research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{μ-(E)-2-[(2-oxido­phenyl­imino)­meth­yl]quinolin-8-olato-κ4O,N,N′,O′}bis­­[di­butyl­tin(IV)]

CROSSMARK_Color_square_no_text.svg

aDepartamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Unidad Xochimilco, Calzada de Hueso 1100, Colonia Villa Quietud, 04960, Coyoacán, México, CDMX, Mexico, bDepartamento de Química, Cinvestav, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, 07360, Delegación Gustavo A. Madero, México, CDMX, Mexico, and cUniversidad de la Costa, Carretera al Libramiento Paraje de Las Pulgas S/N, Santiago Pinotepa Nacional, Distrito Jamiltepec, C.P. 71600, Oaxaca, Mexico
*Correspondence e-mail: ccamacho@correo.xoc.uam.mx

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 3 October 2016; accepted 25 November 2016; online 1 January 2017)

Condensation of 8-hy­droxy­quinoline-2-carbaldehyde with 2-amino­phenol gave the (E)-2-[(2-hy­droxy­phenyl­imino)­meth­yl]quinolin-8-ol derivative that reacted with di-n-butyl­tin oxide with release of H2O to yield the chelate title complex, [Sn2(C4H9)4(C16H10N2O2)2]. The compound crystallizes in the triclinic space group P-1, with two independent centrosymmetric dimers in the unit cell. Each features a typical pincer-type structure where the dianionic ligand is tetra­dentate, coordinating to the central tin atom through both phenolate oxygen atoms, as well as through the quinoline and imine N atoms. Each metal atom adopts a distorted penta­gonal–bipyramidal SnC2N2O3 coordination arising from the N,N′,O,O′-tetra­dentate deprotonated Schiff base, one bridging phenolate O atom of the neighbouring ligand and two butyl groups in the axial sites.

1. Chemical context

We are inter­ested in the preparation of organometallic tin compounds derived from biologically active mol­ecules. One of the aims of our research is the structural analysis, particularly their coordination modes which has influence on their biologi­cal effects. The title compound (I)[link] includes a ligand derived from quinoline and 2-amino­phenol. It has been reported that quinoline-bearing structures show broad bio­logical activities such as anti­fungal (Musiol et al., 2006[Musiol, R., Jampilek, J., Buchta, V., Silva, L., Niedbala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592-3598.]), anti­malarial (Nasveld & Kitchener, 2005[Nasveld, P. & Kitchener, S. (2005). Trans. R. Soc. Trop. Med. Hyg. 99, 2-5.]), and anti­tumor (Rasoul-Amini et al., 2006[Rasoul-Amini, S., Khalaj, A., Shafiee, A., Daneshtalab, M., Madadkar-Sobhani, M. & Fouladdel, S. (2006). Int. J. Cancer Res. 2, 102-108.]). The activity of bis-quinolines as anti­leshmanial agents has also been reported through in vitro and in vivo studies (Palit et al., 2009[Palit, P., Paira, P., Hazra, A., Banerjee, S., Das Gupta, A., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845-853.]). More recently, it has been shown that quinoline-based thio­semicarbazones present anti­tumor efficacy involving an iron chelation mechanism (Serda et al., 2012[Serda, M., Kalinowski, D., Mrozek-Wilczkiewicz, A., Musiol, R., Szurko, A., Ratuszna, A., Pantarat, N., Kovacevic, Z., Merlot, A. M., Richardson, D. R. & Polanski, J. (2012). Bioorg. Med. Chem. Lett. 22, 5527-5531.]). In addition, Schiff bases derived from 8-hy­droxy­quinoline and its derivatives are well known for their ability towards the complexation of many metals (Charles & Perrotto, 1964[Charles, R. G. & Perrotto, A. (1964). Anal. Chim. Acta, 30, 131-138.]; Corcé et al., 2014[Corcé, V., Renaud, S., Cannie, I., Julienne, K., Gouin, S. G., Loréal, O., Gaboriau, F. & Deniaud, D. (2014). Bioconjugate Chem. 25, 320-334.]; Albrecht et al., 2005[Albrecht, M., Osetska, O. & Fröhlich, R. (2005). Dalton Trans. pp. 3757-3762.], 2007[Albrecht, M., Osetska, O., Fröhlich, R., Bünzli, J. G., Aebischer, A., Gumy, F. & Hamacek, J. (2007). J. Am. Chem. Soc. 129, 14178-14179.]). We report here the crystal structure of a new tin(IV) complex derived from a ligand produced from the 1:1 condensation of 8-hy­droxy­quinoline-2-carboxaldehyde and 2-amino­phenol. The Schiff base H2L produced was complexed with di-n–butyl­tin oxide to give the title compound (I)[link], [Sn2(C4H9)4(C16H10N2O2)2].

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the two independent molecules in the compound (I)[link] are shown in Fig. 1[link]. The structure consists of an isolated homobimetallic dimer located on crystallographic inversion centres so that two independent n-Bu2SnL units [mol­ecule 1: Sn1 to C126 and mol­ecule 2: Sn2 to C226 (with the n-butyl-disordered C119–C222 atoms being slightly disordered at the terminal methyl end and the C223–C226 atoms heavily disordered with a threefold splitting)] comprise the asymmetric unit. The dimerization of these monomeric units occurs through the quinolin-8-olate group oxygen atoms, leading to a central four membered (SnO)2 ring with a metal–metal separations Sn1⋯ Sn1(1 − x, 1 − y, −z) 3.9593 (5) Å and Sn2⋯ Sn2(1 − x, −y, 1 − z) = 4.0132 (5) Å.

[Figure 1]
Figure 1
The mol­ecular structures of the two independent molecules in the title compound (I)[link]. Displacement ellipsoids are drawn at the 50% probability level. The major part of the disordered n-butyl group is shown with green bonds, while the minor components are shown with magenta and blue bonds. H atoms are omitted for clarity.

The (E)-2-(oxido­phenyl­imino)­meth­yl)quinolin-8-olate ligands are essentially planar and act as N,N′,O,O′-tetra­dentate ligands, forming a lozenge-shaped plane with the two n-butyl groups bonded to the same Sn atom on opposite sides. These n-butyl groups in mol­ecule 1 display an ordered extended conformation while those in mol­ecule 2 display mainly disordered gauche conformations, probably due to packing considerations (Fig. 1[link]). Each of the two symmetry-independent tin atoms exhibits a slightly distorted penta­gonal–bipyramidal coordination geometry with equatorial (E)-2-[(oxido­phenyl­imino)meth­yl]quinolin-8-olate ligands and n-butyl groups occupying axial positions [C123—Sn1—C119 = 171.11 (12)° and C223—Sn2—C219 = 171.72 (13)° (Fig. 1[link]). There are four fused rings (three five-membered and one four-membered) formed between the tin atom and the tetra­dentate bridging ligand.

3. Supra­molecular features

The lozenge planes of the two independent mol­ecules are nearly perpendicular [angle between planes = 84.20 (3)°], giving rise to several weak C—H⋯π inter­actions between the n-butyl groups attached to the Sn atoms and the aromatic H atoms of the ligand (Table 1[link]). These inter­actions are complemented by C—H⋯O hydrogen-bonding inter­actions between the adjacent chains (Table 1[link], Fig. 2[link]a). Such inter­actions generate a two-dimensional supra­molecular structure parallel to the bc plane (Fig. 2[link]b).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2, Cg3, Cg4 and Cg5 are the centroids of the C205–C210, C213–C218, N101/C104/C109C110 and C105–C110 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C107—H107⋯O102i 0.95 2.09 2.908 (4) 144
C207—H207⋯O202ii 0.95 2.18 2.972 (4) 140
C105—H105⋯Cg2 0.95 2.71 3.609 (3) 159
C116—H116⋯Cg3iii 0.95 2.94 3.704 (3) 139
C125—H132⋯Cg2iv 0.99 2.77 3.602 (3) 142
C204—H204⋯Cg5v 0.95 2.77 3.700 (4) 165
C222—H226⋯Cg4ii 0.98 2.69 3.613 (14) 157
C422—H426⋯Cg5ii 0.98 2.94 3.77 (3) 142
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y, -z+1; (iii) x-1, y+1, z-1; (iv) x, y, z-1; (v) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The crystal packing of compound (I)[link]: (a) viewed down the a axis and (b) showing the inter­molecular contacts (dashed lines).

4. Database survey

There are five examples in the literature of di­alkyl­ditin(IV) compounds with bis­(μ2-quinolin-8-olato) ligands (Vafaee et al., 2010[Vafaee, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m964.]; Basu Baul et al., 2009[Basu Baul, T. S., Mizar, A., Paul, A., Ruisi, G., Willem, R., Biesemans, M. & Linden, A. (2009). J. Organomet. Chem. 694, 2142-2152.]). All of these feature an octa­hedral coordination sphere for the tin atoms. The most curious feature of the structure of the title compound is the sevenfold coordination of each Sn atom in the binuclear core, although this coordination number is not unprecedented in the structural chemistry of tin (de Sousa et al., 2009[Sousa, A. T. de, Bessler, K. E., Lemos, S. S., Ellena, J. & Gatto, C. C. (2009). Z. Anorg. Allg. Chem. 635, 106-111.]). Only the diorgano­tin(IV) complexes of pyruvic acid picolino­acyl­hydrazone (Cui et al., 2010[Cui, J., Qiao, Y., Yin, H. & Liu, M. Z. (2010). Z. Anorg. Allg. Chem. 636, 2508-2512.]) share the characteristic of being formed by four rings (three five-membered rings and one four-membered ring) and both are centrosymmetric. In pyruvic acid picolino­acyl­hydrazone, the four-membered Sn2O2 ring shares two edges with two other five-membered rings. Meanwhile, in the title compound each ring is only fused to one another, giving rise to a more extended structure. Previously, representative elements (Sun et al., 2011[Sun, W.-H., Shen, M., Zhang, W., Huang, W., Liu, S. & Redshaw, C. (2011). Dalton Trans. 40, 2645-2653.]), transition (Anitha et al., 2015[Anitha, P., Manikandan, R., Prakash, G., Pachiyappan, B., Viswanathamurthi, P. & Malecki, J. G. (2015). J. Organomet. Chem. 791, 266-273.]; García-Santos et al., 2009[García-Santos, I., Sanmartín, J., García-Deibe, A. M., Fondo, M. & Gómez, E. (2009). Polyhedron, 28, 3055-3059.]; Yan et al., 2014[Yan, Q., Sun, Z., Zhang, W., Nomura, K. & Sun, W.-H. (2014). Macromol. Chem. Phys. 215, 1744-1752.]) and lanthanide (Zhang et al., 2012[Zhang, W., Liu, S., Yang, W., Hao, X., Glaser, R. & Sun, W.-H. (2012). Organometallics, 31, 8178-8188.], 2015[Zhang, H.-X., Wang, S.-Y., Wang, W.-M., Gao, H.-L. & Cui, J.-Z. (2015). Inorg. Chem. Commun. 62, 94-97.]) metal complexes of [(imino)­meth­yl]quinolin-8-olato derivatives have been reported, and only in the case of the lanthanide complexes is the nitro­gen atom of the imine group involved in the ligand coordination. So, to the best of our knowledge, the title compound is the first example of a [(imino)­meth­yl]quinolin-8-olato derivative with the ligand using the full possible denticity.

5. Synthesis and crystallization

3-Hy­droxy­quinoline-2-carboxaldehyde, 2-amino­phenol, di-n-butyl­tin(IV) oxide and solvents were purchased from Aldrich and used without further purification. Elemental analysis were performed using an Eager 300 analyzer. The infrared spectra were recorded on Perkin Elmer 1600 FT spectrometer in the 4000–400 cm−1 range. Melting points were measured on a Fisher–Johns melting-point apparatus and are uncorrected. 119Sn spectra were recorded with a Bruker AVANCE-II, 300 MHz NMR spectrometer operating at 111.81 MHz and using a 4mm CP-MAS probe. NMR 119Sn chemical shift referencing is toward tetra­methyl­tin.

Compound (I)[link]. (Synthesis pathway is shown in Fig. 3[link].) Equimolar qu­anti­ties of 2-[N-(2-hy­droxy­phen­yl)carb­oxim­ido­yl]quinolin-8-ol (II) (0.378 mmol) and di-n-butyl­tin oxide (0.378 mmol) were dissolved in toluene in a 100 ml flask equipped with a Dean–Stark funnel. This mixture was refluxed for 1.5 h. After refluxing, the solvent was distilled. The red crystalline product was recrystallized from a mixture of 2,3-di­chloro­butane/hexane 3/1. M.p. 468–471 K. Yield 69.4% The dark-red crystalline product was characterized by elemental analysis, calculated for C24H28N2O2Sn 0.3H2O, C 57.55, H 5.61, N 5.59. Found C 57.30, H 5.32, N 5.51. RMN 119Sn solid state: −462.57 ppm. IR (KBr; s = strong, m = medium, w = weak) 3074w, 2954s, 2922s, 2867m, 2854m, 1591m, 1581m, 1523m, 1504m, 1470s, 1446m, 1429m, 1377w, 1342m, 1329s, 1308m, 1286m, 1188w, 1142m, 1135m, 1094w, 907w, 881w, 839w, 752m, 742m, 549w, 468w.

[Figure 3]
Figure 3
Synthesis pathway.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and treated in the riding approximation with isotropic displacement parameters set at 1.2–1.5 times the Ueq value of the parent atom. The n-butyl groups in molecule 2 display some degree of orientational disorder, which was modeled into two orientations using geometrical (SADI, SIMU) and ADP (SIMU, DELU) restraints.

Table 2
Experimental details

Crystal data
Chemical formula [Sn2(C4H9)4(C16H10N2O2)2]
Mr 990.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 123
a, b, c (Å) 13.4874 (7), 13.7517 (8), 13.8397 (8)
α, β, γ (°) 89.480 (1), 80.345 (1), 60.858 (1)
V3) 2202.4 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.18
Crystal size (mm) 0.33 × 0.23 × 0.22
 
Data collection
Diffractometer Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.648, 0.819
No. of measured, independent and observed [I > 2σ(I)] reflections 16941, 8017, 6885
Rint 0.028
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.04
No. of reflections 8017
No. of parameters 591
No. of restraints 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.77, −0.70
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS2012 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{µ-(E)-2-[(2-oxidophenylimino)methyl]quinolin-8-olato-κ4O,N,N',O'}bis[dibutyltin(IV)] top
Crystal data top
[Sn2(C4H9)4(C16H10N2O2)2]F(000) = 1008
Mr = 990.34Dx = 1.493 Mg m3
Triclinic, P1Melting point = 198–195 K
a = 13.4874 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.7517 (8) ÅCell parameters from 9912 reflections
c = 13.8397 (8) Åθ = 2.4–25.4°
α = 89.480 (1)°µ = 1.18 mm1
β = 80.345 (1)°T = 123 K
γ = 60.858 (1)°Block, dark-red
V = 2202.4 (2) Å30.33 × 0.23 × 0.22 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
8017 independent reflections
Radiation source: fine-focus sealed tube6885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 8.333 pixels mm-1θmax = 25.4°, θmin = 1.7°
ω–scansh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1616
Tmin = 0.648, Tmax = 0.819l = 1616
16941 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0356P)2 + 1.1148P]
where P = (Fo2 + 2Fc2)/3
8017 reflections(Δ/σ)max = 0.001
591 parametersΔρmax = 0.77 e Å3
254 restraintsΔρmin = 0.70 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. n-butyl groups in molecule 2 display some degree of orientational disorder which was modeled into two orientations using geometrical (SADI, SIMU) and ADP (SIMU, DELU) restrains.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.33665 (2)0.54296 (2)0.00166 (2)0.02140 (7)
O1010.50270 (18)0.44999 (16)0.08935 (14)0.0222 (5)
O1020.24816 (18)0.61885 (19)0.11825 (15)0.0293 (5)
N1010.2869 (2)0.4844 (2)0.15872 (18)0.0221 (5)
C1020.1801 (3)0.5028 (3)0.1907 (2)0.0258 (7)
C1030.1468 (3)0.4711 (3)0.2820 (2)0.0326 (8)
H1030.06950.48640.30350.039*
C1040.2283 (3)0.4177 (3)0.3390 (2)0.0332 (8)
H1040.20800.39380.40010.040*
C1050.4302 (3)0.3403 (3)0.3623 (2)0.0355 (8)
H1050.41380.31810.42550.043*
C1060.5404 (3)0.3170 (3)0.3225 (2)0.0336 (8)
H1060.60030.27710.35870.040*
C1070.5681 (3)0.3501 (3)0.2302 (2)0.0284 (7)
H1070.64610.32990.20470.034*
C1080.4837 (3)0.4117 (2)0.1752 (2)0.0215 (6)
C1090.3688 (3)0.4330 (2)0.2150 (2)0.0229 (7)
C1100.3424 (3)0.3974 (3)0.3083 (2)0.0279 (7)
C1110.1004 (3)0.5552 (3)0.1229 (2)0.0277 (7)
H1110.02190.57280.14020.033*
N1120.1394 (2)0.5769 (2)0.03934 (18)0.0244 (6)
C1130.0774 (3)0.6210 (2)0.0369 (2)0.0228 (7)
C1140.1428 (3)0.6403 (3)0.1182 (2)0.0249 (7)
C1150.0896 (3)0.6832 (3)0.1998 (2)0.0304 (7)
H1150.13050.69780.25550.036*
C1160.0213 (3)0.7040 (3)0.1995 (2)0.0322 (8)
H1160.05570.73240.25540.039*
C1170.0840 (3)0.6841 (3)0.1185 (3)0.0329 (8)
H1170.16080.69980.11880.039*
C1180.0336 (3)0.6416 (3)0.0381 (2)0.0308 (7)
H1180.07510.62620.01670.037*
C1190.2880 (3)0.6950 (3)0.0836 (2)0.0264 (7)
H1190.21830.71340.13370.032*
H1200.35070.68160.11930.032*
C1200.2628 (3)0.7965 (3)0.0263 (3)0.0373 (8)
H1210.19460.81620.00400.045*
H1220.32940.77770.02740.045*
C1210.2398 (4)0.8973 (3)0.0910 (3)0.0505 (11)
H1230.18140.90860.15000.061*
H1240.31200.88090.11340.061*
C1220.1983 (5)1.0028 (4)0.0407 (4)0.0771 (16)
H1250.25900.99520.01380.116*
H1260.17941.06490.08770.116*
H1270.12911.01770.01510.116*
C1230.4060 (3)0.3797 (2)0.0672 (2)0.0249 (7)
H1280.44970.37570.13350.030*
H1290.46170.32580.02890.030*
C1240.3188 (3)0.3423 (2)0.0782 (2)0.0256 (7)
H1300.27700.34220.01220.031*
H1310.26150.39620.11540.031*
C1250.3767 (3)0.2261 (2)0.1314 (2)0.0284 (7)
H1320.41830.22670.19730.034*
H1330.43460.17270.09440.034*
C1260.2930 (3)0.1856 (3)0.1432 (3)0.0377 (9)
H1340.25440.18080.07820.056*
H1350.33520.11160.17950.056*
H1360.23510.23810.17960.056*
Sn20.65168 (2)0.03232 (2)0.53350 (2)0.02447 (7)
O2010.44927 (19)0.10973 (17)0.53347 (15)0.0264 (5)
O2020.80224 (19)0.20279 (18)0.52234 (17)0.0343 (5)
N2010.6075 (2)0.1500 (2)0.59076 (19)0.0276 (6)
C2020.6895 (3)0.1671 (3)0.6160 (2)0.0314 (8)
C2030.6655 (3)0.2733 (3)0.6513 (2)0.0368 (8)
H2030.72590.28470.66540.044*
C2040.5549 (3)0.3597 (3)0.6651 (3)0.0374 (9)
H2040.53810.43180.68890.045*
C2050.3474 (3)0.4253 (3)0.6647 (2)0.0351 (8)
H2050.32410.49860.69040.042*
C2060.2679 (3)0.3980 (3)0.6467 (2)0.0348 (8)
H2060.18840.45270.66350.042*
C2070.2971 (3)0.2926 (3)0.6043 (2)0.0298 (7)
H2070.23780.27820.59270.036*
C2080.4127 (3)0.2090 (3)0.5790 (2)0.0251 (7)
C2090.4969 (3)0.2348 (3)0.6039 (2)0.0263 (7)
C2100.4652 (3)0.3430 (3)0.6444 (2)0.0308 (8)
C2110.8030 (3)0.0691 (3)0.6054 (2)0.0329 (8)
H2110.86690.07430.61960.039*
N2120.8148 (2)0.0250 (2)0.57622 (19)0.0292 (6)
C2130.9182 (3)0.1272 (3)0.5607 (2)0.0302 (7)
C2140.9039 (3)0.2176 (3)0.5307 (2)0.0318 (8)
C2151.0036 (3)0.3238 (3)0.5114 (3)0.0393 (9)
H2150.99740.38650.49240.047*
C2161.1101 (3)0.3377 (3)0.5200 (3)0.0427 (9)
H2161.17650.40970.50550.051*
C2171.1216 (3)0.2478 (3)0.5495 (3)0.0427 (9)
H2171.19530.25890.55590.051*
C2181.0259 (3)0.1428 (3)0.5695 (2)0.0376 (9)
H2181.03360.08120.58930.045*
C2190.5850 (3)0.0562 (3)0.6769 (2)0.0279 (7)
H2190.51230.01350.70270.033*
H2200.56460.11570.67040.033*
C2200.6614 (3)0.0867 (3)0.7527 (2)0.0401 (9)
H2210.69060.03320.75380.048*
H2220.72900.16200.73270.048*
C2210.6011 (3)0.0867 (3)0.8566 (3)0.0440 (9)
H2230.65500.10140.90240.053*0.32 (3)
H2240.53360.01140.87660.053*0.32 (3)
H4230.66230.13110.89470.053*0.68 (3)
H4240.56020.00880.88660.053*0.68 (3)
C2220.5613 (15)0.1701 (12)0.8667 (8)0.050 (3)0.68 (3)
H2250.52890.16890.93580.075*0.68 (3)
H2260.62690.24470.84420.075*0.68 (3)
H2270.50200.15190.82670.075*0.68 (3)
C4220.5172 (19)0.128 (2)0.8727 (19)0.050 (3)0.32 (3)
H4250.48180.11560.94260.075*0.32 (3)
H4260.55740.20860.85250.075*0.32 (3)
H4270.45700.08850.83370.075*0.32 (3)
C2230.6954 (3)0.0042 (3)0.3850 (2)0.0392 (9)
H2280.70170.06530.34250.047*0.432 (3)
H2290.62960.06600.37070.047*0.432 (3)
H4280.70900.06970.34390.047*0.400 (3)
H4290.62540.06070.36920.047*0.400 (3)
H6280.64480.01500.34720.047*0.169 (3)
H6290.67490.07530.38370.047*0.169 (3)
C2240.8025 (13)0.0037 (19)0.3537 (8)0.041 (3)0.432 (3)
H2300.86600.05840.37980.050*0.432 (3)
H2310.78990.07430.38490.050*0.432 (3)
C2250.8419 (9)0.0004 (9)0.2443 (9)0.047 (3)0.432 (3)
H2320.87040.05440.23280.057*0.432 (3)
H2330.77410.02570.21200.057*0.432 (3)
C2260.9355 (10)0.1126 (9)0.1954 (8)0.079 (3)0.432 (3)
H2341.00600.13540.22190.118*0.432 (3)
H2350.95150.10780.12430.118*0.432 (3)
H2360.90980.16770.20830.118*0.432 (3)
C4240.7940 (15)0.016 (2)0.3493 (9)0.041 (3)0.400 (3)
H4300.86570.04670.36500.049*0.400 (3)
H4310.77990.08520.38460.049*0.400 (3)
C4250.8115 (10)0.0274 (12)0.2391 (10)0.043 (2)0.400 (3)
H4320.81480.03710.20450.051*0.400 (3)
H4330.74370.09590.22480.051*0.400 (3)
C4260.9192 (10)0.0332 (12)0.1987 (9)0.057 (3)0.400 (3)
H4340.91980.09300.23610.086*0.400 (3)
H4350.92050.04860.12940.086*0.400 (3)
H4360.98740.03830.20440.086*0.400 (3)
C6240.8183 (9)0.0732 (14)0.3299 (12)0.036 (3)0.169 (3)
H6300.87150.07130.37020.043*0.169 (3)
H6310.83650.15180.32020.043*0.169 (3)
C6250.839 (2)0.032 (3)0.2310 (15)0.044 (3)0.169 (3)
H6320.84880.08710.17930.052*0.169 (3)
H6330.76860.03900.22550.052*0.169 (3)
C6260.941 (2)0.013 (3)0.210 (2)0.052 (5)0.169 (3)
H6340.91770.06240.23580.077*0.169 (3)
H6350.96900.02230.13910.077*0.169 (3)
H6361.00250.06780.24230.077*0.169 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02267 (13)0.02310 (12)0.02163 (12)0.01351 (10)0.00488 (9)0.00249 (8)
O1010.0277 (12)0.0252 (11)0.0189 (11)0.0168 (10)0.0054 (9)0.0056 (9)
O1020.0249 (12)0.0406 (14)0.0267 (12)0.0183 (11)0.0086 (10)0.0103 (10)
N1010.0240 (14)0.0216 (13)0.0217 (13)0.0121 (12)0.0044 (11)0.0026 (10)
C1020.0258 (17)0.0292 (17)0.0244 (17)0.0156 (15)0.0027 (13)0.0018 (13)
C1030.0300 (19)0.044 (2)0.0237 (17)0.0197 (17)0.0002 (14)0.0028 (15)
C1040.038 (2)0.043 (2)0.0184 (17)0.0220 (18)0.0005 (14)0.0063 (14)
C1050.041 (2)0.045 (2)0.0236 (18)0.0236 (18)0.0075 (15)0.0132 (15)
C1060.040 (2)0.040 (2)0.0294 (18)0.0231 (18)0.0168 (16)0.0164 (15)
C1070.0300 (18)0.0306 (18)0.0302 (18)0.0187 (16)0.0077 (14)0.0077 (14)
C1080.0282 (17)0.0203 (15)0.0212 (16)0.0155 (14)0.0058 (13)0.0011 (12)
C1090.0294 (18)0.0216 (16)0.0200 (16)0.0140 (14)0.0059 (13)0.0016 (12)
C1100.0332 (19)0.0328 (18)0.0209 (16)0.0190 (16)0.0039 (14)0.0055 (13)
C1110.0214 (17)0.0325 (18)0.0275 (18)0.0130 (15)0.0014 (13)0.0017 (14)
N1120.0236 (14)0.0250 (14)0.0254 (14)0.0121 (12)0.0058 (11)0.0029 (11)
C1130.0192 (16)0.0227 (16)0.0254 (17)0.0092 (13)0.0047 (13)0.0022 (13)
C1140.0233 (17)0.0233 (16)0.0283 (17)0.0111 (14)0.0065 (13)0.0027 (13)
C1150.0274 (18)0.0354 (19)0.0275 (18)0.0148 (16)0.0057 (14)0.0079 (14)
C1160.0298 (19)0.0340 (19)0.0328 (19)0.0130 (16)0.0147 (15)0.0068 (15)
C1170.0209 (18)0.0337 (19)0.041 (2)0.0103 (15)0.0085 (15)0.0034 (15)
C1180.0276 (18)0.0291 (18)0.0342 (19)0.0127 (15)0.0063 (15)0.0057 (14)
C1190.0256 (17)0.0290 (17)0.0250 (17)0.0138 (15)0.0045 (13)0.0021 (13)
C1200.047 (2)0.0270 (18)0.040 (2)0.0185 (17)0.0106 (17)0.0020 (15)
C1210.070 (3)0.032 (2)0.053 (3)0.027 (2)0.016 (2)0.0006 (18)
C1220.117 (5)0.038 (3)0.077 (4)0.037 (3)0.024 (3)0.007 (2)
C1230.0244 (17)0.0274 (17)0.0246 (17)0.0146 (14)0.0027 (13)0.0016 (13)
C1240.0251 (17)0.0282 (17)0.0267 (17)0.0156 (15)0.0043 (13)0.0016 (13)
C1250.0296 (18)0.0276 (17)0.0284 (18)0.0144 (15)0.0051 (14)0.0005 (14)
C1260.042 (2)0.040 (2)0.036 (2)0.0268 (18)0.0000 (16)0.0081 (16)
Sn20.02645 (13)0.02462 (13)0.02094 (12)0.01130 (10)0.00517 (9)0.00264 (9)
O2010.0325 (13)0.0209 (11)0.0238 (11)0.0111 (10)0.0065 (9)0.0001 (9)
O2020.0291 (13)0.0284 (12)0.0404 (14)0.0093 (11)0.0099 (11)0.0004 (10)
N2010.0349 (16)0.0263 (14)0.0223 (14)0.0151 (13)0.0067 (12)0.0030 (11)
C2020.039 (2)0.0346 (19)0.0247 (17)0.0209 (17)0.0051 (15)0.0042 (14)
C2030.046 (2)0.043 (2)0.0313 (19)0.030 (2)0.0065 (16)0.0013 (16)
C2040.052 (2)0.034 (2)0.0317 (19)0.0258 (19)0.0042 (17)0.0025 (15)
C2050.045 (2)0.0242 (17)0.0299 (19)0.0133 (17)0.0050 (16)0.0040 (14)
C2060.036 (2)0.0262 (18)0.0311 (19)0.0089 (16)0.0004 (15)0.0012 (14)
C2070.035 (2)0.0280 (18)0.0249 (17)0.0151 (16)0.0040 (14)0.0018 (14)
C2080.0341 (19)0.0236 (16)0.0150 (15)0.0124 (15)0.0042 (13)0.0031 (12)
C2090.038 (2)0.0248 (17)0.0175 (16)0.0172 (16)0.0044 (14)0.0030 (12)
C2100.044 (2)0.0256 (17)0.0222 (17)0.0185 (16)0.0016 (15)0.0004 (13)
C2110.038 (2)0.044 (2)0.0264 (18)0.0260 (18)0.0099 (15)0.0043 (15)
N2120.0282 (15)0.0348 (16)0.0237 (14)0.0148 (13)0.0052 (12)0.0034 (12)
C2130.0311 (19)0.0365 (19)0.0200 (17)0.0146 (16)0.0041 (14)0.0027 (14)
C2140.0285 (19)0.0368 (19)0.0238 (17)0.0116 (16)0.0038 (14)0.0029 (14)
C2150.034 (2)0.038 (2)0.036 (2)0.0101 (17)0.0071 (16)0.0017 (16)
C2160.028 (2)0.044 (2)0.035 (2)0.0026 (17)0.0034 (16)0.0061 (17)
C2170.026 (2)0.062 (3)0.034 (2)0.0158 (19)0.0083 (16)0.0142 (18)
C2180.034 (2)0.052 (2)0.0308 (19)0.0231 (19)0.0078 (16)0.0122 (17)
C2190.0267 (18)0.0338 (18)0.0205 (16)0.0126 (15)0.0055 (13)0.0070 (13)
C2200.044 (2)0.055 (2)0.0287 (19)0.027 (2)0.0157 (16)0.0115 (17)
C2210.049 (2)0.050 (2)0.032 (2)0.021 (2)0.0150 (17)0.0123 (17)
C2220.087 (7)0.041 (6)0.034 (3)0.038 (6)0.022 (5)0.013 (5)
C4220.087 (7)0.041 (6)0.034 (3)0.038 (6)0.022 (5)0.013 (5)
C2230.043 (2)0.044 (2)0.0276 (19)0.0207 (19)0.0035 (16)0.0039 (16)
C2240.042 (4)0.052 (5)0.033 (3)0.025 (4)0.011 (3)0.021 (3)
C2250.050 (4)0.062 (5)0.035 (3)0.033 (4)0.005 (4)0.015 (4)
C2260.074 (6)0.085 (6)0.068 (5)0.033 (5)0.011 (5)0.007 (5)
C4240.040 (4)0.051 (5)0.032 (3)0.022 (4)0.011 (3)0.013 (4)
C4250.048 (4)0.054 (5)0.033 (3)0.030 (4)0.010 (4)0.014 (4)
C4260.065 (6)0.079 (7)0.047 (5)0.050 (5)0.011 (4)0.026 (5)
C6240.043 (5)0.049 (5)0.032 (4)0.035 (5)0.010 (4)0.012 (4)
C6250.049 (5)0.056 (6)0.035 (4)0.034 (5)0.008 (4)0.014 (5)
C6260.060 (8)0.067 (9)0.044 (8)0.044 (7)0.011 (7)0.028 (8)
Geometric parameters (Å, º) top
Sn1—C1232.126 (3)C203—H2030.9500
Sn1—C1192.133 (3)C204—C2101.410 (5)
Sn1—O1022.165 (2)C204—H2040.9500
Sn1—O101i2.362 (2)C205—C2061.355 (5)
Sn1—N1012.414 (2)C205—C2101.411 (5)
Sn1—N1122.429 (3)C205—H2050.9500
Sn1—O1012.493 (2)C206—C2071.407 (4)
O101—C1081.331 (3)C206—H2060.9500
O101—Sn1i2.3617 (19)C207—C2081.398 (5)
O102—C1141.302 (4)C207—H2070.9500
N101—C1021.329 (4)C208—C2091.435 (4)
N101—C1091.358 (4)C209—C2101.424 (4)
C102—C1031.407 (4)C211—N2121.284 (4)
C102—C1111.458 (4)C211—H2110.9500
C103—C1041.365 (5)N212—C2131.401 (4)
C103—H1030.9500C213—C2181.388 (5)
C104—C1101.412 (5)C213—C2141.422 (5)
C104—H1040.9500C214—C2151.410 (5)
C105—C1061.371 (5)C215—C2161.379 (5)
C105—C1101.400 (5)C215—H2150.9500
C105—H1050.9500C216—C2171.391 (5)
C106—C1071.405 (4)C216—H2160.9500
C106—H1060.9500C217—C2181.379 (5)
C107—C1081.389 (4)C217—H2170.9500
C107—H1070.9500C218—H2180.9500
C108—C1091.437 (4)C219—C2201.508 (4)
C109—C1101.427 (4)C219—H2190.9900
C111—N1121.283 (4)C219—H2200.9900
C111—H1110.9500C220—C2211.528 (5)
N112—C1131.403 (4)C220—H2210.9900
C113—C1181.385 (4)C220—H2220.9900
C113—C1141.416 (4)C221—C2221.481 (6)
C114—C1151.410 (4)C221—C4221.485 (9)
C115—C1161.378 (5)C221—H2230.9900
C115—H1150.9500C221—H2240.9900
C116—C1171.396 (5)C221—H4230.9900
C116—H1160.9500C221—H4240.9900
C117—C1181.377 (5)C222—H2250.9800
C117—H1170.9500C222—H2260.9800
C118—H1180.9500C222—H2270.9800
C119—C1201.517 (4)C422—H4250.9800
C119—H1190.9900C422—H4260.9800
C119—H1200.9900C422—H4270.9800
C120—C1211.527 (5)C223—C4241.493 (7)
C120—H1210.9900C223—C2241.494 (7)
C120—H1220.9900C223—C6241.512 (7)
C121—C1221.492 (6)C223—H2280.9900
C121—H1230.9900C223—H2290.9900
C121—H1240.9900C223—H4280.9900
C122—H1250.9800C223—H4290.9900
C122—H1260.9800C223—H6280.9900
C122—H1270.9800C223—H6290.9900
C123—C1241.523 (3)C224—C2251.511 (6)
C123—H1280.9900C224—H2300.9900
C123—H1290.9900C224—H2310.9900
C124—C1251.522 (4)C225—C2261.513 (7)
C124—H1300.9900C225—H2320.9900
C124—H1310.9900C225—H2330.9900
C125—C1261.513 (4)C226—H2340.9800
C125—H1320.9900C226—H2350.9800
C125—H1330.9900C226—H2360.9800
C126—H1340.9800C424—C4251.521 (7)
C126—H1350.9800C424—H4300.9900
C126—H1360.9800C424—H4310.9900
Sn2—C2232.127 (3)C425—C4261.507 (7)
Sn2—C2192.129 (3)C425—H4320.9900
Sn2—O2022.215 (2)C425—H4330.9900
Sn2—N2012.386 (3)C426—H4340.9800
Sn2—O201ii2.387 (2)C426—H4350.9800
Sn2—N2122.419 (3)C426—H4360.9800
Sn2—O2012.465 (2)C624—C6251.509 (8)
O201—C2081.327 (3)C624—H6300.9900
O201—Sn2ii2.387 (2)C624—H6310.9900
O202—C2141.310 (4)C625—C6261.503 (8)
N201—C2021.336 (4)C625—H6320.9900
N201—C2091.355 (4)C625—H6330.9900
C202—C2031.406 (5)C626—H6340.9800
C202—C2111.449 (5)C626—H6350.9800
C203—C2041.362 (5)C626—H6360.9800
C123—Sn1—C119171.11 (12)C203—C202—C211123.0 (3)
C123—Sn1—O10291.76 (10)C204—C203—C202119.3 (3)
C119—Sn1—O10296.61 (10)C204—C203—H203120.3
C123—Sn1—O101i88.12 (9)C202—C203—H203120.3
C119—Sn1—O101i89.37 (10)C203—C204—C210120.4 (3)
O102—Sn1—O101i86.79 (7)C203—C204—H204119.8
C123—Sn1—N10191.28 (10)C210—C204—H204119.8
C119—Sn1—N10184.84 (10)C206—C205—C210118.8 (3)
O102—Sn1—N101135.62 (8)C206—C205—H205120.6
O101i—Sn1—N101137.56 (8)C210—C205—H205120.6
C123—Sn1—N11294.63 (10)C205—C206—C207123.3 (3)
C119—Sn1—N11291.05 (10)C205—C206—H206118.4
O102—Sn1—N11269.89 (8)C207—C206—H206118.4
O101i—Sn1—N112156.58 (8)C208—C207—C206120.6 (3)
N101—Sn1—N11265.73 (8)C208—C207—H207119.7
C123—Sn1—O10183.56 (9)C206—C207—H207119.7
C119—Sn1—O10187.57 (10)O201—C208—C207125.0 (3)
O102—Sn1—O101157.16 (7)O201—C208—C209118.5 (3)
O101i—Sn1—O10170.76 (7)C207—C208—C209116.5 (3)
N101—Sn1—O10167.02 (7)N201—C209—C210121.5 (3)
N112—Sn1—O101132.65 (7)N201—C209—C208116.8 (3)
C108—O101—Sn1i133.82 (18)C210—C209—C208121.7 (3)
C108—O101—Sn1116.89 (18)C204—C210—C205123.9 (3)
Sn1i—O101—Sn1109.24 (7)C204—C210—C209117.1 (3)
C114—O102—Sn1122.12 (19)C205—C210—C209119.0 (3)
C102—N101—C109119.9 (3)N212—C211—C202118.1 (3)
C102—N101—Sn1120.6 (2)N212—C211—H211121.0
C109—N101—Sn1119.51 (19)C202—C211—H211121.0
N101—C102—C103122.6 (3)C211—N212—C213125.6 (3)
N101—C102—C111115.2 (3)C211—N212—Sn2119.7 (2)
C103—C102—C111122.1 (3)C213—N212—Sn2114.6 (2)
C104—C103—C102118.4 (3)C218—C213—N212125.7 (3)
C104—C103—H103120.8C218—C213—C214121.4 (3)
C102—C103—H103120.8N212—C213—C214112.8 (3)
C103—C104—C110120.8 (3)O202—C214—C215121.5 (3)
C103—C104—H104119.6O202—C214—C213121.4 (3)
C110—C104—H104119.6C215—C214—C213117.1 (3)
C106—C105—C110118.8 (3)C216—C215—C214120.7 (4)
C106—C105—H105120.6C216—C215—H215119.6
C110—C105—H105120.6C214—C215—H215119.6
C105—C106—C107122.4 (3)C215—C216—C217120.9 (3)
C105—C106—H106118.8C215—C216—H216119.5
C107—C106—H106118.8C217—C216—H216119.5
C108—C107—C106121.5 (3)C218—C217—C216120.0 (3)
C108—C107—H107119.3C218—C217—H217120.0
C106—C107—H107119.3C216—C217—H217120.0
O101—C108—C107124.7 (3)C217—C218—C213119.8 (4)
O101—C108—C109118.9 (3)C217—C218—H218120.1
C107—C108—C109116.3 (3)C213—C218—H218120.1
N101—C109—C110121.0 (3)C220—C219—Sn2117.6 (2)
N101—C109—C108117.5 (3)C220—C219—H219107.9
C110—C109—C108121.4 (3)Sn2—C219—H219107.9
C105—C110—C104123.2 (3)C220—C219—H220107.9
C105—C110—C109119.4 (3)Sn2—C219—H220107.9
C104—C110—C109117.2 (3)H219—C219—H220107.2
N112—C111—C102118.0 (3)C219—C220—C221114.0 (3)
N112—C111—H111121.0C219—C220—H221108.8
C102—C111—H111121.0C221—C220—H221108.8
C111—N112—C113125.9 (3)C219—C220—H222108.8
C111—N112—Sn1120.3 (2)C221—C220—H222108.8
C113—N112—Sn1113.80 (19)H221—C220—H222107.7
C118—C113—N112126.1 (3)C222—C221—C220114.2 (5)
C118—C113—C114121.4 (3)C422—C221—C220120.6 (11)
N112—C113—C114112.4 (3)C222—C221—H223108.7
O102—C114—C115121.1 (3)C220—C221—H223108.7
O102—C114—C113121.7 (3)C222—C221—H224108.7
C115—C114—C113117.2 (3)C220—C221—H224108.7
C116—C115—C114120.6 (3)H223—C221—H224107.6
C116—C115—H115119.7C422—C221—H423107.2
C114—C115—H115119.7C220—C221—H423107.2
C115—C116—C117121.1 (3)C422—C221—H424107.2
C115—C116—H116119.5C220—C221—H424107.2
C117—C116—H116119.5H423—C221—H424106.8
C118—C117—C116119.4 (3)C221—C222—H225109.5
C118—C117—H117120.3C221—C222—H226109.5
C116—C117—H117120.3H225—C222—H226109.5
C117—C118—C113120.2 (3)C221—C222—H227109.5
C117—C118—H118119.9H225—C222—H227109.5
C113—C118—H118119.9H226—C222—H227109.5
C120—C119—Sn1117.0 (2)C221—C422—H425109.5
C120—C119—H119108.0C221—C422—H426109.5
Sn1—C119—H119108.0H425—C422—H426109.5
C120—C119—H120108.0C221—C422—H427109.5
Sn1—C119—H120108.0H425—C422—H427109.5
H119—C119—H120107.3H426—C422—H427109.5
C119—C120—C121112.3 (3)C424—C223—Sn2122.9 (6)
C119—C120—H121109.1C224—C223—Sn2119.1 (6)
C121—C120—H121109.1C624—C223—Sn2119.6 (7)
C119—C120—H122109.1C224—C223—H228107.5
C121—C120—H122109.1Sn2—C223—H228107.5
H121—C120—H122107.9C224—C223—H229107.5
C122—C121—C120113.8 (4)Sn2—C223—H229107.5
C122—C121—H123108.8H228—C223—H229107.0
C120—C121—H123108.8C424—C223—H428106.6
C122—C121—H124108.8Sn2—C223—H428106.6
C120—C121—H124108.8C424—C223—H429106.6
H123—C121—H124107.7Sn2—C223—H429106.6
C121—C122—H125109.5H428—C223—H429106.6
C121—C122—H126109.5C624—C223—H628107.4
H125—C122—H126109.5Sn2—C223—H628107.4
C121—C122—H127109.5C624—C223—H629107.4
H125—C122—H127109.5Sn2—C223—H629107.4
H126—C122—H127109.5H628—C223—H629107.0
C124—C123—Sn1116.1 (2)C223—C224—C225116.5 (7)
C124—C123—H128108.3C223—C224—H230108.2
Sn1—C123—H128108.3C225—C224—H230108.2
C124—C123—H129108.3C223—C224—H231108.2
Sn1—C123—H129108.3C225—C224—H231108.2
H128—C123—H129107.4H230—C224—H231107.3
C125—C124—C123111.9 (2)C224—C225—C226115.3 (7)
C125—C124—H130109.2C224—C225—H232108.4
C123—C124—H130109.2C226—C225—H232108.4
C125—C124—H131109.2C224—C225—H233108.4
C123—C124—H131109.2C226—C225—H233108.4
H130—C124—H131107.9H232—C225—H233107.5
C126—C125—C124113.5 (3)C225—C226—H234109.5
C126—C125—H132108.9C225—C226—H235109.5
C124—C125—H132108.9H234—C226—H235109.5
C126—C125—H133108.9C225—C226—H236109.5
C124—C125—H133108.9H234—C226—H236109.5
H132—C125—H133107.7H235—C226—H236109.5
C125—C126—H134109.5C223—C424—C425112.8 (9)
C125—C126—H135109.5C223—C424—H430109.0
H134—C126—H135109.5C425—C424—H430109.0
C125—C126—H136109.5C223—C424—H431109.0
H134—C126—H136109.5C425—C424—H431109.0
H135—C126—H136109.5H430—C424—H431107.8
C223—Sn2—C219171.72 (13)C426—C425—C424114.0 (7)
C223—Sn2—O20294.31 (12)C426—C425—H432108.8
C219—Sn2—O20290.04 (11)C424—C425—H432108.8
C223—Sn2—N20191.86 (12)C426—C425—H433108.8
C219—Sn2—N20189.92 (11)C424—C425—H433108.8
O202—Sn2—N201135.74 (9)H432—C425—H433107.7
C223—Sn2—O201ii84.08 (11)C425—C426—H434109.5
C219—Sn2—O201ii88.98 (10)C425—C426—H435109.5
O202—Sn2—O201ii88.74 (8)H434—C426—H435109.5
N201—Sn2—O201ii135.51 (8)C425—C426—H436109.5
C223—Sn2—N21291.52 (11)H434—C426—H436109.5
C219—Sn2—N21296.61 (11)H435—C426—H436109.5
O202—Sn2—N21269.71 (9)C625—C624—C223112.9 (15)
N201—Sn2—N21266.35 (9)C625—C624—H630109.0
O201ii—Sn2—N212157.66 (8)C223—C624—H630109.0
C223—Sn2—O20188.93 (11)C625—C624—H631109.0
C219—Sn2—O20184.30 (10)C223—C624—H631109.0
O202—Sn2—O201156.48 (8)H630—C624—H631107.8
N201—Sn2—O20167.24 (8)C626—C625—C624116.2 (9)
O201ii—Sn2—O20168.40 (8)C626—C625—H632108.2
N212—Sn2—O201133.57 (8)C624—C625—H632108.2
C208—O201—Sn2ii131.56 (19)C626—C625—H633108.2
C208—O201—Sn2116.34 (18)C624—C625—H633108.2
Sn2ii—O201—Sn2111.60 (8)H632—C625—H633107.4
C214—O202—Sn2120.6 (2)C625—C626—H634109.5
C202—N201—C209119.9 (3)C625—C626—H635109.5
C202—N201—Sn2120.4 (2)H634—C626—H635109.5
C209—N201—Sn2119.5 (2)C625—C626—H636109.5
N201—C202—C203121.6 (3)H634—C626—H636109.5
N201—C202—C211115.4 (3)H635—C626—H636109.5
C109—N101—C102—C1030.1 (4)Sn2—N201—C202—C2110.3 (4)
Sn1—N101—C102—C103179.5 (2)N201—C202—C203—C2043.5 (5)
C109—N101—C102—C111178.0 (3)C211—C202—C203—C204175.8 (3)
Sn1—N101—C102—C1112.4 (4)C202—C203—C204—C2100.1 (5)
N101—C102—C103—C1041.1 (5)C210—C205—C206—C2073.1 (5)
C111—C102—C103—C104176.9 (3)C205—C206—C207—C2080.6 (5)
C102—C103—C104—C1101.6 (5)Sn2ii—O201—C208—C2074.5 (4)
C110—C105—C106—C1071.2 (5)Sn2—O201—C208—C207166.6 (2)
C105—C106—C107—C1082.0 (5)Sn2ii—O201—C208—C209174.74 (19)
Sn1i—O101—C108—C1078.3 (4)Sn2—O201—C208—C20914.2 (3)
Sn1—O101—C108—C107174.6 (2)C206—C207—C208—O201175.7 (3)
Sn1i—O101—C108—C109172.68 (18)C206—C207—C208—C2093.5 (4)
Sn1—O101—C108—C1094.4 (3)C202—N201—C209—C2100.0 (4)
C106—C107—C108—O101176.9 (3)Sn2—N201—C209—C210175.5 (2)
C106—C107—C108—C1094.0 (4)C202—N201—C209—C208177.4 (3)
C102—N101—C109—C1100.3 (4)Sn2—N201—C209—C2081.9 (4)
Sn1—N101—C109—C110179.9 (2)O201—C208—C209—N2018.5 (4)
C102—N101—C109—C108177.8 (3)C207—C208—C209—N201172.1 (3)
Sn1—N101—C109—C1082.6 (3)O201—C208—C209—C210174.1 (3)
O101—C108—C109—N1014.7 (4)C207—C208—C209—C2105.2 (4)
C107—C108—C109—N101174.4 (3)C203—C204—C210—C205174.3 (3)
O101—C108—C109—C110177.8 (3)C203—C204—C210—C2093.4 (5)
C107—C108—C109—C1103.1 (4)C206—C205—C210—C204176.4 (3)
C106—C105—C110—C104174.8 (3)C206—C205—C210—C2091.3 (5)
C106—C105—C110—C1092.0 (5)N201—C209—C210—C2043.5 (4)
C103—C104—C110—C105178.1 (3)C208—C209—C210—C204179.2 (3)
C103—C104—C110—C1091.2 (5)N201—C209—C210—C205174.4 (3)
N101—C109—C110—C105177.3 (3)C208—C209—C210—C2052.9 (5)
C108—C109—C110—C1050.2 (5)N201—C202—C211—N2122.1 (4)
N101—C109—C110—C1040.2 (4)C203—C202—C211—N212177.2 (3)
C108—C109—C110—C104177.2 (3)C202—C211—N212—C213179.0 (3)
N101—C102—C111—N1121.2 (4)C202—C211—N212—Sn22.9 (4)
C103—C102—C111—N112176.9 (3)C211—N212—C213—C2183.4 (5)
C102—C111—N112—C113176.2 (3)Sn2—N212—C213—C218172.9 (3)
C102—C111—N112—Sn14.3 (4)C211—N212—C213—C214178.5 (3)
C111—N112—C113—C1184.9 (5)Sn2—N212—C213—C2145.2 (3)
Sn1—N112—C113—C118175.5 (3)Sn2—O202—C214—C215171.8 (2)
C111—N112—C113—C114177.2 (3)Sn2—O202—C214—C2139.0 (4)
Sn1—N112—C113—C1142.3 (3)C218—C213—C214—O202180.0 (3)
Sn1—O102—C114—C115175.9 (2)N212—C213—C214—O2021.8 (4)
Sn1—O102—C114—C1133.6 (4)C218—C213—C214—C2150.7 (5)
C118—C113—C114—O102178.5 (3)N212—C213—C214—C215178.9 (3)
N112—C113—C114—O1020.5 (4)O202—C214—C215—C216179.6 (3)
C118—C113—C114—C1151.1 (4)C213—C214—C215—C2161.1 (5)
N112—C113—C114—C115179.1 (3)C214—C215—C216—C2171.2 (6)
O102—C114—C115—C116179.0 (3)C215—C216—C217—C2180.8 (5)
C113—C114—C115—C1160.6 (5)C216—C217—C218—C2130.4 (5)
C114—C115—C116—C1170.5 (5)N212—C213—C218—C217178.3 (3)
C115—C116—C117—C1180.9 (5)C214—C213—C218—C2170.4 (5)
C116—C117—C118—C1131.4 (5)Sn2—C219—C220—C221172.1 (3)
N112—C113—C118—C117179.2 (3)C219—C220—C221—C22263.0 (8)
C114—C113—C118—C1171.5 (5)C219—C220—C221—C42238.4 (13)
Sn1—C119—C120—C121174.7 (3)Sn2—C223—C224—C225168.1 (9)
C119—C120—C121—C122171.7 (4)C223—C224—C225—C22697.6 (16)
Sn1—C123—C124—C125178.1 (2)Sn2—C223—C424—C425176.8 (9)
C123—C124—C125—C126179.6 (3)C223—C424—C425—C426172.6 (15)
C209—N201—C202—C2033.5 (5)Sn2—C223—C624—C625171.8 (12)
Sn2—N201—C202—C203179.1 (2)C223—C624—C625—C626129 (2)
C209—N201—C202—C211175.8 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg2, Cg3, Cg4 and Cg5 are the centroids of the C205–C210, C213–C218, N101/C104/C109C110 and C105–C110 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C107—H107···O102i0.952.092.908 (4)144
C207—H207···O202ii0.952.182.972 (4)140
C105—H105···Cg20.952.713.609 (3)159
C116—H116···Cg3iii0.952.943.704 (3)139
C125—H132···Cg2iv0.992.773.602 (3)142
C204—H204···Cg5v0.952.773.700 (4)165
C222—H226···Cg4ii0.982.693.613 (14)157
C422—H426···Cg5ii0.982.943.77 (3)142
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x1, y+1, z1; (iv) x, y, z1; (v) x+1, y+1, z+1.
 

Acknowledgements

Special thanks are given to the Instituto de Química, Universidad Nacional Autónoma de México) for the data collection.

References

First citationRasoul-Amini, S., Khalaj, A., Shafiee, A., Daneshtalab, M., Madadkar-Sobhani, M. & Fouladdel, S. (2006). Int. J. Cancer Res. 2, 102–108.  CAS Google Scholar
First citationAlbrecht, M., Osetska, O. & Fröhlich, R. (2005). Dalton Trans. pp. 3757–3762.  Web of Science CSD CrossRef Google Scholar
First citationAlbrecht, M., Osetska, O., Fröhlich, R., Bünzli, J. G., Aebischer, A., Gumy, F. & Hamacek, J. (2007). J. Am. Chem. Soc. 129, 14178–14179.  Web of Science CSD CrossRef CAS Google Scholar
First citationAnitha, P., Manikandan, R., Prakash, G., Pachiyappan, B., Viswanathamurthi, P. & Malecki, J. G. (2015). J. Organomet. Chem. 791, 266–273.  Web of Science CSD CrossRef CAS Google Scholar
First citationBasu Baul, T. S., Mizar, A., Paul, A., Ruisi, G., Willem, R., Biesemans, M. & Linden, A. (2009). J. Organomet. Chem. 694, 2142–2152.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharles, R. G. & Perrotto, A. (1964). Anal. Chim. Acta, 30, 131–138.  CrossRef CAS Web of Science Google Scholar
First citationCorcé, V., Renaud, S., Cannie, I., Julienne, K., Gouin, S. G., Loréal, O., Gaboriau, F. & Deniaud, D. (2014). Bioconjugate Chem. 25, 320–334.  Google Scholar
First citationCui, J., Qiao, Y., Yin, H. & Liu, M. Z. (2010). Z. Anorg. Allg. Chem. 636, 2508–2512.  Web of Science CSD CrossRef CAS Google Scholar
First citationGarcía-Santos, I., Sanmartín, J., García-Deibe, A. M., Fondo, M. & Gómez, E. (2009). Polyhedron, 28, 3055–3059.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMusiol, R., Jampilek, J., Buchta, V., Silva, L., Niedbala, H., Podeszwa, B., Palka, A., Majerz-Maniecka, K., Oleksyn, B. & Polanski, J. (2006). Bioorg. Med. Chem. 14, 3592–3598.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNasveld, P. & Kitchener, S. (2005). Trans. R. Soc. Trop. Med. Hyg. 99, 2–5.  Web of Science CrossRef PubMed Google Scholar
First citationPalit, P., Paira, P., Hazra, A., Banerjee, S., Das Gupta, A., Dastidar, S. G. & Mondal, N. B. (2009). Eur. J. Med. Chem. 44, 845–853.  Web of Science CrossRef CAS Google Scholar
First citationSerda, M., Kalinowski, D., Mrozek-Wilczkiewicz, A., Musiol, R., Szurko, A., Ratuszna, A., Pantarat, N., Kovacevic, Z., Merlot, A. M., Richardson, D. R. & Polanski, J. (2012). Bioorg. Med. Chem. Lett. 22, 5527–5531.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSousa, A. T. de, Bessler, K. E., Lemos, S. S., Ellena, J. & Gatto, C. C. (2009). Z. Anorg. Allg. Chem. 635, 106–111.  Google Scholar
First citationSun, W.-H., Shen, M., Zhang, W., Huang, W., Liu, S. & Redshaw, C. (2011). Dalton Trans. 40, 2645–2653.  Web of Science CSD CrossRef CAS Google Scholar
First citationVafaee, M., Amini, M. M. & Ng, S. W. (2010). Acta Cryst. E66, m964.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Q., Sun, Z., Zhang, W., Nomura, K. & Sun, W.-H. (2014). Macromol. Chem. Phys. 215, 1744–1752.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, W., Liu, S., Yang, W., Hao, X., Glaser, R. & Sun, W.-H. (2012). Organometallics, 31, 8178–8188.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, H.-X., Wang, S.-Y., Wang, W.-M., Gao, H.-L. & Cui, J.-Z. (2015). Inorg. Chem. Commun. 62, 94–97.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds