research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of μ-carbonyl-1:2κ2C:C-carbonyl-1κC-(1η5-cyclo­penta­dien­yl)iodido-2κI-[μ-2-(pyridin-2-yl)ethene-1,1-diyl-1κC1:2κ2N,C1]ironpalladium(FePd) benzene monosolvate

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry and Chemical Technology, Krasnoyarsk Research Center, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50-24, Krasnoyarsk, 660036, Russian Federation, and bA. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow 119991, Russian Federation
*Correspondence e-mail: fedya@ineos.ac.ru

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 December 2016; accepted 14 December 2016; online 1 January 2017)

The reaction of Cp(CO)2FeI with 2-ethynyl­pyridine under Sonogashira conditions [5% PdCl2(PPh3)2, 10% CuI, THF–NEt3 (2:1)] afforded the title binuclear μ-pyridyl­vinyl­idene FePd complex (FePd1) as a benzene solvate, [FePd(C5H5)(C7H5N)I(CO)2]·C6H6, in a very low yield rather than the expected iron o-pyridyl­ethynyl complex Cp(CO)2Fe—C≡C-(2-C5H4N). The Fe and Pd atoms in FePd1 are bridged by carbonyl and pyridyl­vinyl­idene ligands, the pyridyl N atom being bonded to the palladium atom. The use of equimolar amounts of PdCl2 increases the yield of FePd1 to 12%. The reaction pathway leading to FePd1 is proposed.

1. Chemical context

Transition metal σ-pyridyl­ethynyl complexes attract considerable research inter­est since they can act as precursors for pyridyl­vinyl­idene complexes (Chou et al., 2008[Chou, H.-H., Lin, Y.-C., Huang, Sh.-L., Liu, Y.-H. & Wang, Y. (2008). Organometallics, 27, 5212-5220.]) and as buildings blocks for supra­molecular assemblies in mol­ecular electronics (Le Stang et al., 1999[Le Stang, S., Lenz, D., Paul, F. & Lapinte, C. (1999). J. Organomet. Chem. 572, 189-192.]), as well as materials for non-linear optics (Wu et al., 1997[Wu, I.-Y., Lin, J. T., Luo, J., Sun, S.-S., Li, C.-S., Lin, K. J., Tsai, C., Hsu, C.-C. & Lin, J.-L. (1997). Organometallics, 16, 2038-2048.]).

[Scheme 1]

Since the presence of two Lewis base centres (Cβ and N atoms) makes pyridyl­ethynyl complexes potential catalysts for electrochemical proton reduction (Valyaev et al., 2007[Valyaev, D. A., Peterleitner, M. G., Semeikin, O. V., Utegenov, K. I., Ustynyuk, N. A., Sournia-Saquet, A., Lugan, N. & Lavigne, G. (2007). J. Organomet. Chem. 692, 3207-3211.]), we decided to study the CV behavior of the o-pyridyl­ethynyl iron complex Cp(CO)2Fe-C≡C-(2-C5H4N) in acidified solutions. The efficient preparation of iron aryl­ethynyls Cp(CO)2Fe-C≡C-Ar by Pd/Cu-catalyzed Sonogashira coupling of Cp(CO)2FeI (FpI) with terminal aryl­acetyl­enes HC≡C-Ar (Nakaya et al., 2009[Nakaya, R., Yasuda, S., Yorimitsu, H. & Oshima, K. (2009). Tetrahedron Lett. pp. 5274-5276.]) inspired us to study the reaction of Cp(CO)2FeI with o-pyridyl­acetyl­ene HC≡C-(2-C5H4N) under the same conditions (5% PdCl2(PPh3)2, 10% CuI, THF:NEt3 (2:1), 333 K). This reaction was found to afford no target complex. Instead, the binuclear FePd μ2-pyridyl­vinyl­idene complex (FePd1) was isolated in a yield of 2%. The yield increases to 12% using PdCl2 as an educt instead of (Ph3P)2PdCl2 and pure diisopropylamine as the solvent. The structure of FePd1, which crystallized as a benzene solvate [FePd(C5H5)(C7H5N)I(CO)2]·C6H6, was determined by X-ray diffraction.

Thus, while the alkynylation of FpI with terminal aryl­acetyl­ens HC≡C-Ar proceeds along the typical Sonogashira pathway to afford FpC≡C-Ar in reasonable yields (Nakaya et al., 2009[Nakaya, R., Yasuda, S., Yorimitsu, H. & Oshima, K. (2009). Tetrahedron Lett. pp. 5274-5276.]), the same reaction of o-pyridyl­acetyl­ene did not result in the Sonogashira alkynylation product, but afforded the binuclear complex FePd1 where the metal atoms are bridged through the carbonyl and pyridyl­vinyl­idene ligands, the pyridyl nitro­gen atom being bound to the palladium atom. Although additional experimental and probably theoretical studies are needed to reveal the true reaction pathway, one can assume the formation of FePd1 to be caused by the following successive steps in the palladium coordination sphere: (i) the oxidation addition of FpI at the Fe—I bond, (ii) the acetyl­ene–vinyl­idene rearrangement of the π-pyridyl­acetyl­ene ligand followed by (iii) insertion of the Cp(CO)2Fe-fragment into the Pd=C bond and accompanied by (iv) formation of the bridging carbonyl group and the Pd—N bond (Fig. 1[link], pathway A). Presumably, it is the Pd—N bond that efficiently stabilizes FePd1, thereby favoring pathway A. This stabilization cannot occur in the case of reactions of aryl­acetyl­enes, and the typical Sonogashira reaction proceeds via the formation of a pyridyl­ethynyl complex followed by the Fe—C-reductive elimination (Sonogashira, 1998[Sonogashira, K. (1998). Metal-Catalyzed Cross-Coupling Reactions, edited by F. Diederich & P. J. Stang, ch. 5. New York: Wiley-VCH.]) (Fig. 1[link], pathway B).

[Figure 1]
Figure 1
The reaction pathway.
[Figure 2]
Figure 2
The mol­ecular structure of complex FePd1 with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The benzene solvent mol­ecule is omitted.

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 2[link]. The iron atom is coordinated by the cyclo­penta­dienyl ligand [the Fe—C distances lie between 2.075 (3) and 2.128 (3) Å and the Fe—Cp centroid distance is 1.731 (1) Å] and to two carbonyl ligands, one of which is terminal [the Fe1—C1—O1 angle is 177.6 (3)°] and the second one is bridging to the palladium atom [the Fe1—C2—O2 and O2—C2—Pd1 angles are 141.7 (2) and 137.0 (2)°, respectively, and the Fe1—C2 and Pd1—C2 distances are 1.942 (3) Å and 2.012 (3) Å, respectively]. In addition, the iron and palladium atoms are linked through the bridging pyridyl­vinyl­idene fragment coordinated by the C3 atom. The four-membered ring Fe1–C2–Pd1–C3 thereby formed is folded slightly by 11.61 (14)° along the Fe1⋯Pd1 line with a short metal–metal distance of 2.5779 (4) Å [for comparison the values of the covalent radii for these metals are r(Fe) = 1.32, r(Pd) = 1.39 Å; Cordero et al., 2008[Cordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832-2838.]]. The Fe1—C3 distance of 1.836 (3) Å is noticeably longer compared to the analogous distances in mononuclear iron vinyl­idene complexes: for example, 1.744 (4) Å in (η5-C5H5)Fe(SnPh3)(CO)(=C=CHPh) (Adams et al., 1999[Adams, H., Broughton, S. G., Walters, S. J. & Winter, M. J. (1999). Chem. Commun. pp. 1231-1232.]) and 1.744 (9) Å in (η5-C5Me5)Fe(CO)(TMS)(=C=C(TMS)Ph) (Kalman et al., 2014[Kalman, S. E., Gunnoe, T. B. & Sabat, M. (2014). Organometallics, 33, 5457-5463.]), and the Fe1—C3—C4 angle of 156.9 (2)° is noticeably deviated from linearity. At the same time, the Pd1—C3—C4 angle is 118.58 (19)°, which suggests an unsymmetrical coordination of the C3 atom to the iron and palladium atoms. This asymmetry can be explained by the η2-coordination of the Fe=C double bond to the palladium atom. It is noteworthy that in Fe–M-type binuclear μ2-vinyl­idene complexes, the coordination to the metal atoms is characterized by approximately equal values for the Fe—C—C and M—C—C angles [131.8–145.3° according to a CCDC (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) search]. The C3—C4 distance of 1.328 (4) Å in the vinyl­idene fragment corres­ponds with typical C=C double-bond lengths in olefins. Besides coordination to C3, the palladium atom binds to the pyridyl­vinyl­idene fragment via the nitro­gen atom of the pyridine ring to a five-membered chelating ring (the ring is almost planar and the maximum deviation from the mean plane is 0.02 Å for atoms C3 and C4). The iodine atom completes the coordination sphere of the 16-electron palladium atom, which corresponds to a slightly distorted square-planar geometry [the dihedral angle between the N1/Pd1/C3 and I1/Pd/C2 planes is 3.2 (1)°].

3. Supra­molecular features

In the crystal, the complexes form centrosymmetrical dimers (Fig. 3[link]) due to π-stacking inter­actions between the pyridyl­vinyl­idene fragments with an inter­planar distance of 3.36 Å and a shortest inter­atomic C5⋯C9(1 − x, −y, −z) distance of 3.339 (4) Å. The outer plane of the pyridyl­vinyl­idene fragment in the dimer is additionally shielded by the solvating benzene mol­ecule, which is oriented by one of its C—H groups to the centroid a of the five-membered chelating palladacycle [the C6S—H6SACg1 distance is 2.67 Å; Cg1 is the centroid of the five-membered ring, the angle between the Cg1⋯H6SA vector and the ring normal is 9.7°, and the C6S—H6SACg1 angle is 160°].

[Figure 3]
Figure 3
Centrosymmetric stacked dimer in the crystal packing. Atoms labelled with the suffix A are generated by the symmetry operation (1 − x, −y, −z).

4. Synthesis and crystallization

A mixture of Cp(CO)2FeI (127.3 mg, 0.419 mmol) and PdCl2 (76 mg, 0.429 mmol) in diisopropyl amine (4 ml) was heated to 315 K and H—C≡C(2-C5H4N) (0.3 ml) was added. The mixture was stirred for 16 h at 333 K and the diisopropyl amine was removed under reduced pressure. The crude mixture was extracted with di­chloro­methane, the extract was filtered through celite, and the solvent was evaporated to dryness. The residue was dissolved in a di­chloro­methane–hexane (1:1) mixture and chromatographed on a silica column (9.5 × 1 cm). A dark-yellow band was eluted with di­chloro­methane and the eluate was evaporated to yield Cp(CO)2Fe(μ-C=CH(2-C5H4N)PdI (FePd1) (29 mg, 12%) as a brown solid. Red–brown crystals of the complex suitable for X-ray diffraction analysis were obtained after recrystallization from a di­chloro­methane–benzene solvent mixture. IR (CH2Cl2, ν/cm−1): 2028s, 1880s (νCO), 1600m, 1584m, 1548m, 1468m (νC=C and νC=N).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Atom H4 of the vinyl group was located in a difference Fourier map and refined freely. All other H atoms were fixed geometrically and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 1
Experimental details

Crystal data
Chemical formula [FePd(C5H5)(C7H5N)I(CO)2]·C6H6
Mr 591.49
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.3058 (8), 9.0983 (5), 14.7315 (8)
β (°) 100.553 (1)
V3) 1885.00 (18)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.38
Crystal size (mm) 0.24 × 0.18 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.578, 0.774
No. of measured, independent and observed [I > 2σ(I)] reflections 23041, 5501, 5075
Rint 0.023
(sin θ/λ)max−1) 0.703
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.15
No. of reflections 5501
No. of parameters 239
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.74, −0.81
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

µ-Carbonyl-1:2κ2C:C-carbonyl-1κC-(1η5-cyclopentadienyl)iodido-2κI-[µ-2-(pyridin-2-yl)ethene-1,1-diyl-1κC1:2κ2N,C1]ironpalladium(FePd) benzene monosolvate top
Crystal data top
[FePd(C5H5)(C7H5N)I(CO)2]·C6H6F(000) = 1136
Mr = 591.49Dx = 2.084 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.3058 (8) ÅCell parameters from 9930 reflections
b = 9.0983 (5) Åθ = 2.6–33.2°
c = 14.7315 (8) ŵ = 3.38 mm1
β = 100.553 (1)°T = 100 K
V = 1885.00 (18) Å3Prism, red-brown
Z = 40.24 × 0.18 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
5075 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
θmax = 30.0°, θmin = 1.5°
Tmin = 0.578, Tmax = 0.774h = 2020
23041 measured reflectionsk = 1212
5501 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0294P)2 + 3.6027P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
5501 reflectionsΔρmax = 1.74 e Å3
239 parametersΔρmin = 0.81 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.30724 (2)0.14951 (2)0.06141 (2)0.01181 (5)
Fe10.25581 (3)0.41750 (4)0.02367 (3)0.01291 (7)
I10.29779 (2)0.05920 (2)0.18779 (2)0.01770 (5)
O10.43529 (15)0.5582 (2)0.10253 (15)0.0230 (4)
O20.23406 (14)0.3136 (2)0.20723 (14)0.0190 (4)
N10.37283 (15)0.0155 (2)0.03060 (15)0.0140 (4)
C10.36439 (19)0.5038 (3)0.07341 (18)0.0162 (5)
C20.25372 (17)0.3042 (3)0.13501 (18)0.0149 (4)
C30.32265 (18)0.2919 (3)0.03820 (17)0.0145 (4)
C40.36562 (18)0.2467 (3)0.10583 (17)0.0154 (5)
H40.376 (3)0.311 (4)0.156 (3)0.020 (9)*
C50.39136 (18)0.0925 (3)0.10481 (17)0.0148 (4)
C60.43071 (19)0.0223 (3)0.17359 (18)0.0178 (5)
H6A0.44480.07700.22440.021*
C70.44904 (19)0.1271 (3)0.16727 (19)0.0196 (5)
H7A0.47460.17630.21410.024*
C80.42948 (19)0.2043 (3)0.09119 (19)0.0192 (5)
H8A0.44140.30690.08530.023*
C90.39229 (19)0.1283 (3)0.02432 (19)0.0169 (5)
H9A0.38010.18050.02810.020*
C100.11143 (19)0.3898 (3)0.0416 (2)0.0211 (5)
H10A0.07670.29400.05110.025*
C110.1632 (2)0.4550 (3)0.1039 (2)0.0213 (5)
H11A0.17060.41530.16540.026*
C120.2014 (2)0.5884 (3)0.0635 (2)0.0222 (6)
H12A0.23980.66030.09250.027*
C130.1717 (2)0.6070 (3)0.0232 (2)0.0248 (6)
H13A0.18590.69330.06550.030*
C140.1163 (2)0.4836 (3)0.0370 (2)0.0230 (6)
H14A0.08530.46560.09150.028*
C1S0.1486 (2)0.1192 (3)0.2145 (2)0.0238 (6)
H1SA0.20480.11470.24000.029*
C2S0.0785 (2)0.2217 (3)0.2473 (2)0.0237 (6)
H2SA0.08700.28760.29510.028*
C3S0.0040 (2)0.2276 (3)0.2099 (2)0.0245 (6)
H3SA0.05180.29800.23210.029*
C4S0.0165 (2)0.1307 (4)0.1402 (2)0.0261 (6)
H4SA0.07330.13340.11550.031*
C5S0.0544 (2)0.0301 (4)0.1070 (2)0.0272 (6)
H5SA0.04690.03470.05830.033*
C6S0.1363 (2)0.0238 (3)0.1447 (2)0.0242 (6)
H6SA0.18420.04640.12240.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01461 (9)0.00833 (8)0.01273 (9)0.00015 (6)0.00316 (6)0.00055 (6)
Fe10.01464 (16)0.00873 (15)0.01475 (16)0.00053 (12)0.00109 (13)0.00039 (12)
I10.02540 (9)0.01143 (8)0.01803 (9)0.00009 (6)0.00861 (6)0.00256 (6)
O10.0235 (10)0.0192 (10)0.0246 (10)0.0048 (8)0.0001 (8)0.0015 (8)
O20.0224 (9)0.0154 (9)0.0191 (9)0.0037 (7)0.0035 (7)0.0003 (7)
N10.0162 (9)0.0120 (9)0.0140 (9)0.0002 (8)0.0033 (7)0.0005 (7)
C10.0212 (12)0.0108 (11)0.0165 (11)0.0006 (9)0.0033 (9)0.0024 (9)
C20.0140 (10)0.0106 (10)0.0195 (11)0.0002 (8)0.0014 (9)0.0010 (9)
C30.0162 (11)0.0103 (10)0.0161 (11)0.0004 (8)0.0004 (9)0.0027 (9)
C40.0182 (11)0.0147 (11)0.0133 (11)0.0015 (9)0.0030 (9)0.0025 (9)
C50.0152 (11)0.0157 (11)0.0133 (11)0.0021 (9)0.0019 (9)0.0002 (9)
C60.0191 (11)0.0185 (12)0.0160 (11)0.0005 (10)0.0038 (9)0.0003 (9)
C70.0201 (12)0.0192 (12)0.0201 (12)0.0020 (10)0.0048 (10)0.0056 (10)
C80.0207 (12)0.0141 (12)0.0224 (13)0.0023 (9)0.0030 (10)0.0033 (10)
C90.0188 (11)0.0126 (11)0.0195 (12)0.0000 (9)0.0044 (9)0.0003 (9)
C100.0171 (12)0.0157 (12)0.0280 (14)0.0008 (9)0.0029 (10)0.0020 (10)
C110.0205 (12)0.0232 (13)0.0178 (12)0.0037 (10)0.0027 (10)0.0022 (10)
C120.0230 (13)0.0136 (12)0.0273 (14)0.0019 (10)0.0027 (11)0.0092 (10)
C130.0246 (13)0.0135 (12)0.0327 (15)0.0083 (10)0.0042 (11)0.0032 (11)
C140.0177 (12)0.0275 (14)0.0233 (13)0.0080 (11)0.0026 (10)0.0002 (11)
C1S0.0204 (13)0.0207 (13)0.0311 (15)0.0027 (10)0.0065 (11)0.0073 (11)
C2S0.0275 (14)0.0209 (13)0.0229 (13)0.0016 (11)0.0046 (11)0.0003 (11)
C3S0.0231 (13)0.0216 (13)0.0278 (14)0.0055 (11)0.0023 (11)0.0022 (11)
C4S0.0245 (14)0.0274 (15)0.0283 (15)0.0056 (11)0.0100 (11)0.0025 (12)
C5S0.0352 (16)0.0223 (14)0.0255 (14)0.0081 (12)0.0094 (12)0.0041 (11)
C6S0.0227 (13)0.0206 (13)0.0280 (14)0.0041 (11)0.0008 (11)0.0045 (11)
Geometric parameters (Å, º) top
Pd1—C31.999 (2)C8—C91.387 (4)
Pd1—C22.012 (3)C8—H8A0.9500
Pd1—N12.161 (2)C9—H9A0.9500
Pd1—Fe12.5779 (4)C10—C111.411 (4)
Pd1—I12.6800 (3)C10—C141.430 (4)
Fe1—C11.775 (3)C10—H10A1.0000
Fe1—C31.836 (3)C11—C121.416 (4)
Fe1—C21.942 (3)C11—H11A1.0000
Fe1—C122.075 (3)C12—C131.428 (5)
Fe1—C132.102 (3)C12—H12A1.0000
Fe1—C112.119 (3)C13—C141.410 (4)
Fe1—C142.128 (3)C13—H13A1.0000
Fe1—C102.128 (3)C14—H14A1.0000
O1—C11.140 (3)C1S—C6S1.381 (5)
O2—C21.152 (3)C1S—C2S1.389 (4)
N1—C91.337 (3)C1S—H1SA0.9500
N1—C51.365 (3)C2S—C3S1.392 (4)
C3—C41.328 (4)C2S—H2SA0.9500
C4—C51.449 (4)C3S—C4S1.389 (4)
C4—H40.97 (4)C3S—H3SA0.9500
C5—C61.400 (4)C4S—C5S1.388 (4)
C6—C71.384 (4)C4S—H4SA0.9500
C6—H6A0.9500C5S—C6S1.386 (4)
C7—C81.394 (4)C5S—H5SA0.9500
C7—H7A0.9500C6S—H6SA0.9500
C3—Pd1—C292.66 (10)C6—C5—C4124.7 (2)
C3—Pd1—N177.66 (9)C7—C6—C5119.7 (3)
C2—Pd1—N1169.95 (9)C7—C6—H6A120.1
C3—Pd1—Fe145.13 (7)C5—C6—H6A120.1
C2—Pd1—Fe148.15 (7)C6—C7—C8119.0 (2)
N1—Pd1—Fe1122.54 (6)C6—C7—H7A120.5
C3—Pd1—I1174.36 (7)C8—C7—H7A120.5
C2—Pd1—I192.79 (7)C9—C8—C7118.6 (2)
N1—Pd1—I196.83 (6)C9—C8—H8A120.7
Fe1—Pd1—I1140.469 (12)C7—C8—H8A120.7
C1—Fe1—C389.11 (12)N1—C9—C8122.7 (2)
C1—Fe1—C291.94 (11)N1—C9—H9A118.6
C3—Fe1—C2100.29 (11)C8—C9—H9A118.6
C1—Fe1—C1297.17 (12)C11—C10—C14108.8 (3)
C3—Fe1—C12109.26 (12)C11—C10—Fe170.25 (15)
C2—Fe1—C12149.12 (12)C14—C10—Fe170.36 (15)
C1—Fe1—C1395.50 (12)C11—C10—H10A125.6
C3—Fe1—C13149.20 (12)C14—C10—H10A125.6
C2—Fe1—C13109.93 (12)Fe1—C10—H10A125.6
C12—Fe1—C1339.97 (13)C10—C11—C12107.2 (3)
C1—Fe1—C11130.76 (12)C10—C11—Fe170.95 (16)
C3—Fe1—C1187.59 (11)C12—C11—Fe168.61 (15)
C2—Fe1—C11136.91 (11)C10—C11—H11A126.4
C12—Fe1—C1139.46 (11)C12—C11—H11A126.4
C13—Fe1—C1166.44 (12)Fe1—C11—H11A126.4
C1—Fe1—C14126.99 (12)C11—C12—C13108.8 (3)
C3—Fe1—C14143.55 (12)C11—C12—Fe171.93 (16)
C2—Fe1—C1484.98 (11)C13—C12—Fe171.03 (16)
C12—Fe1—C1466.00 (12)C11—C12—H12A125.6
C13—Fe1—C1438.94 (12)C13—C12—H12A125.6
C11—Fe1—C1465.88 (11)Fe1—C12—H12A125.6
C1—Fe1—C10160.54 (11)C14—C13—C12107.5 (3)
C3—Fe1—C10104.63 (11)C14—C13—Fe171.51 (16)
C2—Fe1—C1098.91 (11)C12—C13—Fe168.99 (16)
C12—Fe1—C1065.54 (11)C14—C13—H13A126.2
C13—Fe1—C1065.65 (11)C12—C13—H13A126.2
C11—Fe1—C1038.80 (11)Fe1—C13—H13A126.2
C14—Fe1—C1039.26 (11)C13—C14—C10107.7 (3)
C1—Fe1—Pd197.81 (8)C13—C14—Fe169.55 (16)
C3—Fe1—Pd150.52 (8)C10—C14—Fe170.37 (16)
C2—Fe1—Pd150.48 (7)C13—C14—H14A126.1
C12—Fe1—Pd1154.42 (9)C10—C14—H14A126.1
C13—Fe1—Pd1156.51 (10)Fe1—C14—H14A126.1
C11—Fe1—Pd1116.79 (8)C6S—C1S—C2S120.0 (3)
C14—Fe1—Pd1118.88 (9)C6S—C1S—H1SA120.0
C10—Fe1—Pd1101.57 (8)C2S—C1S—H1SA120.0
C9—N1—C5119.3 (2)C1S—C2S—C3S119.9 (3)
C9—N1—Pd1128.13 (18)C1S—C2S—H2SA120.1
C5—N1—Pd1112.53 (17)C3S—C2S—H2SA120.1
O1—C1—Fe1177.6 (3)C4S—C3S—C2S120.1 (3)
O2—C2—Fe1141.7 (2)C4S—C3S—H3SA120.0
O2—C2—Pd1137.0 (2)C2S—C3S—H3SA120.0
Fe1—C2—Pd181.37 (10)C5S—C4S—C3S119.6 (3)
C4—C3—Fe1156.9 (2)C5S—C4S—H4SA120.2
C4—C3—Pd1118.58 (19)C3S—C4S—H4SA120.2
Fe1—C3—Pd184.35 (10)C6S—C5S—C4S120.2 (3)
C3—C4—C5116.3 (2)C6S—C5S—H5SA119.9
C3—C4—H4122 (2)C4S—C5S—H5SA119.9
C5—C4—H4121 (2)C1S—C6S—C5S120.2 (3)
N1—C5—C6120.5 (2)C1S—C6S—H6SA119.9
N1—C5—C4114.8 (2)C5S—C6S—H6SA119.9
 

References

First citationAdams, H., Broughton, S. G., Walters, S. J. & Winter, M. J. (1999). Chem. Commun. pp. 1231–1232.  CSD CrossRef Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChou, H.-H., Lin, Y.-C., Huang, Sh.-L., Liu, Y.-H. & Wang, Y. (2008). Organometallics, 27, 5212–5220.  CSD CrossRef CAS Google Scholar
First citationCordero, B., Gómez, V., Platero-Prats, A. E., Revés, M., Echeverría, J., Cremades, E., Barragán, F. & Alvarez, S. (2008). Dalton Trans. pp. 2832–2838.  Web of Science CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalman, S. E., Gunnoe, T. B. & Sabat, M. (2014). Organometallics, 33, 5457–5463.  CSD CrossRef CAS Google Scholar
First citationLe Stang, S., Lenz, D., Paul, F. & Lapinte, C. (1999). J. Organomet. Chem. 572, 189–192.  CrossRef CAS Google Scholar
First citationNakaya, R., Yasuda, S., Yorimitsu, H. & Oshima, K. (2009). Tetrahedron Lett. pp. 5274–5276.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSonogashira, K. (1998). Metal-Catalyzed Cross-Coupling Reactions, edited by F. Diederich & P. J. Stang, ch. 5. New York: Wiley-VCH.  Google Scholar
First citationValyaev, D. A., Peterleitner, M. G., Semeikin, O. V., Utegenov, K. I., Ustynyuk, N. A., Sournia-Saquet, A., Lugan, N. & Lavigne, G. (2007). J. Organomet. Chem. 692, 3207–3211.  CrossRef CAS Google Scholar
First citationWu, I.-Y., Lin, J. T., Luo, J., Sun, S.-S., Li, C.-S., Lin, K. J., Tsai, C., Hsu, C.-C. & Lin, J.-L. (1997). Organometallics, 16, 2038–2048.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds