1B—O6B3.7 (4)C4C—C5C—C6C—C7C137 (2)
C6B—C7B—N1B—O6B178.3 (2)O4C—C5C—C6C—C1C155 (2)
O3A—C2A—O2A—C4A1.3 (5)C4C—C5C—C6C—C1C36 (3)
C9A—C2A—O2A—C4A179.4 (4)C5C—C6C—C7C—N1C52 (3)
O3A—C2A—O2A—C4C4.7 (15)C1C—C6C—C7C—N1C166 (2)
C9A—C2A—O2A—C4C177.1 (14)C5C—C6C—C7C—C8C125 (2)
O5A—C10A—O4A—C5A1.7 (5)C1C—C6C—C7C—C8C10.6 (18)
C11A—C10A—O4A—C5A178.1 (3)N1C—C7C—C8C—C1C166 (2)
C1A—O1A—C3A—C4A50.4 (12)C6C—C7C—C8C—C1C10.7 (18)
C2A—O2A—C4A—C5A153.7 (3)C3C—O1C—C1C—C8C161 (3)
C2A—O2A—C4A—C3A87.2 (4)C3C—O1C—C1C—C6C65 (4)
O1A—C3A—C4A—O2A102.4 (9)C7C—C8C—C1C—O1C99 (3)
O1A—C3A—C4A—C5A12.9 (11)C7C—C8C—C1C—C6C10.0 (17)
C10A—O4A—C5A—C4A125.2 (5)C7C—C6C—C1C—O1C100 (3)
C10A—O4A—C5A—C6A115.6 (4)C5C—C6C—C1C—O1C26 (3)
O2A—C4A—C5A—O4A61.5 (5)C7C—C6C—C1C—C8C10.0 (17)
C3A—C4A—C5A—O4A179.8 (6)C5C—C6C—C1C—C8C136 (2)
O2A—C4A—C5A—C6A58.5 (5)C8C—C7C—N1C—O6C179.7 (17)
C3A—C4A—C5A—C6A60.1 (7)C6C—C7C—N1C—O6C4 (3)
O4A—C5A—C6A—C7A96.8 (5)C8B—C1B—O1B—C3B162.5 (2)
C4A—C5A—C6A—C7A143.9 (5)C6B—C1B—O1B—C3B64.5 (3)
O4A—C5A—C6A—C1A165.1 (5)C4B—C3B—O1B—C1B50.6 (3)
C4A—C5A—C6A—C1A45.8 (6)O3B—C2B—O2B—C4B3.9 (4)
C5A—C6A—C7A—N1A57.1 (7)C9B—C2B—O2B—C4B178.5 (2)
C1A—C6A—C7A—N1A169.4 (5)C5B—C4B—O2B—C2B161.3 (2)
C5A—C6A—C7A—C8A118.9 (4)C3B—C4B—O2B—C2B79.9 (3)
C1A—C6A—C7A—C8A6.6 (4)O5B—C10B—O4B—C5B0.4 (4)
N1A—C7A—C8A—C1A168.7 (6)C11B—C10B—O4B—C5B177.8 (2)
C6A—C7A—C8A—C1A6.7 (4)C6B—C5B—O4B—C10B149.4 (2)
C3A—O1A—C1A—C8A162.8 (8)C4B—C5B—O4B—C10B90.8 (3)
C3A—O1A—C1A—C6A64.4 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5A—H5A···O5A0.98 (4)2.21 (4)2.691 (6)109 (3)
C11B—H115···O3A0.972.653.417 (4)136
C9A—H92A···N1Ai0.972.543.482 (6)163
C4B—H4B···O6Ai0.992.643.407 (3)135
C9A—H92A···O6Ci0.972.153.115 (15)175
C1C—H1C···O4Ci0.992.563.52 (4)165
C11A—H112···O3Bii0.972.593.413 (4)142
C11B—H116···O5Aiii0.972.363.312 (3)169
C3A—H32A···O5Biv1.01 (4)2.50 (4)3.176 (12)124 (3)
C3C—H32C···O5Biv0.982.253.05 (5)138
C8A—H82A···O5Av0.92 (5)2.73 (5)3.329 (5)124 (3)
C8C—H82C···O5Av0.982.623.27 (2)123
C8C—H82C···O6Cv0.982.503.32 (3)141
O6B—H62···O1Bvi0.89 (5)1.96 (5)2.852 (3)175 (4)
O6A—H61A···O1Avii0.90 (5)1.86 (5)2.757 (9)175 (5)
C11A—H113···O6Avii0.972.613.199 (4)120
O6C—H61C···O1Cvii0.832.352.96 (5)131
C8B—H81B···O3Aviii0.982.623.498 (4)150
C9B—H92B···N1Bviii0.972.693.635 (4)164
C3B—H32B···O5Aix0.982.613.430 (3)142
C8B—H82B···N1Bx0.982.673.569 (4)152
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x, y+1, z; (iii) x1, y, z; (iv) x+1, y, z; (v) x+3, y1/2, z+1; (vi) x, y+1/2, z; (vii) x+3, y+1/2, z+1; (viii) x+1, y1/2, z; (ix) x1, y1, z; (x) x, y1/2, z.
(III) [(3aR,5R,6R,7R,7aS)-6,7-Bis(acetyloxy)-2-oxooctahydropyrano[3,2-b]pyrrol-5-yl]methyl acetate top
Crystal data top
C14H19NO8F(000) = 348
Mr = 329.30Dx = 1.381 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.0784 (5) ÅCell parameters from 7167 reflections
b = 6.1454 (3) Åθ = 2.2–29.6°
c = 18.5176 (12) ŵ = 0.11 mm1
β = 100.476 (5)°T = 210 K
V = 792.08 (9) Å3Needle, colourless
Z = 21.30 × 0.58 × 0.22 mm
Data collection top
Stoe IPDS 2
diffractometer
2527 independent reflections
Radiation source: sealed X-ray tube2394 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.037
rotation method scansθmax = 25.0°, θmin = 2.2°
Absorption correction: integration
(X-RED; Stoe & Cie, 2011)
h = 88
Tmin = 0.423, Tmax = 0.607k = 76
5216 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0762P)2 + 0.0852P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2527 reflectionsΔρmax = 0.24 e Å3
242 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (8)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2264 (5)0.0182 (6)0.11653 (18)0.0440 (8)
H1A0.289 (5)0.143 (8)0.099 (2)0.053*
H1B0.093 (6)0.026 (7)0.101 (2)0.053*
C20.5404 (4)0.2592 (5)0.40378 (15)0.0332 (6)
C30.5365 (5)0.3000 (5)0.32236 (15)0.0361 (7)
H310.641 (5)0.409 (7)0.3171 (19)0.043*
H320.417 (5)0.357 (7)0.3040 (19)0.043*
C3A0.5598 (4)0.0733 (5)0.29284 (14)0.0321 (6)
H3A0.695 (5)0.039 (6)0.3008 (18)0.038*
C40.2361 (4)0.2171 (7)0.01733 (16)0.0441 (8)
C50.2823 (4)0.0230 (5)0.19876 (15)0.0360 (7)
H50.220 (5)0.150 (7)0.216 (2)0.043*
C60.2172 (4)0.1737 (5)0.23754 (14)0.0325 (6)
H60.280 (5)0.303 (7)0.2235 (19)0.039*
C70.2592 (4)0.1260 (5)0.31927 (15)0.0314 (6)
H70.180 (5)0.008 (7)0.3260 (19)0.038*
C7A0.4729 (4)0.0772 (5)0.34508 (15)0.0305 (6)
H7A0.531 (5)0.221 (7)0.3522 (18)0.037*
C80.3107 (5)0.4270 (8)0.0062 (2)0.0599 (11)
H8A0.43760.45430.02220.090*
H8B0.22490.54410.00170.090*
H8C0.31810.41940.05800.090*
C90.0606 (4)0.4010 (6)0.20639 (17)0.0412 (7)
C100.2673 (4)0.3985 (7)0.17223 (17)0.0440 (8)
H10A0.33490.29530.19790.066*
H10B0.28080.35600.12110.066*
H10C0.32120.54260.17530.066*
C110.0581 (4)0.3077 (7)0.39076 (17)0.0481 (9)
C120.0451 (5)0.5056 (8)0.4357 (2)0.0629 (12)
H12A0.04470.63400.40520.094*
H12B0.15460.51100.47570.094*
H12C0.07250.50100.45560.094*
N10.5053 (3)0.0481 (4)0.41225 (13)0.0342 (6)
H10.489 (5)0.004 (6)0.454 (2)0.041*
O10.4857 (3)0.0384 (4)0.21671 (10)0.0351 (5)
O20.2915 (3)0.1846 (4)0.08939 (11)0.0440 (6)
O30.1378 (4)0.0922 (6)0.02227 (13)0.0659 (8)
O40.0141 (3)0.1977 (4)0.21128 (11)0.0365 (5)
O50.0300 (4)0.5594 (5)0.2283 (2)0.0696 (9)
O60.2180 (3)0.3089 (3)0.36183 (11)0.0362 (5)
O70.0571 (4)0.1649 (7)0.38027 (18)0.0869 (12)
O80.5719 (3)0.3971 (4)0.45189 (12)0.0438 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0484 (18)0.0467 (19)0.0353 (15)0.0139 (16)0.0038 (13)0.0056 (14)
C20.0313 (13)0.0386 (16)0.0301 (13)0.0015 (12)0.0065 (10)0.0012 (13)
C30.0471 (16)0.0328 (16)0.0292 (14)0.0004 (14)0.0091 (12)0.0001 (13)
C3A0.0347 (14)0.0350 (17)0.0271 (13)0.0037 (12)0.0071 (11)0.0003 (12)
C40.0360 (14)0.069 (2)0.0283 (14)0.0077 (17)0.0076 (12)0.0025 (17)
C50.0386 (15)0.0381 (16)0.0308 (14)0.0116 (13)0.0053 (11)0.0002 (13)
C60.0289 (13)0.0353 (15)0.0318 (14)0.0087 (12)0.0017 (10)0.0025 (13)
C70.0312 (13)0.0323 (15)0.0302 (13)0.0085 (12)0.0047 (11)0.0016 (12)
C7A0.0329 (13)0.0291 (15)0.0293 (14)0.0040 (12)0.0051 (11)0.0003 (12)
C80.0513 (19)0.081 (3)0.0464 (18)0.004 (2)0.0067 (15)0.024 (2)
C90.0403 (15)0.0403 (19)0.0406 (15)0.0085 (15)0.0009 (12)0.0105 (14)
C100.0374 (15)0.053 (2)0.0393 (15)0.0030 (15)0.0019 (12)0.0064 (16)
C110.0281 (14)0.078 (3)0.0381 (16)0.0025 (16)0.0043 (11)0.0119 (18)
C120.0428 (18)0.088 (3)0.058 (2)0.012 (2)0.0101 (16)0.023 (2)
N10.0395 (13)0.0408 (14)0.0221 (10)0.0015 (11)0.0050 (9)0.0040 (11)
O10.0387 (10)0.0426 (12)0.0253 (9)0.0048 (9)0.0091 (8)0.0029 (9)
O20.0474 (12)0.0536 (14)0.0289 (10)0.0081 (11)0.0014 (8)0.0049 (10)
O30.0741 (18)0.091 (2)0.0304 (11)0.0107 (18)0.0047 (12)0.0064 (14)
O40.0304 (10)0.0379 (12)0.0382 (10)0.0091 (9)0.0014 (8)0.0030 (9)
O50.0530 (15)0.0380 (15)0.108 (2)0.0110 (13)0.0120 (15)0.0076 (16)
O60.0329 (10)0.0385 (12)0.0382 (11)0.0004 (9)0.0092 (8)0.0028 (9)
O70.0524 (15)0.128 (3)0.090 (2)0.0434 (19)0.0389 (15)0.054 (2)
O80.0492 (12)0.0491 (14)0.0346 (11)0.0065 (11)0.0117 (9)0.0118 (10)
Geometric parameters (Å, º) top
C1—O21.450 (4)C7—O61.433 (3)
C1—C51.502 (4)C7—C7A1.531 (4)
C1—H1A0.98 (5)C7—H70.94 (4)
C1—H1B0.94 (4)C7A—N11.445 (4)
C2—O81.221 (4)C7A—H7A0.98 (4)
C2—N11.335 (4)C8—H8A0.9700
C2—C31.524 (4)C8—H8B0.9700
C3—C3A1.516 (4)C8—H8C0.9700
C3—H311.02 (4)C9—O51.196 (4)
C3—H320.92 (4)C9—O41.353 (4)
C3A—O11.428 (3)C9—C101.484 (4)
C3A—C7A1.545 (4)C10—H10A0.9700
C3A—H3A0.97 (4)C10—H10B0.9700
C4—O31.194 (5)C10—H10C0.9700
C4—O21.336 (4)C11—O71.190 (5)
C4—C81.489 (6)C11—O61.338 (4)
C5—O11.421 (4)C11—C121.486 (6)
C5—C61.519 (4)C12—H12A0.9700
C5—H50.98 (4)C12—H12B0.9700
C6—O41.439 (3)C12—H12C0.9700
C6—C71.517 (4)N1—H10.87 (4)
C6—H60.97 (4)
O2—C1—C5109.1 (3)C6—C7—H7106 (2)
O2—C1—H1A111 (2)C7A—C7—H7113 (2)
C5—C1—H1A106 (2)N1—C7A—C7111.5 (2)
O2—C1—H1B108 (3)N1—C7A—C3A101.6 (2)
C5—C1—H1B112 (2)C7—C7A—C3A113.9 (2)
H1A—C1—H1B111 (4)N1—C7A—H7A112 (2)
O8—C2—N1127.0 (3)C7—C7A—H7A104 (2)
O8—C2—C3125.2 (3)C3A—C7A—H7A115 (2)
N1—C2—C3107.8 (2)C4—C8—H8A109.5
C3A—C3—C2102.8 (2)C4—C8—H8B109.5
C3A—C3—H31116 (2)H8A—C8—H8B109.5
C2—C3—H31109 (2)C4—C8—H8C109.5
C3A—C3—H32112 (3)H8A—C8—H8C109.5
C2—C3—H32106 (2)H8B—C8—H8C109.5
H31—C3—H32110 (3)O5—C9—O4123.4 (3)
O1—C3A—C3116.7 (2)O5—C9—C10125.4 (3)
O1—C3A—C7A114.3 (2)O4—C9—C10111.2 (3)
C3—C3A—C7A104.0 (2)C9—C10—H10A109.5
O1—C3A—H3A107.1 (19)C9—C10—H10B109.5
C3—C3A—H3A108 (2)H10A—C10—H10B109.5
C7A—C3A—H3A106 (2)C9—C10—H10C109.5
O3—C4—O2123.4 (3)H10A—C10—H10C109.5
O3—C4—C8125.1 (3)H10B—C10—H10C109.5
O2—C4—C8111.5 (3)O7—C11—O6122.9 (3)
O1—C5—C1107.9 (2)O7—C11—C12125.8 (3)
O1—C5—C6108.9 (2)O6—C11—C12111.3 (3)
C1—C5—C6114.6 (3)C11—C12—H12A109.5
O1—C5—H5112 (2)C11—C12—H12B109.5
C1—C5—H5107 (2)H12A—C12—H12B109.5
C6—C5—H5107 (2)C11—C12—H12C109.5
O4—C6—C7111.1 (2)H12A—C12—H12C109.5
O4—C6—C5107.0 (2)H12B—C12—H12C109.5
C7—C6—C5107.3 (2)C2—N1—C7A114.8 (2)
O4—C6—H6108 (2)C2—N1—H1121 (3)
C7—C6—H6114 (2)C7A—N1—H1123 (3)
C5—C6—H6109 (2)C5—O1—C3A114.56 (19)
O6—C7—C6112.0 (2)C4—O2—C1114.9 (3)
O6—C7—C7A105.7 (2)C9—O4—C6118.1 (2)
C6—C7—C7A110.6 (2)C11—O6—C7119.2 (2)
O6—C7—H7110 (2)
O8—C2—C3—C3A161.5 (3)C3—C3A—C7A—C791.8 (3)
N1—C2—C3—C3A18.0 (3)O8—C2—N1—C7A180.0 (3)
C2—C3—C3A—O1155.0 (2)C3—C2—N1—C7A0.5 (3)
C2—C3—C3A—C7A28.1 (3)C7—C7A—N1—C2103.3 (3)
O2—C1—C5—O168.2 (3)C3A—C7A—N1—C218.4 (3)
O2—C1—C5—C653.4 (3)C1—C5—O1—C3A172.2 (3)
O1—C5—C6—O4173.5 (2)C6—C5—O1—C3A62.8 (3)
C1—C5—C6—O452.5 (3)C3—C3A—O1—C574.8 (3)
O1—C5—C6—C767.3 (3)C7A—C3A—O1—C546.9 (3)
C1—C5—C6—C7171.7 (2)O3—C4—O2—C11.2 (5)
O4—C6—C7—O668.3 (3)C8—C4—O2—C1179.3 (3)
C5—C6—C7—O6175.1 (2)C5—C1—O2—C4174.5 (3)
O4—C6—C7—C7A174.1 (2)O5—C9—O4—C66.4 (5)
C5—C6—C7—C7A57.5 (3)C10—C9—O4—C6174.9 (2)
O6—C7—C7A—N181.1 (3)C7—C6—O4—C995.5 (3)
C6—C7—C7A—N1157.4 (2)C5—C6—O4—C9147.7 (2)
O6—C7—C7A—C3A164.6 (2)O7—C11—O6—C73.3 (5)
C6—C7—C7A—C3A43.2 (3)C12—C11—O6—C7177.3 (3)
O1—C3A—C7A—N1156.5 (2)C6—C7—O6—C11103.7 (3)
C3—C3A—C7A—N128.2 (3)C7A—C7—O6—C11135.7 (3)
O1—C3A—C7A—C736.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O70.94 (4)2.32 (3)2.695 (4)103 (3)
C3A—H3A···O7i0.97 (4)2.42 (4)3.243 (4)143 (3)
C5—H5···O5ii0.98 (4)2.27 (4)3.230 (4)167 (3)
C10—H10A···O1iii0.972.473.386 (4)158
C12—H12C···O8iv0.972.583.468 (4)152
N1—H1···O8v0.87 (4)1.96 (4)2.826 (3)174 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x1, y, z; (iv) x1, y+1, z; (v) x+1, y+1/2, z+1.
 

Acknowledgements

We thank the University of Potsdam for generous financial support and acknowledge the support of the Deutsche Forschungsgemeinschaft and the Open Access Publishing Fund of the University of Potsdam.

References

First citationBrandenburg, K. (2016). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerrier, R. J. (1965). Adv. Carbohydr. Chem. 20, 67–137.  CAS Google Scholar
First citationLahiri, R., Ansari, A. A. & Vankar, Y. D. (2013). Chem. Soc. Rev. 42, 5102–5118.  CAS Google Scholar
First citationLi, X.-X., Zhu, L.-L., Zhou, W. & Chen, Z. (2012). Org. Lett. 14, 436–439.  CAS Google Scholar
First citationLinker, T., Sommermann, T. & Kahlenberg, F. (1997). J. Am. Chem. Soc. 119, 9377–9384.  CAS Google Scholar
First citationLinker, T. & Umbreen, S. (2012). Patent DE 10 2012 110 740.8.  Google Scholar
First citationMa, Z. & Vosseller, K. (2013). Amino Acids, 45, 719–733.  CAS Google Scholar
First citationNastopoulos, V., Gourgioti, O., Balayiannis, G., Karigiannis, G., Papaioannou, D. & Kavounis, C. (1997). Acta Cryst. C53, 1971–1973.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2011). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTsao, K.-W. & Isobe, M. (2010). Org. Lett. 12, 5338–5341.  CAS Google Scholar
First citationUmbreen, S. & Linker, T. (2015). Chem. Eur. J. 21, 7340–7344.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYin, J. & Linker, T. (2012). Org. Biomol. Chem. 10, 2351–2362.  CAS Google Scholar
First citationYuzwa, S. A., Shan, X., Macauley, M. S., Clark, T., Skorobogatko, Y., Vosseller, K. & Vocadlo, D. J. (2012). Nat. Chem. Biol. 8, 393–399.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds