research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-oxo-2H-chromen-3-yl 4-chloro­benzoate and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Cristallographie et Physique Moléculaire, UFR SSMT, Université Félix Houphouët Boigny de Cocody 22 BP 582 Abidjan 22, Côte d'Ivoire, and bLaboratoire de Chimie Moléculaire et Matériaux, Equipe de Chimie Organique et Phytochimie, Université Ouaga I Pr Joseph KI-ZERBO 03 BP 7021 Ouagadougou 03, Burkina Faso
*Correspondence e-mail: eric.ziki@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 October 2016; accepted 6 December 2016; online 1 January 2017)

In the title compound, C16H9ClO4 the dihedral angle between the coumarin ring system [maximum deviation = 0.023 (1) Å] and the benzene ring is 73.95 (8)°. In the crystal, ππ inter­actions link the dimers into a three-dimensional framework. A quantum chemical calculation is in generally good agreement with the observed structure, although the calculated dihedral angle between the ring systems (85.7%) is somewhat larger than the observed value [73.95 (8)°]. Hirshfeld surface analysis has been used to confirm and qu­antify the supra­molecular inter­actions.

1. Chemical context

Coumarin and its derivatives are widely recognized for their multiple biological activities, including anti­cancer (Lacy et al., 2004[Lacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797-3811.]; Kostova, 2005[Kostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29-46.]), anti-inflammatory (Todeschini et al., 1998[Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189-199.]), anti­viral (Borges et al., 2005[Borges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887-916.]), anti-malarial (Agarwal et al., 2005[Agarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645-4650.]) and anti­coagulant (Maurer et al., 1998[Maurer, H. H. & Arlt, J. W. (1998). J. Chromatogr. B Biomed. Sci. Appl. 714, 181-195.]) properties. As part of our studies in this area, we now describe the synthesis and crystal structure of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

In compound (I)[link] (Fig. 1[link]), the coumarin ring system is, as expected, almost planar [maximum deviation = 0.023 (1) Å] and is oriented at an angle of 73.95 (8)° with respect to the benzene ring. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the coumarin ring: the C3—C2 [1.335 (2) Å] and C2—C1 [1.456 (2) Å] bond lengths are shorter and longer, respectively, than those excepted for a Car—Car bond. This suggests that the electronic density is preferentially located in the C2—C3 bond at the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]; Ziki et al., 2016[Ziki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562-1564.]).

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, weak aromatic ππ stacking inter­actions (Janiak, 2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3889.]) are present [Cg1⋯Cg2(1 − x, −y, 1 − z) = 3.4781 (10) Å and Cg2⋯Cg2(1 − x, 1 − y,1 − z) = 3.5644 (11) Å, where Cg1 is the centroid of the coumarin pyran ring and Cg2 is the centroid of the coumarin benzene ring], thus forming a three-dimensional supra­molecular network. A weak C11=O4⋯Cg3(1 − x, − y, −z) (π-ring) inter­action between O4 and a symmetry-related benzene ring (C6–C11, centroid Cg3) of is also present (Fig. 2[link]).

[Figure 2]
Figure 2
Partial packing diagram for (I)[link], showing the ππ stacking and C—O⋯π inter­actions (dashed lines). The yellow dots are ring centroids. H atoms have been omitted for clarity.

4. Hirshfeld surface analysis

Crystal Explorer3.1 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]) was used to generate the Hirshfeld surface and two-dimensional fingerprint (FP) plots (Rohl et al., 2008[Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517-4525.]). The analysis of intra­molecular and inter­molecular inter­actions through the mapping of dnorm is permitted by the contact distances di and de from the Hirshfeld surface to the nearest atom inside and outside, respectively. In compound (I)[link], there are four O atoms and a Cl atom that can potentially act as acceptors for hydrogen bonds, but one of O atoms and the H atom of the chloro­benzoate moiety are involved in the establishment of intra­molecular hydrogen bonds. The surface mapped over dnorm displays four red spots that correspond to areas of close contact between the surface and the neighbouring environment and is shown in Fig. 3[link]. The contributions from different contacts were selected by partial analysis of the FP plots (Fig. 4[link]). C⋯C contacts correspond to inter­molecular ππ inter­actions.

[Figure 3]
Figure 3
A view of the Hirshfeld surface mapped over dnorm. The contact points (red) are labelled to indicate the atoms participating in the inter­molecular inter­actions.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots: (a) overall, and delineated into contributions from different contacts: (b) H⋯H, (c) H⋯O/O⋯H, (d) C⋯C, (e) H⋯C/C⋯H and (f) H⋯Cl/Cl⋯H.

The greatest contribution (26.5%) is from the H⋯O/O⋯H contacts, which appear as the highlighted red spot on the side of the surface (Figs. 3[link] and 4c[link]). The red spots in the middle of the surface correspond to C⋯C contacts appearing near de = di ≃1.7 and 1.8 Å (Fig. 4d[link]). As expected in organic compounds, the H⋯H contacts are important with a 24.7% contribution to Hirshfeld surface (Fig. 4b[link]). There are also H⋯C/C⋯H and H⋯Cl/Cl⋯H contacts, which make contributions of 14.5 and 12.7%, respectively (Figs. 4e and 4f[link]).

5. Quantum-chemical calculations

Quantum-chemical calculations were performed and the results compared with the experimental analysis. An ab-initio Hartree–Fock (HF) method was used with the standard 6-31G basis set using the GAUSSIAN03 software package (Frisch et al., 2004[Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]; Dennington et al., 2007[Dennington, R., Keith, T. & Millam, J. (2007). GAUSSVIEW4.1. Semichem Inc., Shawnee Mission, KS, USA.]) to obtain the optimized mol­ecular structure. The computational results are in good agreement with the experimental crystallographic data (see Supplementary Tables S1 and S2). The dihedral angle between the coumarin ring and the chloro­benzoate ring for the calculated structure is 85.7°, which is larger than the value of 73.95 (8)° for the observed structure.

6. Synthesis and crystallization

To a solution of 4-chloro­benzoyl chloride (6.17 × 10 −3 mol ≃ 0.8 ml) in dry tetra­hydro­furan (31 ml) was introduced dried tri­ethyl­amine (3 molar equivalents ≃ 2.6 ml). While stirring strongly, 6.17 × 10 −3 mol (1 g) of chroman-2,3-dione was added in small portions over 30 min. The reaction mixture was then refluxed for 4 h and poured into a separating funnel containing 40 ml of chloro­form. The solution was acidified with dilute hydro­chloro­ric acid until the pH was 2–3. The organic layer was extracted, washed with water until neutral, dried over MgSO4 and the solvent removed. The resulting precipitate (crude product) was filtered off with suction, washed with petroleum ether and dissolved in a minimum of di­chloro­methane by heating under agitation. Hexane was added to this hot mixture until the formation of a new precipitate started, which dissolved in the resulting mixture upon heating. Upon cooling, yellow crystals of the title compound precipitated in a yield of 70%; m.p. 478–482 K.

7. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. H atoms were placed in calculated positions (C—H = 0.93 Å) and refined using a riding-model approximation with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula C16H9ClO4
Mr 300.68
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 6.7866 (4), 7.1789 (3), 14.0981 (5)
α, β, γ (°) 94.098 (3), 93.461 (4), 106.154 (4)
V3) 655.75 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 2.72
Crystal size (mm) 0.12 × 0.12 × 0.08
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.737, 0.812
No. of measured, independent and observed [I > 2σ(I)] reflections 7634, 2409, 2109
Rint 0.022
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.05
No. of reflections 2409
No. of parameters 190
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.49
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

2-Oxo-2H-chromen-3-yl 4-chlorobenzoate top
Crystal data top
C16H9ClO4Z = 2
Mr = 300.68F(000) = 308
Triclinic, P1Dx = 1.523 Mg m3
Hall symbol: -P 1Melting point: 478 K
a = 6.7866 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.1789 (3) ÅCell parameters from 3886 reflections
c = 14.0981 (5) Åθ = 6.3–69.1°
α = 94.098 (3)°µ = 2.72 mm1
β = 93.461 (4)°T = 293 K
γ = 106.154 (4)°Prism, colourless
V = 655.75 (5) Å30.12 × 0.12 × 0.08 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
2409 independent reflections
Radiation source: fine-focus sealed tube2109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 5.3048 pixels mm-1θmax = 69.1°, θmin = 6.3°
ω scanh = 87
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
k = 88
Tmin = 0.737, Tmax = 0.812l = 1716
7634 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.1948P]
where P = (Fo2 + 2Fc2)/3
2409 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1899 (3)0.0796 (2)0.35706 (12)0.0446 (4)
C20.3804 (3)0.0653 (2)0.31891 (11)0.0422 (4)
C30.5634 (3)0.1322 (2)0.36885 (11)0.0414 (4)
H30.68150.11870.34240.050*
C40.5771 (2)0.2250 (2)0.46354 (11)0.0384 (3)
C50.7616 (3)0.3026 (2)0.52035 (13)0.0475 (4)
H50.88480.29430.49750.057*
C60.7618 (3)0.3918 (3)0.61044 (14)0.0549 (5)
H60.88560.44510.64750.066*
C70.5794 (3)0.4022 (3)0.64594 (12)0.0534 (5)
H70.58130.46280.70670.064*
C80.3938 (3)0.3229 (2)0.59161 (12)0.0474 (4)
H80.27050.32700.61580.057*
C90.3956 (2)0.2379 (2)0.50103 (11)0.0390 (3)
C100.3047 (3)0.0312 (3)0.15135 (12)0.0459 (4)
C110.2730 (2)0.1155 (3)0.06844 (12)0.0458 (4)
C160.2973 (3)0.2994 (3)0.07788 (13)0.0525 (4)
H160.33350.33260.13770.063*
C150.2683 (3)0.4333 (3)0.00072 (14)0.0599 (5)
H150.28320.55680.00580.072*
C140.2170 (3)0.3809 (4)0.08894 (14)0.0626 (6)
C130.1904 (3)0.1999 (4)0.10068 (13)0.0649 (6)
H130.15340.16800.16070.078*
C120.2200 (3)0.0667 (3)0.02135 (13)0.0555 (5)
H120.20420.05640.02820.067*
Cl10.18104 (10)0.55203 (13)0.18674 (4)0.0951 (3)
O10.20802 (17)0.16486 (17)0.44814 (8)0.0444 (3)
O20.0204 (2)0.0211 (2)0.31579 (10)0.0637 (4)
O30.3603 (2)0.04346 (18)0.23221 (8)0.0516 (3)
O40.2900 (2)0.1930 (2)0.15125 (10)0.0592 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0428 (9)0.0444 (8)0.0465 (9)0.0127 (7)0.0018 (7)0.0042 (7)
C20.0515 (10)0.0402 (8)0.0374 (8)0.0177 (7)0.0038 (7)0.0026 (6)
C30.0424 (9)0.0431 (8)0.0433 (8)0.0176 (7)0.0101 (7)0.0082 (7)
C40.0411 (8)0.0336 (7)0.0420 (8)0.0117 (6)0.0044 (6)0.0066 (6)
C50.0426 (9)0.0461 (9)0.0549 (10)0.0139 (7)0.0001 (7)0.0097 (7)
C60.0597 (11)0.0467 (9)0.0538 (10)0.0117 (8)0.0144 (8)0.0049 (8)
C70.0801 (13)0.0438 (9)0.0386 (8)0.0230 (9)0.0015 (8)0.0018 (7)
C80.0601 (11)0.0458 (9)0.0420 (8)0.0230 (8)0.0084 (7)0.0057 (7)
C90.0417 (8)0.0346 (7)0.0428 (8)0.0134 (6)0.0045 (6)0.0069 (6)
C100.0369 (9)0.0587 (10)0.0442 (9)0.0156 (7)0.0051 (7)0.0082 (7)
C110.0341 (8)0.0648 (11)0.0388 (8)0.0140 (7)0.0044 (6)0.0048 (7)
C160.0515 (10)0.0651 (11)0.0407 (9)0.0181 (8)0.0000 (7)0.0006 (8)
C150.0541 (11)0.0709 (12)0.0519 (10)0.0169 (9)0.0015 (8)0.0073 (9)
C140.0401 (10)0.0978 (16)0.0434 (10)0.0137 (10)0.0043 (7)0.0134 (10)
C130.0437 (10)0.1146 (19)0.0370 (9)0.0235 (11)0.0029 (7)0.0066 (10)
C120.0432 (10)0.0826 (13)0.0446 (9)0.0217 (9)0.0061 (7)0.0141 (9)
Cl10.0754 (4)0.1412 (6)0.0550 (3)0.0214 (4)0.0009 (3)0.0395 (4)
O10.0383 (6)0.0504 (6)0.0464 (6)0.0160 (5)0.0069 (5)0.0012 (5)
O20.0439 (7)0.0792 (9)0.0619 (8)0.0120 (6)0.0056 (6)0.0029 (7)
O30.0686 (8)0.0544 (7)0.0369 (6)0.0280 (6)0.0000 (5)0.0007 (5)
O40.0689 (9)0.0586 (8)0.0561 (8)0.0273 (7)0.0046 (6)0.0092 (6)
Geometric parameters (Å, º) top
C1—O21.206 (2)C8—H80.9300
C1—O11.366 (2)C9—O11.382 (2)
C1—C21.456 (2)C10—O41.193 (2)
C2—C31.335 (2)C10—O31.370 (2)
C2—O31.3809 (19)C10—C111.479 (2)
C3—C41.435 (2)C11—C161.390 (3)
C3—H30.9300C11—C121.390 (2)
C4—C91.393 (2)C16—C151.381 (3)
C4—C51.395 (2)C16—H160.9300
C5—C61.380 (3)C15—C141.377 (3)
C5—H50.9300C15—H150.9300
C6—C71.382 (3)C14—C131.381 (4)
C6—H60.9300C14—Cl11.738 (2)
C7—C81.385 (3)C13—C121.385 (3)
C7—H70.9300C13—H130.9300
C8—C91.378 (2)C12—H120.9300
O2—C1—O1118.19 (16)C8—C9—C4122.08 (16)
O2—C1—C2125.73 (17)O1—C9—C4120.91 (14)
O1—C1—C2116.07 (14)O4—C10—O3122.83 (17)
C3—C2—O3120.59 (15)O4—C10—C11127.29 (16)
C3—C2—C1122.67 (15)O3—C10—C11109.86 (15)
O3—C2—C1116.26 (15)C16—C11—C12119.31 (18)
C2—C3—C4119.71 (15)C16—C11—C10121.73 (16)
C2—C3—H3120.1C12—C11—C10118.96 (18)
C4—C3—H3120.1C15—C16—C11120.64 (18)
C9—C4—C5118.11 (15)C15—C16—H16119.7
C9—C4—C3118.07 (15)C11—C16—H16119.7
C5—C4—C3123.81 (15)C14—C15—C16118.9 (2)
C6—C5—C4120.22 (17)C14—C15—H15120.5
C6—C5—H5119.9C16—C15—H15120.5
C4—C5—H5119.9C15—C14—C13121.89 (19)
C5—C6—C7120.47 (17)C15—C14—Cl1118.0 (2)
C5—C6—H6119.8C13—C14—Cl1120.05 (16)
C7—C6—H6119.8C14—C13—C12118.72 (18)
C6—C7—C8120.40 (17)C14—C13—H13120.6
C6—C7—H7119.8C12—C13—H13120.6
C8—C7—H7119.8C13—C12—C11120.5 (2)
C9—C8—C7118.70 (17)C13—C12—H12119.7
C9—C8—H8120.6C11—C12—H12119.7
C7—C8—H8120.6C1—O1—C9122.54 (13)
C8—C9—O1117.01 (15)C10—O3—C2118.78 (14)
O2—C1—C2—C3179.51 (17)O4—C10—C11—C120.0 (3)
O1—C1—C2—C30.5 (2)O3—C10—C11—C12178.60 (15)
O2—C1—C2—O37.4 (3)C12—C11—C16—C150.3 (3)
O1—C1—C2—O3171.59 (13)C10—C11—C16—C15179.53 (16)
O3—C2—C3—C4172.69 (13)C11—C16—C15—C140.7 (3)
C1—C2—C3—C40.9 (2)C16—C15—C14—C131.1 (3)
C2—C3—C4—C91.5 (2)C16—C15—C14—Cl1179.94 (15)
C2—C3—C4—C5178.72 (15)C15—C14—C13—C121.1 (3)
C9—C4—C5—C61.0 (2)Cl1—C14—C13—C12179.94 (14)
C3—C4—C5—C6179.23 (15)C14—C13—C12—C110.7 (3)
C4—C5—C6—C71.1 (3)C16—C11—C12—C130.3 (3)
C5—C6—C7—C80.2 (3)C10—C11—C12—C13179.57 (16)
C6—C7—C8—C91.5 (3)O2—C1—O1—C9179.48 (15)
C7—C8—C9—O1178.39 (14)C2—C1—O1—C91.4 (2)
C7—C8—C9—C41.6 (2)C8—C9—O1—C1179.09 (14)
C5—C4—C9—C80.4 (2)C4—C9—O1—C10.9 (2)
C3—C4—C9—C8179.42 (14)O4—C10—O3—C26.6 (3)
C5—C4—C9—O1179.60 (13)C11—C10—O3—C2174.68 (14)
C3—C4—C9—O10.6 (2)C3—C2—O3—C10115.15 (18)
O4—C10—C11—C16179.25 (18)C1—C2—O3—C1072.60 (19)
O3—C10—C11—C160.6 (2)
 

Acknowledgements

The authors thank the Spectropole Service of the faculty of Sciences (Aix-Marseille, France) for the use of the diffractometer.

References

First citationAgarwal, A., Srivastava, K., Puri, S. K. & Chauhan, P. M. S. (2005). Bioorg. Med. Chem. 13, 4645–4650.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAgilent. (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBorges, F., Roleira, F., Milhazes, N., Santana, L. & Uriarte, E. (2005). Curr. Med. Chem. 12, 887–916.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDennington, R., Keith, T. & Millam, J. (2007). GAUSSVIEW4.1. Semichem Inc., Shawnee Mission, KS, USA.  Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3889.  CrossRef Google Scholar
First citationKostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29–46.  CrossRef PubMed CAS Google Scholar
First citationLacy, A. & O'Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaurer, H. H. & Arlt, J. W. (1998). J. Chromatogr. B Biomed. Sci. Appl. 714, 181–195.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J. & Kahr, B. (2008). Cryst. Growth Des. 8, 4517–4525.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTodeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem. 33, 189–199.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationZiki, E., Yoda, J., Djandé, A., Saba, A. & Kakou-Yao, R. (2016). Acta Cryst. E72, 1562–1564.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds