research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a compact three-dimensional metal–organic framework based on Cs+ and (4,5-di­cyano-1,2-phenyl­ene)bis­­(phospho­nic acid)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal, bDepartment of Chemistry, QOPNA, University of Aveiro, 3810-193 Aveiro, Portugal, and cCentro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

Edited by G. Smith, Queensland University of Technology, Australia (Received 3 August 2016; accepted 19 October 2016; online 15 November 2016)

A new metal–organic framework compound, poly[[μ7-dihydrogen (4,5-di­cyano-1,2-phenyl­ene)diphospho­nato]­(oxonium)caesium], [Cs(C8H4N2O6P2)(H3O)]n (I), based on Cs+ and the organic linker 4,5-di­cyano-1,2-phenyl­ene)bis­(phospho­nic acid, (H4cpp), containing two distinct coordinating functional groups, has been prepared by a simple diffusion method and its crystal structure is reported. The coordination polymeric structure is based on a CsO8N2 complex unit comprising a monodentate hydro­nium cation, seven O-atom donors from two phospho­nium groups of the (H2cpp)2− ligand, and two N-atom donors from bridging cyano groups. The high level of connectivity from both the metal cation and the organic linker allow the formation of a compact and dense three-dimensional network without any crystallization solvent. Topologically (I) is a seven-connected uninodal network with an overall Schäfli symbol of {417.64}. Metal cations form an undulating inorganic layer, which is linked by strong and highly directional O—H⋯O hydrogen-bonding inter­actions. These metallic layers are, in turn, connected by the organic ligands along the [010] direction to form the overall three-dimensional framework structure.

1. Chemical context

The area of metal–organic frameworks (MOFs) and coordin­ation polymers (CPs) has proven to be of great importance, not only in academic research but also for industrial applications (Silva et al., 2015[Silva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774-6803.]). The simple and easy preparation of these materials, allied with the enormous variety of building blocks (either metal atoms or organic linkers) make these materials ideal to be employed in different applications: gas sorption/separation (Sumida et al., 2012[Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. & Long, J. R. (2012). Chem. Rev. 112, 724-781.]), as heterogeneous catalysts (Mendes et al., 2015[Mendes, R. F., Silva, P., Antunes, M. M., Valente, A. A. & Almeida Paz, F. A. (2015). Chem. Commun. 51, 10807-10810.]), luminescence (Heine & Müller-Buschbaum, 2013[Heine, J. & Müller-Buschbaum, K. (2013). Chem. Soc. Rev. 42, 9232-9242.]), batteries and as corrosion inhibitors (Morozan & Jaouen, 2012[Morozan, A. & Jaouen, F. (2012). Energ. Environ. Sci. 5, 9269-9290.]), among many others. Most of these compounds are obtained by mixing transition metal cations with carb­oxy­lic acids. The use of other oxygen-based donor groups such as phospho­nic acids has seen a great resurgence in recent years. The use of mixed oxygen–nitro­gen donor organic linkers is relatively less common, as confirmed by a search of the Cambridge Structural Database (CSD) (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

Although alkali-metal cations are of great inter­est due to their abundance in biological systems, there is a surprisingly small number of MOFs/CPs based on these elements. Cs+-based materials are not as common as other alkali metals, especially when coordinated by either phospho­nic or sulfonic acid residues. Reports on these structures are directed to solely structural descriptions rather than to applications. Nevertheless, these compounds can be used as functional materials in batteries, either as proton conductors (Bazaga-Garcia et al., 2015[Bazaga-García, M., Papadaki, M., Colodrero, R. M. P., Olivera-Pastor, P., Losilla, E. R., Nieto-Ortega, B., Aranda, M. Á. G., Choquesillo-Lazarte, D., Cabeza, A. & Demadis, K. D. (2015). Chem. Mater. 27, 424-435.]) or as insulators (Tominaka et al., 2013[Tominaka, S, Henke, S. & Cheetham, A. K. (2013). CrystEngComm, 15, 9400-9407.]).

[Scheme 1]

Following our inter­est in this field of research, we report the preparation of a new compact and dense MOF network, [Cs(H2cpp)(H3O)]n, prepared by the self-assembly of Cs+ and the organic linker (4,5-di­cyano-1,2-phenyl­ene)bis­(phospho­nic acid), (H4cpp), previously reported by our group (Venkatramaiah et al., 2015[Venkatramaiah, N., Pereira, P. M. R., Almeida Paz, F. A., Ribeiro, C. A. F., Fernandes, R. & Tomé, J. P. C. (2015). Chem. Commun. 51, 15550-15553.]). The title compound, [Cs(H2cpp)(H3O)]n (I)[link], was assembled under atmospheric conditions and represents, to the best of our knowledge, the first reported MOF or CP based on an amino/cyano phospho­nate with caesium as the metal cation, and the crystal structure is reported herein.

2. Structural commentary

The asymmetric unit of (I)[link] comprises one Cs+ atom coordinated by a dianionic H2cpp2− ligand, together with a monodentate hydro­nium cation (Fig. 1[link]). The irregular CsO8N2 coordination polyhedron is defined by the O atom of one monodentate hydronium molecule, six hydrogen phospho­nate O-atom donors and two cyano N-atom donors. The Cs—O bond-length range is 3.159 (4)–3.410 (3) Å and for Cs—N, 3.234 (7) and 3.334 (6) Å (Table 1[link]). These values are in good agreement with those reported for other phospho­nate-based materials as found in a search in the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]): mean value of 3.24 Å for the Cs—O bond (CSD range, 3.01–3.41 Å), and 3.28 Å for the Cs—N bond (CSD range, 2.35–3.79 Å).

Table 1
Selected bond lengths (Å)

Cs1—O1 3.400 (3) Cs1—O6v 3.259 (4)
Cs1—O1W 3.388 (4) Cs1—O5vi 3.159 (4)
Cs1—O4 3.269 (4) P1—O1 1.499 (4)
Cs1—N1i 3.234 (7) P1—O2 1.509 (4)
Cs1—N2ii 3.334 (6) P1—O3 1.558 (4)
Cs1—O1iii 3.229 (3) P2—O4 1.497 (4)
Cs1—O3iv 3.356 (4) P2—O5 1.572 (4)
Cs1—O4v 3.410 (3) P2—O6 1.495 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z+2; (v) -x+2, -y+1, -z+1; (vi) -x+2, -y+1, -z+2.
[Figure 1]
Figure 1
The asymmetric unit of [Cs(H2cpp)(H3O)]n (I)[link] showing all non-hydrogen atoms represented as displacement ellipsoids drawn at the 50% probability level and hydrogen atoms as small spheres with arbitrary radius. The coordination sphere of Cs+ is completed by generating (through symmetry) the remaining oxygen and nitro­gen atoms. For symmetry codes, see Table 1[link].

The crystallographic independent H2cpp2− residue in (I)[link] acts as a linker connecting seven symmetry-related Cs+ metal atoms. The coordination modes between cyano and phospho­nate groups are, as expected, different. While the cyano groups connect to two different metal atoms, each in a simple κ1 coordination mode, the two phospho­nate groups coordinate to the remaining metals by κ1-O, κ2-O and μ2-O,O coordination modes. This high coordination of the phospho­nate groups is responsible for the formation of a metallic undulating inorganic layer lying in the ac plane of the unit cell. Within this layer, the inter­metallic Cs⋯Cs distances range from 5.7792 (4) to 7.8819 (5) Å (Fig. 2[link]). The cyano groups are, on the other hand, responsible for the inter-layer connections along the [010] direction. In this case, the inter­metallic Cs⋯Cs distances between layers range from 9.7347 (6) to 9.9044 (6) Å. Although the organic linkers are stacked, the minimum inter-centroid distance of 4.6545 (3) Å (as calculated using PLATON: Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) indicates the absence of any significant ππ stacking inter­actions.

[Figure 2]
Figure 2
Schematic representation of the connectivity of (a) the anionic H2cpp2− ligand; (b) the Cs+ cation and (c) the seven-connected [Cs(H2cpp)(H3O)] uninodal network with an overall Schäfli symbol of {417.64}.

The unusual presence of a coordinating H3O+ ion in this Cs+ structure is confirmed by the location of the three hydrogen atoms associated with this cation, which were clearly visible from difference-Fourier maps and by the presence of the double charge with respect to the delocalized P1—O1, P1—O2 and P2—O4, P1—O6 bonds [1.499 (4), 1.509 (3) Å and 1.497 (4), 1.495 (3) Å, respectively]. The P1—O3 and P2—O5 bond lengths for the protonated groups are 1.558 (4) and 1.572 (4) Å, respectively. In addition, although the distance between O1W and O4 is very short, suggesting a possible O4—H⋯O1W inter­action, a calculated site for such a hydrogen was found to be sterically impossible in the crowded environment about Cs. Not only that, but any attempts to refine this mol­ecule as a coordination water mol­ecule proved to be not as successful as the hydro­nium cation. When the proton is connected to the adjacent phospho­nic residue, the bond is only possible by restraining the O—H distance between O4 and the proton. Also there was still a residual charge near O1W, which corroborated the initial refinement.

3. Topology

The various coordination modes of the ligand and the presence of a compact undulating inorganic layer formed by the metal atoms to form the MOF architecture can be better understood from a pure topological perspective. Based on the recommendations of Alexandrov et al. (2011[Alexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947-3958.]), any moiety (ligand, atom or clusters of atoms) connecting more than two metallic centers (μn) should be considered as a network node. For (I)[link], all crystallographically independent moieties comprising the asymmetric unit, both the Cs+ cation and the anionic H2cpp2− ligand, should therefore be considered as nodes. Using the software package TOPOS (Blatov & Shevchenko, 2006[Blatov, V. A. & Shevchenko, A. P. (2006). TOPOS. Samara State University, Samara, Russia.]), (I)[link] could be classified as a seven-connected uninodal network with an overall Schäfli symbol of {417.64}. Fig. 2[link] illustrates the breakdown of the network of (I)[link] into nodes and connecting rods, with the individual connectivity of each node being superimposed into the crystal structure itself (Fig. 2[link]a and 2b). The metal atom and the organic linker are connected to each other in every direction of the unit cell (Fig. 2[link]c), forming a compact and robust three-dimensional network (Fig. 3[link]). The absence of water mol­ecules of crystallization leads to this very compact structure having no solvent-accessible pores: only 0.2% of the unit cell volume [calculated using Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.])] corresponds to voids.

[Figure 3]
Figure 3
Schematic representation of the crystal packing of [Cs(H2cpp) (H3O)]n viewed in perspective (a) along [001] and (b) along [100]. The representations emphasize the connection of the undulating inorganic layers located in the ac plane of the unit cell (and formed by the metal cations) through the organic ligand. The bottom representation further emphasizes the stacking of the organic linkers with inter-centroid ring distances of 4.6545 (3) Å.

4. Supra­molecular features

The lack of crystallization solvent mol­ecules in (I)[link] results in a rather small number of crystallographically different hydrogen-bonding supra­molecular inter­actions (Table 2[link]). Indeed, although the structure is rich in hydrogen-bonding acceptors, only the POH and the H3O+ moieties can establish strong inter­actions. A total of five distinct hydrogen bonds are present, two of these involving the phospho­nic acid donor groups [O3—H3⋯O6vii and O5—H5⋯O2) and three involving the H3O+ moiety (O1W—H1X⋯O2iv, O1W—H1Y⋯O1 and O1W—H1Z⋯O4iii (for symmetry codes, see Tables 1[link] and 2[link])]. An overall three-dimensional network structure is generated in which there are 62 Å3 voids (though not solvent-accessible ones). No ππ ring inter­actions are present (minimum ring-centroid separation = 4.655 Å). These hydrogen bonds are confined within the inorganic undulating layer (Fig. 4[link]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O6vii 0.95 (1) 1.59 (12) 2.528 (5) 172 (5)
O5—H5⋯O2 0.94 (1) 1.60 (12) 2.545 (5) 175 (5)
O1W—H1X⋯O2iv 0.95 (1) 1.64 (16) 2.553 (5) 160 (4)
O1W—H1Y⋯O1 0.96 (1) 1.66 (11) 2.526 (5) 149 (4)
O1W—H1Z⋯O4iii 0.95 (1) 1.56 (15) 2.485 (5) 162 (4)
Symmetry codes: (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z+2; (vii) x-1, y, z.
[Figure 4]
Figure 4
Schematic representation of a portion of the undulating inorganic layer comprising the crystal structure of (I)[link], emphasizing the various strong and directional supra­molecular O—H⋯O hydrogen-bonding inter­actions (orange dashed lines) present within this layer. For geometrical details and symmetry codes, see Table 2[link].

5. Database survey

Although unusual in the case of Cs, in the Cambridge Structural Database (CSD) a total of 45 structures in which coordination between the metal cation and the hydro­nium cation is present, e.g. among the metal complexes (Reyes-Martínez et al., 2009[Reyes-Martínez, R., Höpfl, H., Godoy-Alcántar, C., Medrano, F. & Tlahuext, H. (2009). CrystEngComm, 11, 2417-2424.]; Jennifer et al., 2014[Jennifer, S., Thomas Muthiah, P. & Tamilselvi, D. (2014). Chem. Cent. J. 8, 58-70.]; Teng et al., 2016[Teng, C.-L., Xiao, H.-X., Cai, Q., Tang, J.-T., Cai, T. J. & Deng, Q. (2016). J. Coord. Chem. 69, 2148-2163.]; Hu & Mak, 2013[Hu, T. & Mak, T. C. W. (2013). Cryst. Growth Des. 13, 4957-4967.]) and coordination polymer/metal–organic frameworks (Yotnoi et al., 2015[Yotnoi, B., Meundaeng, N., Funfuenha, W., Pattarawarapan, M., Prior, T. & Rujiwatra, A. (2015). J. Coord. Chem. 68, 4184-4202.]; Wang et al., 2013[Wang, P., Fan, R.-Q., Liu, X.-R., Wang, L.-Y., Yang, Y.-L., Cao, W.-W., Yang, B., Hasi, W., Su, Q. & Mu, Y. (2013). CrystEngComm, 15, 1931-1949.]; Humphrey et al., 2005[Humphrey, S. M., Mole, R. A., McPartlin, M., McInnes, E. J. L. & Wood, P. T. (2005). Inorg. Chem. 44, 5981-5983.]). Wang et al. (2013[Wang, P., Fan, R.-Q., Liu, X.-R., Wang, L.-Y., Yang, Y.-L., Cao, W.-W., Yang, B., Hasi, W., Su, Q. & Mu, Y. (2013). CrystEngComm, 15, 1931-1949.]) in fact reported the structures of an isotypic series of crystal materials involving lanthanides (Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er and Y), in which the presence of the coordinating hydro­nium cation was confirmed.

6. Synthesis and crystallization

Chemicals were purchased from commercial sources and used without any further purification steps. (4,5-Di­cyano-1,2-phenyl­ene)bis­(phospho­nic acid) (H4cpp) was prepared according to published procedures (Venkatramaiah et al., 2015[Venkatramaiah, N., Pereira, P. M. R., Almeida Paz, F. A., Ribeiro, C. A. F., Fernandes, R. & Tomé, J. P. C. (2015). Chem. Commun. 51, 15550-15553.]).

Synthesis of [Cs(H2cpp)(H3O)]n, (I)[link]: H4cpp (29 mg, 0.1 mM) was dissolved in 4 ml of methanol. A 1 ml aliquot of a methano­lic caesium hydroxide solution (45 mg, 0.3 mM; Sigma Aldrich, puriss p.a. ≥ 96%) was added slowly. The resulting mixture was stirred at ambient temperature for 10 min for uniform mixing. The final solution was allowed to slowly evaporate at ambient temperature. White transparent crystals of the title compound were obtained after one week. Crystals were filtered and dried under vacuum.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms bound to carbon were placed at idealized positions with C—H = 0.95 Å and included in the final structural model in a riding-motion approximation with the isotropic displacement parameters fixed at 1.2Ueq(C). Hydrogen atoms associated with the H3O+ moiety and the phospho­nate groups were clearly located from difference-Fourier maps and were included in the refinement with the O—H and H⋯H (only for the cation) distances restrained to 0.95 (1) and 1.55 (1) Å, respectively, in order to ensure a chemically reasonable environment for these moieties. These hydrogen atoms were modelled with the isotropic displacement parameters fixed at 1.5Ueq(O). In order to avoid a close proximity between the H atoms associated with the POH group and the H3O+ cation and the central Cs+ ion in the crystal structure, an anti­bump restraint [3.5 (1) Å)] was included in the overall refinement.

Table 3
Experimental details

Crystal data
Chemical formula [Cs(C8H4N2O6P2)(H3O)]
Mr 438.01
Crystal system, space group Monoclinic, P21/c
Temperature (K) 180
a, b, c (Å) 7.8819 (5), 24.5497 (14), 7.3137 (4)
β (°) 98.739 (2)
V3) 1398.76 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.91
Crystal size (mm) 0.15 × 0.06 × 0.02
 
Data collection
Diffractometer Bruker D8 QUEST
Absorption correction Multi-scan (SADABS; Bruker 2012[Bruker (2012). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.647, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 27787, 2550, 2499
Rint 0.021
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.50
No. of reflections 2550
No. of parameters 196
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.70, −0.60
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2015); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL2014/6 (Sheldrick, 2015).

Poly[[µ7-dihydrogen (4,5-dicyano-1,2-phenylene)diphosphonato](oxonium)caesium] top
Crystal data top
[Cs(C8H4N2O6P2)(H3O)]F(000) = 840
Mr = 438.01Dx = 2.080 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.8819 (5) ÅCell parameters from 9290 reflections
b = 24.5497 (14) Åθ = 2.7–36.7°
c = 7.3137 (4) ŵ = 2.91 mm1
β = 98.739 (2)°T = 180 K
V = 1398.76 (14) Å3Plate, colourless
Z = 40.15 × 0.06 × 0.02 mm
Data collection top
Bruker D8 QUEST
diffractometer
2550 independent reflections
Radiation source: Sealed tube2499 reflections with I > 2σ(I)
Multi-layer X-ray mirror monochromatorRint = 0.021
Detector resolution: 10.4167 pixels mm-1θmax = 25.4°, θmin = 3.6°
ω/φ scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker 2012)
k = 2929
Tmin = 0.647, Tmax = 0.747l = 88
27787 measured reflections
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0134P)2 + 6.7796P]
where P = (Fo2 + 2Fc2)/3
S = 1.50(Δ/σ)max = 0.002
2550 reflectionsΔρmax = 0.70 e Å3
196 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.78119 (4)0.56625 (2)0.69290 (4)0.02080 (11)
O1W0.3543 (5)0.54753 (15)0.6850 (5)0.0224 (8)
H1X0.330 (6)0.5549 (18)0.806 (3)0.034*
H1Y0.3732 (16)0.5092 (4)0.675 (6)0.034*
H1Z0.258 (4)0.5572 (15)0.597 (5)0.034*
P10.56069 (15)0.42656 (5)0.83441 (16)0.0139 (2)
P20.97399 (15)0.40970 (5)0.72111 (17)0.0147 (3)
O10.5083 (4)0.45821 (14)0.6597 (5)0.0197 (7)
O20.6914 (4)0.45406 (14)0.9768 (5)0.0186 (7)
O30.4048 (4)0.41059 (15)0.9310 (5)0.0185 (7)
H30.311 (5)0.403 (2)0.837 (6)0.028*
O40.8955 (4)0.44573 (15)0.5659 (5)0.0237 (8)
O50.9966 (4)0.44125 (15)0.9103 (5)0.0217 (8)
H50.886 (3)0.4463 (14)0.943 (7)0.033*
O61.1438 (4)0.38507 (14)0.7016 (5)0.0203 (7)
N10.4101 (9)0.1823 (3)0.7906 (11)0.0603 (19)
N20.9099 (8)0.1597 (2)0.7224 (8)0.0435 (14)
C10.6536 (6)0.36144 (19)0.7793 (6)0.0143 (9)
C20.8230 (6)0.3543 (2)0.7429 (6)0.0160 (10)
C30.8843 (6)0.3016 (2)0.7237 (7)0.0189 (10)
H3A0.99900.29680.70140.023*
C40.7834 (7)0.2561 (2)0.7360 (6)0.0201 (10)
C50.6129 (7)0.2632 (2)0.7663 (7)0.0222 (11)
C60.5506 (6)0.3153 (2)0.7867 (7)0.0194 (10)
H6A0.43500.31980.80610.023*
C70.5014 (8)0.2170 (2)0.7777 (9)0.0333 (14)
C80.8522 (8)0.2021 (2)0.7244 (8)0.0294 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.02062 (17)0.02091 (18)0.02049 (17)0.00137 (12)0.00196 (12)0.00099 (12)
O1W0.0225 (18)0.0260 (19)0.0182 (18)0.0044 (15)0.0015 (15)0.0030 (15)
P10.0117 (6)0.0164 (6)0.0135 (6)0.0012 (5)0.0021 (4)0.0005 (5)
P20.0109 (6)0.0189 (6)0.0142 (6)0.0009 (5)0.0014 (5)0.0007 (5)
O10.0225 (18)0.0222 (18)0.0151 (17)0.0047 (14)0.0051 (14)0.0011 (14)
O20.0139 (16)0.0240 (18)0.0177 (17)0.0003 (14)0.0020 (13)0.0046 (14)
O30.0126 (16)0.0276 (19)0.0156 (17)0.0001 (14)0.0034 (13)0.0003 (14)
O40.0198 (18)0.0239 (19)0.0257 (19)0.0040 (15)0.0019 (15)0.0079 (16)
O50.0160 (17)0.028 (2)0.0216 (18)0.0040 (14)0.0041 (14)0.0063 (15)
O60.0136 (17)0.0279 (19)0.0187 (18)0.0005 (14)0.0003 (14)0.0020 (15)
N10.067 (4)0.037 (3)0.082 (5)0.024 (3)0.029 (4)0.006 (3)
N20.054 (3)0.029 (3)0.045 (3)0.012 (3)0.000 (3)0.003 (2)
C10.018 (2)0.014 (2)0.010 (2)0.0009 (18)0.0006 (18)0.0020 (18)
C20.013 (2)0.018 (2)0.015 (2)0.0004 (19)0.0017 (18)0.0024 (19)
C30.017 (2)0.023 (3)0.015 (2)0.005 (2)0.0022 (19)0.000 (2)
C40.029 (3)0.021 (3)0.008 (2)0.004 (2)0.002 (2)0.0014 (19)
C50.026 (3)0.020 (3)0.020 (3)0.006 (2)0.003 (2)0.002 (2)
C60.017 (2)0.022 (3)0.019 (3)0.002 (2)0.0028 (19)0.001 (2)
C70.040 (3)0.023 (3)0.039 (4)0.006 (3)0.015 (3)0.004 (3)
C80.037 (3)0.024 (3)0.026 (3)0.002 (2)0.002 (2)0.004 (2)
Geometric parameters (Å, º) top
Cs1—O13.400 (3)O1W—H1X0.95 (3)
Cs1—O1W3.388 (4)O1W—H1Y0.957 (11)
Cs1—O43.269 (4)O1W—H1Z0.95 (3)
Cs1—N1i3.234 (7)O3—H30.95 (4)
Cs1—N2ii3.334 (6)O5—H50.95 (3)
Cs1—O1iii3.229 (3)N1—C71.128 (9)
Cs1—O3iv3.356 (4)N2—C81.137 (7)
Cs1—O4v3.410 (3)C1—C21.412 (7)
Cs1—O6v3.259 (4)C1—C61.399 (7)
Cs1—O5vi3.159 (4)C2—C31.396 (7)
P1—O11.499 (4)C3—C41.382 (7)
P1—O21.509 (4)C4—C81.440 (7)
P1—O31.558 (4)C4—C51.406 (8)
P1—C11.829 (5)C5—C71.445 (8)
P2—O41.497 (4)C5—C61.386 (7)
P2—O51.572 (4)C3—H3A0.9500
P2—O61.495 (3)C6—H6A0.9500
P2—C21.830 (5)
O1—Cs1—O1W43.71 (8)O2—P1—C1106.8 (2)
O1—Cs1—O458.15 (8)O3—P1—C1104.5 (2)
O1—Cs1—N1i113.35 (14)O4—P2—O5110.8 (2)
O1—Cs1—N2ii170.46 (11)O4—P2—O6116.1 (2)
O1—Cs1—O1iii55.63 (9)O4—P2—C2107.8 (2)
O1—Cs1—O3iv80.81 (9)O5—P2—O6107.5 (2)
O1—Cs1—O4v114.27 (8)O5—P2—C2106.1 (2)
O1—Cs1—O6v114.88 (9)O6—P2—C2108.1 (2)
O1—Cs1—O5vi106.05 (9)Cs1—O1—P1104.72 (16)
O1W—Cs1—O4100.85 (9)Cs1—O1—Cs1iii124.37 (11)
O1W—Cs1—N1i69.68 (14)Cs1iii—O1—P1130.85 (18)
O1W—Cs1—N2ii142.36 (12)Cs1iv—O3—P1143.32 (19)
O1iii—Cs1—O1W51.81 (9)Cs1—O4—P2114.80 (18)
O1W—Cs1—O3iv58.71 (8)Cs1—O4—Cs1v119.82 (11)
O1W—Cs1—O4v143.40 (9)Cs1v—O4—P296.45 (15)
O1W—Cs1—O6v110.36 (8)Cs1vi—O5—P2138.83 (19)
O1W—Cs1—O5vi114.73 (9)Cs1v—O6—P2102.81 (17)
O4—Cs1—N1i163.38 (15)H1X—O1W—H1Z109 (3)
O4—Cs1—N2ii116.78 (11)H1Y—O1W—H1Z108 (3)
O1iii—Cs1—O478.26 (9)Cs1—O1W—H1Z132 (2)
O3iv—Cs1—O4124.05 (9)Cs1—O1W—H1X107 (3)
O4—Cs1—O4v60.18 (9)Cs1—O1W—H1Y88.2 (9)
O4—Cs1—O6v89.17 (9)H1X—O1W—H1Y108 (4)
O4—Cs1—O5vi94.02 (9)P1—O3—H3108 (3)
N1i—Cs1—N2ii73.64 (16)Cs1iv—O3—H3104 (3)
O1iii—Cs1—N1i85.23 (15)P2—O5—H5108 (3)
O3iv—Cs1—N1i63.64 (15)Cs1vi—O5—H5100 (3)
O4v—Cs1—N1i119.25 (15)Cs1vii—N1—C7167.2 (6)
O6v—Cs1—N1i81.85 (15)Cs1viii—N2—C8155.5 (5)
O5vi—Cs1—N1i102.33 (15)P1—C1—C2124.9 (4)
O1iii—Cs1—N2ii133.14 (12)C2—C1—C6118.5 (4)
O3iv—Cs1—N2ii97.40 (12)P1—C1—C6116.4 (4)
O4v—Cs1—N2ii64.93 (12)P2—C2—C3116.1 (4)
O6v—Cs1—N2ii71.74 (12)P2—C2—C1124.8 (4)
O5vi—Cs1—N2ii65.30 (12)C1—C2—C3119.1 (4)
O1iii—Cs1—O3iv110.02 (8)C2—C3—C4122.1 (5)
O1iii—Cs1—O4v92.16 (8)C3—C4—C5118.9 (5)
O1iii—Cs1—O6v64.05 (8)C5—C4—C8120.1 (5)
O1iii—Cs1—O5vi161.55 (9)C3—C4—C8121.0 (5)
O3iv—Cs1—O4v157.79 (8)C6—C5—C7119.3 (5)
O3iv—Cs1—O6v145.49 (9)C4—C5—C7121.1 (5)
O3iv—Cs1—O5vi60.47 (8)C4—C5—C6119.6 (5)
O4v—Cs1—O6v44.67 (8)C1—C6—C5121.7 (5)
O4v—Cs1—O5vi98.52 (8)N1—C7—C5177.0 (7)
O5vi—Cs1—O6v133.23 (8)N2—C8—C4177.2 (6)
O1—P1—O2115.3 (2)C2—C3—H3A119.00
O1—P1—O3112.52 (19)C4—C3—H3A119.00
O1—P1—C1109.5 (2)C1—C6—H6A119.00
O2—P1—O3107.6 (2)C5—C6—H6A119.00
O1W—Cs1—O1—P1114.0 (2)O1—Cs1—O5vi—P2vi110.8 (3)
O1W—Cs1—O1—Cs1iii68.38 (14)O1W—Cs1—O5vi—P2vi64.9 (3)
O4—Cs1—O1—P179.83 (17)O4—Cs1—O5vi—P2vi168.8 (3)
O4—Cs1—O1—Cs1iii97.75 (14)O1—P1—C1—C279.5 (4)
N1i—Cs1—O1—P1116.3 (2)O1—P1—C1—C6105.0 (4)
N1i—Cs1—O1—Cs1iii66.1 (2)O2—P1—C1—C246.0 (4)
O1iii—Cs1—O1—P1177.6 (2)O2—P1—C1—C6129.6 (4)
O1iii—Cs1—O1—Cs1iii0.02 (14)O3—P1—C1—C2159.8 (4)
O3iv—Cs1—O1—P160.36 (16)O3—P1—C1—C615.7 (4)
O3iv—Cs1—O1—Cs1iii122.06 (13)O3—P1—O1—Cs1132.24 (17)
O4v—Cs1—O1—P1102.56 (17)C1—P1—O1—Cs1112.09 (19)
O4v—Cs1—O1—Cs1iii75.03 (14)O2—P1—O1—Cs1iii174.33 (19)
O6v—Cs1—O1—P1151.95 (15)O3—P1—O1—Cs1iii50.4 (3)
O6v—Cs1—O1—Cs1iii25.63 (15)C1—P1—O1—Cs1iii65.3 (3)
O5vi—Cs1—O1—P14.83 (18)O1—P1—O3—Cs1iv111.9 (3)
O5vi—Cs1—O1—Cs1iii177.59 (11)O2—P1—O1—Cs18.3 (2)
O1—Cs1—O4—P289.90 (19)C1—P1—O3—Cs1iv129.5 (3)
O1—Cs1—O4—Cs1v156.05 (16)O2—P1—O3—Cs1iv16.2 (4)
O1W—Cs1—O4—P299.61 (18)O4—P2—C2—C3121.5 (4)
O1W—Cs1—O4—Cs1v146.34 (11)O5—P2—C2—C159.4 (4)
N2ii—Cs1—O4—P280.8 (2)O6—P2—C2—C1174.4 (4)
N2ii—Cs1—O4—Cs1v33.23 (17)O6—P2—C2—C34.7 (4)
O1iii—Cs1—O4—P2146.54 (19)O5—P2—C2—C3119.8 (4)
O1iii—Cs1—O4—Cs1v99.41 (12)O4—P2—C2—C159.4 (4)
O3iv—Cs1—O4—P240.2 (2)O5—P2—O4—Cs14.8 (2)
O3iv—Cs1—O4—Cs1v154.24 (10)O6—P2—O4—Cs1127.67 (19)
O4v—Cs1—O4—P2114.1 (2)C2—P2—O4—Cs1110.9 (2)
O4v—Cs1—O4—Cs1v0.02 (9)O5—P2—O4—Cs1v122.33 (16)
O6v—Cs1—O4—P2149.81 (18)O6—P2—O4—Cs1v0.5 (2)
O6v—Cs1—O4—Cs1v35.76 (12)C2—P2—O4—Cs1v121.95 (17)
O5vi—Cs1—O4—P216.53 (19)O4—P2—O5—Cs1vi158.3 (2)
O5vi—Cs1—O4—Cs1v97.52 (12)O6—P2—O5—Cs1vi30.5 (3)
O1W—Cs1—N2ii—C8ii38.5 (13)C2—P2—O5—Cs1vi85.0 (3)
O4—Cs1—N2ii—C8ii140.8 (11)O4—P2—O6—Cs1v0.6 (2)
O1—Cs1—O1iii—Cs1iii0.00 (10)O5—P2—O6—Cs1v124.03 (17)
O1—Cs1—O1iii—P1iii176.9 (3)C2—P2—O6—Cs1v121.81 (17)
O1W—Cs1—O1iii—Cs1iii54.81 (12)P1—C1—C2—P26.5 (6)
O1W—Cs1—O1iii—P1iii122.1 (3)P1—C1—C2—C3172.7 (4)
O4—Cs1—O1iii—Cs1iii59.28 (12)C6—C1—C2—P2178.1 (4)
O4—Cs1—O1iii—P1iii123.8 (2)C6—C1—C2—C32.8 (7)
O1—Cs1—O3iv—P1iv14.9 (3)P1—C1—C6—C5173.3 (4)
O1W—Cs1—O3iv—P1iv25.8 (3)C2—C1—C6—C52.5 (7)
O4—Cs1—O3iv—P1iv55.9 (3)P2—C2—C3—C4179.6 (4)
O1—Cs1—O4v—Cs1v22.22 (15)C1—C2—C3—C41.2 (7)
O1—Cs1—O4v—P2v101.24 (17)C2—C3—C4—C50.9 (7)
O1W—Cs1—O4v—Cs1v65.93 (19)C2—C3—C4—C8177.0 (5)
O1W—Cs1—O4v—P2v57.5 (2)C3—C4—C5—C61.2 (7)
O4—Cs1—O4v—Cs1v0.00 (10)C3—C4—C5—C7179.1 (5)
O4—Cs1—O4v—P2v123.46 (19)C8—C4—C5—C6176.7 (5)
O1—Cs1—O6v—P2v99.78 (17)C8—C4—C5—C72.9 (7)
O1W—Cs1—O6v—P2v147.10 (15)C4—C5—C6—C10.5 (7)
O4—Cs1—O6v—P2v45.83 (17)C7—C5—C6—C1179.2 (5)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (v) x+2, y+1, z+1; (vi) x+2, y+1, z+2; (vii) x+1, y1/2, z+3/2; (viii) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O6ix0.95 (1)1.59 (12)2.528 (5)172 (5)
O5—H5···O20.94 (1)1.60 (12)2.545 (5)175 (5)
O1W—H1X···O2iv0.95 (1)1.64 (16)2.553 (5)160 (4)
O1W—H1Y···O10.96 (1)1.66 (11)2.526 (5)149 (4)
O1W—H1Z···O4iii0.95 (1)1.56 (15)2.485 (5)162 (4)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y+1, z+2; (ix) x1, y, z.
 

Acknowledgements

(a) Funding sources and entities: Fundação para a Ciência e a Tecnologia (FCT, Portugal), the European Union, QREN, FEDER through Programa Operacional Factores de Competitividade (COMPETE), CICECO-Aveiro Institute of Mat­erials (Ref. FCT UID/CTM/50011/2013) financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement. (b) Projects and individual grants: We wish to thank the FCT for funding the R&D project FCOMP-01–0124-FEDER-041282 (Ref. FCT EXPL/CTM-NAN/0013/2013), and also CICECO for specific funding towards the purchase of the single-crystal diffractometer. The FCT is also gratefully acknowledged for the post-doctoral research grant No. SFRH/BPD/79000/2011 (to NV) and the PhD research grant No. SFRH/BD/84231/2012 (to RFM).

References

First citationAlexandrov, E. V., Blatov, V. A., Kochetkov, A. V. & Proserpio, D. M. (2011). CrystEngComm, 13, 3947–3958.  Web of Science CrossRef CAS Google Scholar
First citationBazaga-García, M., Papadaki, M., Colodrero, R. M. P., Olivera-Pastor, P., Losilla, E. R., Nieto-Ortega, B., Aranda, M. Á. G., Choquesillo-Lazarte, D., Cabeza, A. & Demadis, K. D. (2015). Chem. Mater. 27, 424–435.  Google Scholar
First citationBlatov, V. A. & Shevchenko, A. P. (2006). TOPOS. Samara State University, Samara, Russia.  Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeine, J. & Müller-Buschbaum, K. (2013). Chem. Soc. Rev. 42, 9232–9242.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHu, T. & Mak, T. C. W. (2013). Cryst. Growth Des. 13, 4957–4967.  Web of Science CSD CrossRef CAS Google Scholar
First citationHumphrey, S. M., Mole, R. A., McPartlin, M., McInnes, E. J. L. & Wood, P. T. (2005). Inorg. Chem. 44, 5981–5983.  Web of Science CSD CrossRef CAS Google Scholar
First citationJennifer, S., Thomas Muthiah, P. & Tamilselvi, D. (2014). Chem. Cent. J. 8, 58–70.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMendes, R. F., Silva, P., Antunes, M. M., Valente, A. A. & Almeida Paz, F. A. (2015). Chem. Commun. 51, 10807–10810.  Web of Science CSD CrossRef CAS Google Scholar
First citationMorozan, A. & Jaouen, F. (2012). Energ. Environ. Sci. 5, 9269–9290.  Web of Science CrossRef CAS Google Scholar
First citationReyes-Martínez, R., Höpfl, H., Godoy-Alcántar, C., Medrano, F. & Tlahuext, H. (2009). CrystEngComm, 11, 2417–2424.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, P., Vilela, S. M. F., Tomé, J. P. C. & Almeida Paz, F. A. (2015). Chem. Soc. Rev. 44, 6774–6803.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, E. D., Herm, Z. R., Bae, T. H. & Long, J. R. (2012). Chem. Rev. 112, 724–781.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTeng, C.-L., Xiao, H.-X., Cai, Q., Tang, J.-T., Cai, T. J. & Deng, Q. (2016). J. Coord. Chem. 69, 2148–2163.  Web of Science CSD CrossRef CAS Google Scholar
First citationTominaka, S, Henke, S. & Cheetham, A. K. (2013). CrystEngComm, 15, 9400–9407.  Web of Science CSD CrossRef CAS Google Scholar
First citationVenkatramaiah, N., Pereira, P. M. R., Almeida Paz, F. A., Ribeiro, C. A. F., Fernandes, R. & Tomé, J. P. C. (2015). Chem. Commun. 51, 15550–15553.  Web of Science CrossRef CAS Google Scholar
First citationWang, P., Fan, R.-Q., Liu, X.-R., Wang, L.-Y., Yang, Y.-L., Cao, W.-W., Yang, B., Hasi, W., Su, Q. & Mu, Y. (2013). CrystEngComm, 15, 1931–1949.  Web of Science CSD CrossRef CAS Google Scholar
First citationYotnoi, B., Meundaeng, N., Funfuenha, W., Pattarawarapan, M., Prior, T. & Rujiwatra, A. (2015). J. Coord. Chem. 68, 4184–4202.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds