research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-[2-(4-chloro­phen­yl)-4,5-di­phenyl-1H-imidazol-1-yl]propan-2-ol

CROSSMARK_Color_square_no_text.svg

aFaculty of Science and Engineering, Health Care Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, cPharmaceutical Chemistry Department, Faculty of Pharmacy, Al Azhar University, 71515 Assiut, Egypt, dKirkuk University, College of Education, Department of Chemistry, Kirkuk, Iraq, eChemistry Department, Faculty of Science, Sohag University, Sohag, Egypt, and fDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by P. C. Healy, Griffith University, Australia (Received 22 November 2016; accepted 3 December 2016; online 1 January 2017)

The title compound, C24H21ClN2O, crystallizes with two unique mol­ecules in the asymmetric unit. In each mol­ecule, the central imidazole ring is substituted at the 2-, 4- and 5-positions by benzene rings. The 2-substituted ring carries a Cl atom at the 4-position. One of the imidazole N atoms in each mol­ecule has a propan-2-ol substituent. In the crystal, a series of O—H⋯N, C—H⋯O and C—H⋯Cl hydrogen bonds, augmented by several C—H⋯π(ring) inter­actions, generate a three-dimensional network of mol­ecules stacked along the a-axis direction.

1. Chemical context

Imidazole derivatives are important components of numerous natural products and are especially noted for their numerous pharmacological applications, particularly as anti-tumour agents (Bahnous et al., 2013[Bahnous, M., Bouraiou, A., Chelghoum, M., Bouacida, S., Roisnel, T., Smati, F., Bentchouala, C., Gros, P. C. & Belfaitah, A. (2013). Bioorg. Med. Chem. Lett. 23, 1274-1278.]; Belwal & Joshi, 2012[Belwal, C. & Joshi, A. (2012). Der Pharma Chem. 4, 1873-1878.]). In addition, they also display anti-bacterial fungicidal and anti-parasitic properties (Sridharan et al., 2014[Sridharan, S., Sabarinathan, N. & Antony, S. A. (2014). Int. J. Chem. Tech. Res. 6, 1220-1227.]; Mohammadi et al., 2012[Mohammadi, A., Keshvari, H., Sandaroos, R., Maleki, B., Rouhi, H., Moradi, H., Sepehr, Z. & Damavandi, S. (2012). App. Catalysis A General, 37, 429-430.]; Sharma et al., 2009[Sharma, D., Narasimhan, B., Kumar, P., Judge, V., Narang, R., De Clercq, E. & Balzarini, J. (2009). Eur. J. Med. Chem. 44, 2347-2353.]). We have recently developed fast and efficient multi-component reactions, catalysed by the ionic liquid morphilinium hydrogen sulfate, to prepare imidazole derivatives in a single-step process (Marzouk et al., 2016[Marzouk, A. A., Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2016). Z. Naturforsch. Teil B. doi: 10.1515/znb-2016-0121.]). The title compound is the result of just such a synthetic process and we report its crystal structure here.

[Scheme 1]

2. Structural commentary

The title compound, (I)[link], crystallizes with two unique mol­ecules, 1 and 2, in the asymmetric unit, differentiated by the leading digits 1 and 2 in the numbering scheme, Fig. 1[link]. The two mol­ecules are linked in the asymmetric unit by a C256—H256⋯O12 hydrogen bond augmented by two C—H⋯π(ring) contacts, C213—H21DCg2 and C255—H255⋯Cg1 (Fig. 2[link] and Table 1[link]). Each mol­ecule consists of a central imidazole ring substituted at the 2-, 4- and 5-positions with benzene rings. The 2-phenyl substituents carry chlorine atoms at the 4-position. The N11 and N21 atoms have propan-2-ol substituents. The benzene rings of the two unique mol­ecules subtend dihedral angles of 40.83 (12) and 39.01 (14)° to C121–C126 and C221–C226, 43.34 (13) and 34.80 (15)° to C141–C146 and C241–C246 and 59.91 (11) and 63.53 (11)° to C151–C156 and C251–C256, respectively. The approximately planar N11/C111–C113 and N21/C211– C213 propane chains (r.m.s. deviations of 0.0413 and 0.0431 Å, respectively) are inclined to the imidazole rings by 74.25 (16) and 72.94 (15)°. Bond distances and angles in the imidazole rings and their propanol substituents are reasonably similar for the two unique mol­ecules and are also similar to those in the archetypal lophine, 2,4,5-triphenyl-1H-imidazole (Yanover & Kaftory, 2009[Yanover, D. & Kaftory, M. (2009). Acta Cryst. E65, o711.]), and the closely related 2-(2,4,5-triphenyl-1H-imidazol-1-yl)ethanol (Mohamed et al., 2015[Mohamed, S. K., Akkurt, M., Singh, K., Marzouk, A. A. & Abdelhamid, A. A. (2013b). Acta Cryst. E69, o1243.]). However, an overlay, Fig. 3[link] (Macrae et al., 2008[Kapoor, K., Gupta, V. K., Rajnikant, Gupta, P. & Paul, S. (2011). X-ray Str. Anal. Online, 27, 53-54.]), reveals an r.m.s. deviation of 1.189 Å, largely due to the considerable variation in the orientations of the benzene rings between the two mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg5 and Cg6 are the centroids of the N11/C12/N13/C14/C15, N21/C22/N23/C24/C25, C221–C226 and C241–C246 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O112—H12O⋯N23i 0.80 (5) 2.01 (5) 2.804 (3) 170 (4)
O212—H22O⋯N13ii 0.82 (5) 1.99 (5) 2.790 (3) 165 (4)
C152—H152⋯O212iii 0.95 2.61 3.227 (4) 123
C256—H256⋯O112 0.95 2.48 3.162 (4) 129
C242—H242⋯O112i 0.95 2.68 3.277 (4) 122
C243—H243⋯Cl24iv 0.95 2.91 3.836 (3) 166
C113—H11DCg6iii 0.98 2.96 3.778 (3) 142
C153—H153⋯Cg5iii 0.95 2.65 3.495 (3) 148
C213—H21DCg2 0.98 2.91 3.745 (4) 144
C255—H255⋯Cg1 0.95 2.65 3.505 (3) 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x, y, z-1; (iv) x+1, y, z.
[Figure 1]
Figure 1
The asymmetric unit of (I)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
C—H⋯O (dashed blue lines) and C—H⋯π hydrogen bonds (dotted green lines) link the unique mol­ecules in the asymmetric unit of (I)[link].
[Figure 3]
Figure 3
An overlay (Macrae et al., 2008[Kapoor, K., Gupta, V. K., Rajnikant, Gupta, P. & Paul, S. (2011). X-ray Str. Anal. Online, 27, 53-54.]) of the two mol­ecules.

3. Supra­molecular features

O112–H12O⋯N23 hydrogen bonds supported by C242—H242⋯O112 contacts combine with O212—H22O⋯N13 hydrogen bonds to link alternate type 1 and 2 mol­ecules in a head-to-tail fashion, forming C(7) chains along b, Fig. 4[link]. C243—H243⋯Cl24 hydrogen bonds link adjacent type 2 mol­ecules into C(12) chains along the a-axis direction, Fig. 5[link]. C—H⋯π contacts also play a role in establishing the packing, although no ππ stacking inter­actions are observed, despite the abundance of aromatic rings. Hence C153—H153⋯Cg5 and C255—H255⋯Cg1 contacts combine with C113—H11DCg6, C213—H21DCg2 and two C—H⋯O hydrogen bonds, Table 1[link], to form head-to-head chains of alternating type 1 and type 2 mol­ecules along the c axis, Fig. 6[link]. An inter­esting feature of the packing of these mol­ecules is the formation of significant voids in the crystal structure with a volume amounting to 2039 Å3 across the unit cell. This large void is unexpected as no solvent appeared and the final difference map was reasonably flat (see _refine_special_details in the CIF). The mol­ecules stack in an orderly fashion along each of the three principal crystallographic axes and the voids are clearly visible in views of the overall packing along these directions, see for example Fig. 7[link].

[Figure 4]
Figure 4
O—H⋯N and C—H⋯O hydrogen bonds form zigzag C(7) chains of type 1 and 2 mol­ecules along b.
[Figure 5]
Figure 5
C(12) chains of type 2 mol­ecules along a formed by C—H⋯Cl hydrogen bonds.
[Figure 6]
Figure 6
Rows of type 1 and 2 mol­ecules along c linked by C—H⋯π hydrogen bonds.
[Figure 7]
Figure 7
The overall packing of the two mol­ecules of (I)[link], viewed along the a axis.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for an imidazole ring with phenyl substituents at the 4- and 5- positions, a methyl­ene group at N1 and a benzene ring at C2 yielded 33 hits with the closest matches to the title compound being the related alcohol derivatives 4-[1-(2-hy­droxy­prop­yl)-4,5-diphenyl-1H-imidazol-2-yl]benzoic acid (Jasinski et al., 2015[Jasinski, J. P., Mohamed, S. K., Akkurt, M., Abdelhamid, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o77-o78.]), 1-[2-(2,6-dichloro­phen­yl)-4,5-diphenyl-1H-imidazol-1-yl]propan-2-ol (XULMEY; Akkurt et al., 2015[Akkurt, M., Jasinski, J. P., Mohamed, S. K., Marzouk, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o299-o300.]), 2-[2-(4-meth­oxy­phen­yl)-4,5-diphenyl-1H-imidazol-1-yl]ethanol (WIHHOM; Mohamed et al., 2013a[Mohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013a). Acta Cryst. E69, o474-o475.]) and three others with ethanol substituents on N1, VUWGAX, VUWGEB, VUWGIF (Mohamed et al., 2015[Mohamed, S. K., Simpson, J., Marzouk, A. A., Talybov, A. H., Abdelhamid, A. A., Abdullayev, Y. A. & Abbasov, V. M. (2015). Z. Naturforsch. Teil B, 70, 809-817.]). Inter­estingly, five unique structures [AFUVUU (Mohamed et al., 2013b[Mohamed, S. K., Akkurt, M., Singh, K., Marzouk, A. A. & Abdelhamid, A. A. (2013b). Acta Cryst. E69, o1243.]), IFUMON (Mohamed et al., 2013c[Mohamed, S. K., Akkurt, M., Marzouk, A. A. E., Santoyo-Gonzalez, F. & Elremaily, M. A. A. (2013c). Acta Cryst. E69, o875-o876.]), OZEGEG (Kapoor et al., 2011[Kapoor, K., Gupta, V. K., Rajnikant, Gupta, P. & Paul, S. (2011). X-ray Str. Anal. Online, 27, 53-54.]), YOCTAM (Ghoranneviss et al., 2008[Ghoranneviss, M., Mohammadi Ziarani, G., Abbasi, A., Hantehzadeh, M. R. & Farahani, Z. (2008). Acta Cryst. E64, o1233.]) and SUYZIX (Rajaraman et al., 2016[Rajaraman, D., Sundararajan, G., Rajkumar, R., Bharanidharan, S. & Krishnasamy, K. (2016). J. Mol. Struct. 1108, 698-707.])] are found of related compounds with 4-chloro­phenyl groups on C2 and but none of these have alcohol substituents on N1.

5. Synthesis and crystallization

The compound was prepared by a literature procedure (Marzouk et al., 2016[Marzouk, A. A., Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2016). Z. Naturforsch. Teil B. doi: 10.1515/znb-2016-0121.]). Irregular colourless block-like crystals were grown from ethanol solution at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms on O112 and O212 were located in a difference Fourier map and their coordinates refined with Uiso = 1.5 Ueq (O). All other H atoms were refined using a riding model with d(C—H) = 0.95 Å, Uiso = 1.2Ueq(C) for aromatic, 1.00 Å for methine and 0.99 Å for CH2 H atoms, all with Uiso = 1.2Ueq(C) and 0.98 Å, Uiso = 1.5Ueq(C) for CH3 H atoms. Seven reflections with Fo >>> Fc, were omitted from the final refinement cycles.

Table 2
Experimental details

Crystal data
Chemical formula C24H21ClN2O
Mr 388.88
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 12.0235 (8), 13.4263 (7), 13.6588 (4)
α, β, γ (°) 90.297 (3), 98.481 (4), 110.480 (5)
V3) 2039.16 (19)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.78
Crystal size (mm) 0.26 × 0.17 × 0.12
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Atlas detector
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.929, 0.958
No. of measured, independent and observed [I > 2σ(I)] reflections 20056, 8427, 7077
Rint 0.046
(sin θ/λ)max−1) 0.631
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.188, 1.09
No. of reflections 8427
No. of parameters 513
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.38
Computer programs: CrysAlis PRO (Agilent (2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and WinGX (Farrugia 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent (2014); cell refinement: CrysAlis PRO (Agilent (2014); data reduction: CrysAlis PRO (Agilent (2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015), enCIFer (Allen et al., 2004), PLATON (Spek, 2009), publCIF (Westrip 2010) and WinGX (Farrugia 2012).

1-[2-(4-Chlorophenyl)-4,5-diphenyl-1H-imidazol-1-yl]propan-2-ol top
Crystal data top
C24H21ClN2OZ = 4
Mr = 388.88F(000) = 816
Triclinic, P1Dx = 1.267 Mg m3
a = 12.0235 (8) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.4263 (7) ÅCell parameters from 8456 reflections
c = 13.6588 (4) Åθ = 3.3–76.0°
α = 90.297 (3)°µ = 1.78 mm1
β = 98.481 (4)°T = 100 K
γ = 110.480 (5)°Block, colourless
V = 2039.16 (19) Å30.26 × 0.17 × 0.12 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Atlas detector
8427 independent reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source7077 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.046
Detector resolution: 10.3449 pixels mm-1θmax = 76.5°, θmin = 3.3°
ω scansh = 1415
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
k = 1616
Tmin = 0.929, Tmax = 0.958l = 1617
20056 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.0644P)2 + 4.0157P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
8427 reflectionsΔρmax = 0.61 e Å3
513 parametersΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. 7 reflections with Fo >>> Fc were omitted from the final refinement cycles.

The large void volume is unexpected as no solvent appeared or has been SQUEEZED out. The final difference map was reasonably flat; see below:

Electron density synthesis with coefficients Fo-Fc

Highest peak 0.61 at 0.0329 0.0214 0.3946 [ 2.26 A from H152 ] Deepest hole -0.39 at 0.0342 0.2000 0.1384 [ 0.55 A from CL14 ]

Mean = 0.00, Rms deviation from mean = 0.08, Highest memory used = 7053 / 34831

Fourier peaks appended to .res file

x y z sof U Peak Distances to nearest atoms (including eq.)

Q1 1 0.9671 0.9786 0.6054 1.00000 0.05 0.61 2.26 H152 2.55 H153 2.68 C152 2.83 C153 Q2 1 1.0187 1.1772 0.8923 1.00000 0.05 0.55 2.13 H143 2.54 H252 2.60 H253 2.79 C143 Q3 1 0.9545 0.5837 1.0817 1.00000 0.05 0.40 0.69 C244 0.98 C245 1.18 H244 1.48 H245 Q4 1 0.5215 0.9173 1.1876 1.00000 0.05 0.40 1.03 H22O 1.29 O212 1.55 H212 1.65 C212 Q5 1 0.4633 1.0258 1.1059 1.00000 0.05 0.39 1.05 H21E 1.93 C213 2.36 H22O 2.38 H21D Q6 1 0.4358 0.4634 1.1908 1.00000 0.05 0.38 1.24 N23 1.47 H226 1.55 C22 1.83 H12O Q7 1 0.4296 0.9995 0.7074 1.00000 0.05 0.37 1.27 H122 1.39 N13 1.69 C12 1.70 C122 Q8 1 0.5533 0.7461 0.3069 1.00000 0.05 0.36 0.79 H155 1.07 C155 1.57 C156 1.69 H156 Q9 1 0.5676 0.7949 0.7972 1.00000 0.05 0.35 0.73 H255 1.16 C255 1.69 C256 1.77 H256 Q10 1 0.4633 0.4418 0.6084 1.00000 0.05 0.35 0.95 H11C 1.87 C113 2.32 H11D 2.32 H11D

Shortest distances between peaks (including symmetry equivalents)

4 7 1.71 4 5 2.09 8 10 2.74 5 7 2.76 5 9 2.90 6 10 2.92 4 8 2.93

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.4623 (2)0.81917 (18)0.10692 (17)0.0206 (5)
C1110.3879 (3)0.7109 (2)0.0663 (2)0.0217 (6)
H11A0.37990.70870.00690.026*
H11B0.30650.69250.08400.026*
C1120.4415 (3)0.6284 (2)0.1053 (2)0.0229 (6)
H1120.52670.65100.09340.027*
O1120.4398 (2)0.62826 (17)0.20851 (15)0.0244 (4)
H12O0.450 (4)0.577 (4)0.233 (3)0.037*
C1130.3704 (3)0.5195 (2)0.0524 (2)0.0306 (7)
H11C0.40050.46610.08320.046*
H11D0.38000.52200.01770.046*
H11E0.28510.50040.05760.046*
C120.4413 (3)0.8817 (2)0.1760 (2)0.0204 (5)
C1210.3326 (3)0.8574 (2)0.2233 (2)0.0225 (6)
C1220.2886 (3)0.9401 (2)0.2337 (2)0.0254 (6)
H1220.32731.00710.20840.030*
C1230.1899 (3)0.9258 (3)0.2803 (2)0.0294 (6)
H1230.16040.98210.28650.035*
C1240.1348 (3)0.8281 (3)0.3175 (2)0.0297 (7)
Cl140.01324 (8)0.81097 (7)0.37944 (7)0.0422 (2)
C1250.1763 (3)0.7448 (2)0.3090 (2)0.0303 (7)
H1250.13760.67830.33510.036*
C1260.2752 (3)0.7594 (2)0.2616 (2)0.0252 (6)
H1260.30400.70260.25520.030*
N130.5298 (2)0.97600 (19)0.19205 (18)0.0221 (5)
C140.6116 (3)0.9743 (2)0.1323 (2)0.0215 (6)
C1410.7228 (3)1.0659 (2)0.1281 (2)0.0219 (6)
C1420.7583 (3)1.0951 (2)0.0365 (2)0.0258 (6)
H1420.70951.05690.02250.031*
C1430.8643 (3)1.1796 (2)0.0304 (2)0.0291 (6)
H1430.88681.19940.03250.035*
C1440.9373 (3)1.2353 (2)0.1166 (3)0.0295 (7)
H1441.01061.29210.11300.035*
C1450.9017 (3)1.2068 (2)0.2084 (2)0.0287 (6)
H1450.95071.24490.26750.034*
C1460.7951 (3)1.1232 (2)0.2139 (2)0.0261 (6)
H1460.77121.10480.27670.031*
C150.5722 (3)0.8776 (2)0.0793 (2)0.0208 (5)
C1510.6323 (3)0.8381 (2)0.0091 (2)0.0216 (6)
C1520.5807 (3)0.8094 (2)0.0905 (2)0.0233 (6)
H1520.50310.81130.11410.028*
C1530.6438 (3)0.7782 (2)0.1547 (2)0.0268 (6)
H1530.60870.75840.22220.032*
C1540.7570 (3)0.7758 (3)0.1214 (3)0.0317 (7)
H1540.79920.75410.16580.038*
C1550.8089 (3)0.8048 (3)0.0231 (3)0.0335 (7)
H1550.88690.80350.00040.040*
C1560.7470 (3)0.8359 (3)0.0423 (2)0.0269 (6)
H1560.78280.85570.10970.032*
N210.4612 (2)0.65591 (18)0.60387 (18)0.0214 (5)
C2110.3840 (3)0.7139 (2)0.5615 (2)0.0234 (6)
H21A0.30280.67970.57920.028*
H21B0.37610.70860.48830.028*
C2120.4327 (3)0.8315 (2)0.5977 (2)0.0267 (6)
H2120.51780.86430.58590.032*
O2120.4308 (2)0.83421 (17)0.70054 (16)0.0261 (4)
H22O0.448 (4)0.895 (4)0.723 (3)0.039*
C2130.3580 (4)0.8907 (3)0.5418 (3)0.0343 (7)
H21C0.27340.85580.54900.051*
H21D0.36580.88980.47140.051*
H21E0.38680.96460.56910.051*
C220.4392 (3)0.5779 (2)0.6698 (2)0.0209 (5)
C2210.3353 (3)0.5378 (2)0.7228 (2)0.0226 (6)
C2220.2854 (3)0.6057 (2)0.7629 (2)0.0233 (6)
H2220.31340.67940.75100.028*
C2230.1948 (3)0.5652 (2)0.8201 (2)0.0260 (6)
H2230.16130.61120.84770.031*
C2240.1539 (3)0.4582 (3)0.8365 (2)0.0278 (6)
Cl240.04309 (7)0.40905 (7)0.91146 (6)0.0352 (2)
C2250.2008 (3)0.3891 (2)0.7968 (2)0.0279 (6)
H2250.17140.31540.80820.034*
C2260.2911 (3)0.4297 (2)0.7401 (2)0.0257 (6)
H2260.32380.38300.71250.031*
N230.5282 (2)0.53968 (19)0.68408 (18)0.0223 (5)
C240.6107 (3)0.5952 (2)0.6257 (2)0.0218 (6)
C2410.7235 (3)0.5762 (2)0.6227 (2)0.0243 (6)
C2420.7849 (3)0.5493 (2)0.7075 (2)0.0254 (6)
H2420.75220.54110.76740.031*
C2430.8928 (3)0.5345 (2)0.7052 (3)0.0296 (7)
H2430.93300.51540.76320.036*
C2440.9431 (3)0.5475 (3)0.6176 (3)0.0327 (7)
H2441.01840.53960.61650.039*
C2450.8820 (3)0.5719 (3)0.5334 (3)0.0356 (8)
H2450.91470.57940.47340.043*
C2460.7726 (3)0.5858 (3)0.5351 (2)0.0295 (7)
H2460.73100.60190.47620.035*
C250.5715 (3)0.6682 (2)0.5762 (2)0.0218 (6)
C2510.6349 (3)0.7504 (2)0.5120 (2)0.0229 (6)
C2520.7451 (3)0.8269 (2)0.5516 (2)0.0276 (6)
H2520.77520.82860.62010.033*
C2530.8116 (3)0.9009 (3)0.4924 (3)0.0342 (7)
H2530.88680.95280.52020.041*
C2540.7675 (3)0.8988 (3)0.3917 (3)0.0341 (7)
H2540.81300.94880.35060.041*
C2550.6571 (3)0.8234 (3)0.3518 (2)0.0307 (7)
H2550.62690.82240.28340.037*
C2560.5905 (3)0.7494 (2)0.4111 (2)0.0263 (6)
H2560.51490.69820.38330.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0264 (12)0.0161 (11)0.0195 (11)0.0071 (9)0.0054 (9)0.0044 (9)
C1110.0261 (14)0.0165 (12)0.0216 (13)0.0065 (11)0.0038 (11)0.0033 (10)
C1120.0298 (15)0.0190 (13)0.0211 (14)0.0095 (11)0.0060 (11)0.0047 (11)
O1120.0364 (12)0.0204 (10)0.0198 (10)0.0138 (9)0.0052 (8)0.0065 (8)
C1130.0407 (18)0.0206 (14)0.0297 (16)0.0099 (13)0.0058 (13)0.0019 (12)
C120.0253 (14)0.0176 (12)0.0197 (13)0.0085 (11)0.0059 (10)0.0063 (10)
C1210.0270 (14)0.0218 (13)0.0199 (13)0.0088 (11)0.0066 (11)0.0036 (11)
C1220.0339 (16)0.0181 (13)0.0263 (15)0.0101 (12)0.0088 (12)0.0045 (11)
C1230.0307 (16)0.0251 (15)0.0355 (17)0.0120 (12)0.0099 (13)0.0005 (13)
C1240.0296 (16)0.0277 (15)0.0316 (16)0.0064 (12)0.0137 (13)0.0014 (12)
Cl140.0359 (4)0.0339 (4)0.0567 (6)0.0050 (3)0.0257 (4)0.0047 (4)
C1250.0360 (17)0.0204 (14)0.0335 (17)0.0057 (12)0.0126 (13)0.0024 (12)
C1260.0301 (15)0.0190 (13)0.0276 (15)0.0081 (11)0.0093 (12)0.0037 (11)
N130.0290 (13)0.0195 (11)0.0202 (11)0.0101 (10)0.0075 (9)0.0041 (9)
C140.0291 (15)0.0195 (13)0.0183 (13)0.0104 (11)0.0065 (11)0.0063 (10)
C1410.0265 (14)0.0184 (13)0.0243 (14)0.0110 (11)0.0077 (11)0.0065 (11)
C1420.0308 (15)0.0227 (14)0.0254 (15)0.0098 (12)0.0075 (12)0.0081 (11)
C1430.0339 (16)0.0244 (14)0.0318 (16)0.0098 (13)0.0148 (13)0.0110 (12)
C1440.0304 (16)0.0174 (13)0.0411 (18)0.0069 (12)0.0106 (13)0.0074 (12)
C1450.0312 (16)0.0212 (14)0.0334 (17)0.0087 (12)0.0056 (13)0.0009 (12)
C1460.0350 (16)0.0220 (14)0.0236 (14)0.0115 (12)0.0078 (12)0.0038 (11)
C150.0251 (14)0.0186 (13)0.0204 (13)0.0087 (11)0.0065 (11)0.0065 (10)
C1510.0292 (14)0.0155 (12)0.0223 (14)0.0088 (11)0.0093 (11)0.0056 (10)
C1520.0300 (15)0.0187 (13)0.0228 (14)0.0090 (11)0.0077 (11)0.0058 (11)
C1530.0378 (17)0.0218 (14)0.0212 (14)0.0094 (12)0.0090 (12)0.0027 (11)
C1540.0410 (18)0.0295 (16)0.0319 (17)0.0173 (14)0.0156 (14)0.0032 (13)
C1550.0331 (17)0.0410 (18)0.0330 (17)0.0203 (15)0.0075 (13)0.0014 (14)
C1560.0312 (16)0.0299 (15)0.0229 (14)0.0143 (13)0.0058 (12)0.0046 (12)
N210.0289 (13)0.0165 (11)0.0205 (11)0.0101 (9)0.0043 (9)0.0034 (9)
C2110.0296 (15)0.0228 (14)0.0202 (13)0.0130 (12)0.0025 (11)0.0052 (11)
C2120.0361 (16)0.0235 (14)0.0238 (15)0.0136 (12)0.0076 (12)0.0063 (11)
O2120.0387 (12)0.0171 (10)0.0235 (10)0.0103 (9)0.0067 (9)0.0032 (8)
C2130.051 (2)0.0293 (16)0.0306 (17)0.0239 (15)0.0081 (15)0.0063 (13)
C220.0269 (14)0.0157 (12)0.0193 (13)0.0070 (11)0.0030 (11)0.0016 (10)
C2210.0281 (14)0.0202 (13)0.0196 (13)0.0085 (11)0.0039 (11)0.0062 (10)
C2220.0286 (15)0.0198 (13)0.0233 (14)0.0105 (11)0.0050 (11)0.0059 (11)
C2230.0282 (15)0.0269 (15)0.0260 (15)0.0130 (12)0.0059 (12)0.0072 (12)
C2240.0273 (15)0.0289 (15)0.0268 (15)0.0080 (12)0.0080 (12)0.0113 (12)
Cl240.0329 (4)0.0368 (4)0.0394 (4)0.0123 (3)0.0157 (3)0.0182 (3)
C2250.0339 (16)0.0198 (14)0.0290 (15)0.0077 (12)0.0059 (12)0.0078 (11)
C2260.0341 (16)0.0193 (13)0.0257 (15)0.0120 (12)0.0046 (12)0.0043 (11)
N230.0304 (13)0.0182 (11)0.0208 (12)0.0106 (10)0.0065 (10)0.0058 (9)
C240.0303 (15)0.0186 (13)0.0180 (13)0.0101 (11)0.0048 (11)0.0031 (10)
C2410.0299 (15)0.0177 (13)0.0271 (15)0.0093 (11)0.0080 (12)0.0055 (11)
C2420.0287 (15)0.0206 (13)0.0293 (15)0.0102 (11)0.0079 (12)0.0081 (11)
C2430.0291 (16)0.0205 (14)0.0392 (18)0.0087 (12)0.0054 (13)0.0048 (12)
C2440.0313 (16)0.0236 (15)0.049 (2)0.0151 (13)0.0103 (14)0.0058 (14)
C2450.045 (2)0.0314 (17)0.0376 (18)0.0164 (15)0.0217 (15)0.0055 (14)
C2460.0420 (18)0.0286 (15)0.0254 (15)0.0191 (14)0.0118 (13)0.0056 (12)
C250.0275 (14)0.0186 (13)0.0203 (13)0.0090 (11)0.0047 (11)0.0017 (10)
C2510.0308 (15)0.0201 (13)0.0224 (14)0.0132 (11)0.0076 (11)0.0062 (11)
C2520.0346 (16)0.0252 (14)0.0252 (15)0.0122 (13)0.0068 (12)0.0042 (12)
C2530.0353 (17)0.0254 (15)0.0439 (19)0.0091 (13)0.0164 (15)0.0075 (14)
C2540.0447 (19)0.0304 (16)0.0388 (18)0.0208 (15)0.0231 (15)0.0181 (14)
C2550.0454 (19)0.0328 (16)0.0238 (15)0.0238 (15)0.0112 (13)0.0127 (13)
C2560.0370 (17)0.0269 (14)0.0208 (14)0.0171 (13)0.0082 (12)0.0051 (11)
Geometric parameters (Å, º) top
N11—C121.368 (4)N21—C221.365 (4)
N11—C151.388 (4)N21—C251.388 (4)
N11—C1111.469 (4)N21—C2111.468 (4)
C111—C1121.525 (4)C211—C2121.530 (4)
C111—H11A0.9900C211—H21A0.9900
C111—H11B0.9900C211—H21B0.9900
C112—O1121.413 (3)C212—O2121.408 (4)
C112—C1131.524 (4)C212—C2131.525 (4)
C112—H1121.0000C212—H2121.0000
O112—H12O0.80 (5)O212—H22O0.82 (5)
C113—H11C0.9800C213—H21C0.9800
C113—H11D0.9800C213—H21D0.9800
C113—H11E0.9800C213—H21E0.9800
C12—N131.330 (4)C22—N231.330 (4)
C12—C1211.477 (4)C22—C2211.475 (4)
C121—C1261.399 (4)C221—C2261.396 (4)
C121—C1221.402 (4)C221—C2221.402 (4)
C122—C1231.383 (4)C222—C2231.390 (4)
C122—H1220.9500C222—H2220.9500
C123—C1241.384 (5)C223—C2241.378 (4)
C123—H1230.9500C223—H2230.9500
C124—C1251.386 (5)C224—C2251.387 (5)
C124—Cl141.743 (3)C224—Cl241.747 (3)
C125—C1261.391 (4)C225—C2261.383 (4)
C125—H1250.9500C225—H2250.9500
C126—H1260.9500C226—H2260.9500
N13—C141.373 (4)N23—C241.377 (4)
C14—C151.376 (4)C24—C251.370 (4)
C14—C1411.476 (4)C24—C2411.471 (4)
C141—C1461.394 (4)C241—C2421.398 (4)
C141—C1421.395 (4)C241—C2461.398 (4)
C142—C1431.393 (4)C242—C2431.384 (4)
C142—H1420.9500C242—H2420.9500
C143—C1441.395 (5)C243—C2441.403 (5)
C143—H1430.9500C243—H2430.9500
C144—C1451.396 (5)C244—C2451.376 (5)
C144—H1440.9500C244—H2440.9500
C145—C1461.391 (4)C245—C2461.396 (5)
C145—H1450.9500C245—H2450.9500
C146—H1460.9500C246—H2460.9500
C15—C1511.480 (4)C25—C2511.478 (4)
C151—C1561.397 (4)C251—C2521.390 (5)
C151—C1521.401 (4)C251—C2561.401 (4)
C152—C1531.391 (4)C252—C2531.387 (4)
C152—H1520.9500C252—H2520.9500
C153—C1541.382 (5)C253—C2541.395 (5)
C153—H1530.9500C253—H2530.9500
C154—C1551.386 (5)C254—C2551.387 (5)
C154—H1540.9500C254—H2540.9500
C155—C1561.392 (4)C255—C2561.388 (4)
C155—H1550.9500C255—H2550.9500
C156—H1560.9500C256—H2560.9500
C12—N11—C15106.9 (2)C22—N21—C25107.0 (2)
C12—N11—C111129.2 (2)C22—N21—C211129.2 (3)
C15—N11—C111123.9 (2)C25—N21—C211123.6 (2)
N11—C111—C112112.1 (2)N21—C211—C212112.9 (2)
N11—C111—H11A109.2N21—C211—H21A109.0
C112—C111—H11A109.2C212—C211—H21A109.0
N11—C111—H11B109.2N21—C211—H21B109.0
C112—C111—H11B109.2C212—C211—H21B109.0
H11A—C111—H11B107.9H21A—C211—H21B107.8
O112—C112—C113112.5 (2)O212—C212—C213112.7 (3)
O112—C112—C111106.4 (2)O212—C212—C211106.5 (2)
C113—C112—C111110.6 (3)C213—C212—C211110.5 (3)
O112—C112—H112109.1O212—C212—H212109.0
C113—C112—H112109.1C213—C212—H212109.0
C111—C112—H112109.1C211—C212—H212109.0
C112—O112—H12O113 (3)C212—O212—H22O111 (3)
C112—C113—H11C109.5C212—C213—H21C109.5
C112—C113—H11D109.5C212—C213—H21D109.5
H11C—C113—H11D109.5H21C—C213—H21D109.5
C112—C113—H11E109.5C212—C213—H21E109.5
H11C—C113—H11E109.5H21C—C213—H21E109.5
H11D—C113—H11E109.5H21D—C213—H21E109.5
N13—C12—N11111.0 (2)N23—C22—N21110.8 (3)
N13—C12—C121121.5 (3)N23—C22—C221121.3 (2)
N11—C12—C121127.3 (3)N21—C22—C221127.9 (3)
C126—C121—C122118.7 (3)C226—C221—C222118.8 (3)
C126—C121—C12124.1 (3)C226—C221—C22118.7 (3)
C122—C121—C12117.0 (3)C222—C221—C22122.3 (3)
C123—C122—C121121.1 (3)C223—C222—C221119.9 (3)
C123—C122—H122119.5C223—C222—H222120.0
C121—C122—H122119.5C221—C222—H222120.0
C122—C123—C124119.0 (3)C224—C223—C222119.8 (3)
C122—C123—H123120.5C224—C223—H223120.1
C124—C123—H123120.5C222—C223—H223120.1
C123—C124—C125121.4 (3)C223—C224—C225121.4 (3)
C123—C124—Cl14119.2 (3)C223—C224—Cl24119.3 (3)
C125—C124—Cl14119.4 (2)C225—C224—Cl24119.3 (2)
C124—C125—C126119.3 (3)C226—C225—C224118.7 (3)
C124—C125—H125120.3C226—C225—H225120.7
C126—C125—H125120.3C224—C225—H225120.7
C125—C126—C121120.4 (3)C225—C226—C221121.3 (3)
C125—C126—H126119.8C225—C226—H226119.3
C121—C126—H126119.8C221—C226—H226119.3
C12—N13—C14106.3 (2)C22—N23—C24106.4 (2)
N13—C14—C15109.8 (3)C25—C24—N23109.7 (3)
N13—C14—C141122.7 (3)C25—C24—C241127.9 (3)
C15—C14—C141127.5 (3)N23—C24—C241122.5 (2)
C146—C141—C142118.9 (3)C242—C241—C246118.4 (3)
C146—C141—C14121.5 (3)C242—C241—C24120.9 (3)
C142—C141—C14119.6 (3)C246—C241—C24120.7 (3)
C143—C142—C141120.9 (3)C243—C242—C241120.8 (3)
C143—C142—H142119.6C243—C242—H242119.6
C141—C142—H142119.6C241—C242—H242119.6
C142—C143—C144120.0 (3)C242—C243—C244120.3 (3)
C142—C143—H143120.0C242—C243—H243119.8
C144—C143—H143120.0C244—C243—H243119.8
C143—C144—C145119.3 (3)C245—C244—C243119.1 (3)
C143—C144—H144120.3C245—C244—H244120.4
C145—C144—H144120.3C243—C244—H244120.4
C146—C145—C144120.4 (3)C244—C245—C246120.7 (3)
C146—C145—H145119.8C244—C245—H245119.7
C144—C145—H145119.8C246—C245—H245119.7
C145—C146—C141120.5 (3)C245—C246—C241120.6 (3)
C145—C146—H146119.7C245—C246—H246119.7
C141—C146—H146119.7C241—C246—H246119.7
C14—C15—N11106.0 (2)C24—C25—N21106.1 (2)
C14—C15—C151129.1 (3)C24—C25—C251128.5 (3)
N11—C15—C151124.9 (3)N21—C25—C251125.3 (3)
C156—C151—C152119.5 (3)C252—C251—C256119.1 (3)
C156—C151—C15118.6 (3)C252—C251—C25119.0 (3)
C152—C151—C15121.8 (3)C256—C251—C25121.8 (3)
C153—C152—C151119.6 (3)C253—C252—C251121.0 (3)
C153—C152—H152120.2C253—C252—H252119.5
C151—C152—H152120.2C251—C252—H252119.5
C154—C153—C152120.7 (3)C252—C253—C254119.6 (3)
C154—C153—H153119.7C252—C253—H253120.2
C152—C153—H153119.7C254—C253—H253120.2
C153—C154—C155120.0 (3)C255—C254—C253119.8 (3)
C153—C154—H154120.0C255—C254—H254120.1
C155—C154—H154120.0C253—C254—H254120.1
C154—C155—C156120.2 (3)C254—C255—C256120.5 (3)
C154—C155—H155119.9C254—C255—H255119.7
C156—C155—H155119.9C256—C255—H255119.7
C155—C156—C151120.1 (3)C255—C256—C251120.0 (3)
C155—C156—H156120.0C255—C256—H256120.0
C151—C156—H156120.0C251—C256—H256120.0
C12—N11—C111—C112107.3 (3)C22—N21—C211—C212111.7 (3)
C15—N11—C111—C11272.6 (3)C25—N21—C211—C21272.8 (3)
N11—C111—C112—O11264.4 (3)N21—C211—C212—O21264.4 (3)
N11—C111—C112—C113173.2 (2)N21—C211—C212—C213172.9 (3)
C15—N11—C12—N131.1 (3)C25—N21—C22—N230.9 (3)
C111—N11—C12—N13179.0 (3)C211—N21—C22—N23175.1 (3)
C15—N11—C12—C121176.0 (3)C25—N21—C22—C221178.1 (3)
C111—N11—C12—C1214.1 (5)C211—N21—C22—C2215.9 (5)
N13—C12—C121—C126140.0 (3)N23—C22—C221—C22636.8 (4)
N11—C12—C121—C12645.6 (5)N21—C22—C221—C226144.3 (3)
N13—C12—C121—C12237.1 (4)N23—C22—C221—C222138.1 (3)
N11—C12—C121—C122137.3 (3)N21—C22—C221—C22240.7 (5)
C126—C121—C122—C1230.5 (5)C226—C221—C222—C2231.0 (4)
C12—C121—C122—C123177.7 (3)C22—C221—C222—C223174.0 (3)
C121—C122—C123—C1240.5 (5)C221—C222—C223—C2240.5 (5)
C122—C123—C124—C1250.2 (5)C222—C223—C224—C2250.3 (5)
C122—C123—C124—Cl14178.1 (3)C222—C223—C224—Cl24178.2 (2)
C123—C124—C125—C1260.2 (5)C223—C224—C225—C2260.5 (5)
Cl14—C124—C125—C126178.5 (3)Cl24—C224—C225—C226178.0 (2)
C124—C125—C126—C1210.2 (5)C224—C225—C226—C2210.1 (5)
C122—C121—C126—C1250.1 (5)C222—C221—C226—C2250.8 (5)
C12—C121—C126—C125177.1 (3)C22—C221—C226—C225174.3 (3)
N11—C12—N13—C140.6 (3)N21—C22—N23—C240.3 (3)
C121—C12—N13—C14175.9 (3)C221—C22—N23—C24178.8 (3)
C12—N13—C14—C150.0 (3)C22—N23—C24—C250.5 (3)
C12—N13—C14—C141179.2 (3)C22—N23—C24—C241179.0 (3)
N13—C14—C141—C14644.4 (4)C25—C24—C241—C242143.7 (3)
C15—C14—C141—C146136.5 (3)N23—C24—C241—C24234.6 (4)
N13—C14—C141—C142136.9 (3)C25—C24—C241—C24635.6 (5)
C15—C14—C141—C14242.2 (4)N23—C24—C241—C246146.1 (3)
C146—C141—C142—C1430.3 (4)C246—C241—C242—C2431.2 (5)
C14—C141—C142—C143178.4 (3)C24—C241—C242—C243178.2 (3)
C141—C142—C143—C1440.9 (5)C241—C242—C243—C2440.8 (5)
C142—C143—C144—C1451.3 (5)C242—C243—C244—C2452.0 (5)
C143—C144—C145—C1460.6 (5)C243—C244—C245—C2461.3 (5)
C144—C145—C146—C1410.6 (5)C244—C245—C246—C2410.7 (5)
C142—C141—C146—C1451.0 (4)C242—C241—C246—C2451.9 (5)
C14—C141—C146—C145177.7 (3)C24—C241—C246—C245177.4 (3)
N13—C14—C15—N110.7 (3)N23—C24—C25—N211.0 (3)
C141—C14—C15—N11178.6 (3)C241—C24—C25—N21179.5 (3)
N13—C14—C15—C151177.3 (3)N23—C24—C25—C251174.7 (3)
C141—C14—C15—C1513.5 (5)C241—C24—C25—C2513.8 (5)
C12—N11—C15—C141.0 (3)C22—N21—C25—C241.1 (3)
C111—N11—C15—C14179.0 (2)C211—N21—C25—C24175.2 (3)
C12—N11—C15—C151177.0 (3)C22—N21—C25—C251174.7 (3)
C111—N11—C15—C1512.9 (4)C211—N21—C25—C2519.0 (4)
C14—C15—C151—C15656.7 (4)C24—C25—C251—C25259.1 (4)
N11—C15—C151—C156120.9 (3)N21—C25—C251—C252115.8 (3)
C14—C15—C151—C152119.2 (3)C24—C25—C251—C256117.0 (4)
N11—C15—C151—C15263.2 (4)N21—C25—C251—C25668.1 (4)
C156—C151—C152—C1530.7 (4)C256—C251—C252—C2530.7 (5)
C15—C151—C152—C153176.5 (3)C25—C251—C252—C253175.4 (3)
C151—C152—C153—C1540.4 (4)C251—C252—C253—C2540.0 (5)
C152—C153—C154—C1550.2 (5)C252—C253—C254—C2550.6 (5)
C153—C154—C155—C1560.4 (5)C253—C254—C255—C2560.6 (5)
C154—C155—C156—C1510.1 (5)C254—C255—C256—C2510.2 (5)
C152—C151—C156—C1550.4 (4)C252—C251—C256—C2550.8 (4)
C15—C151—C156—C155176.4 (3)C25—C251—C256—C255175.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg5 and Cg6 are the centroids of the N11/C12/N13/C14/C15, N21/C22/N23/C24/C25, C221–C226 and C241–C246 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O112—H12O···N23i0.80 (5)2.01 (5)2.804 (3)170 (4)
O212—H22O···N13ii0.82 (5)1.99 (5)2.790 (3)165 (4)
C152—H152···O212iii0.952.613.227 (4)123
C256—H256···O1120.952.483.162 (4)129
C242—H242···O112i0.952.683.277 (4)122
C243—H243···Cl24iv0.952.913.836 (3)166
C113—H11D···Cg6iii0.982.963.778 (3)142
C153—H153···Cg5iii0.952.653.495 (3)148
C213—H21D···Cg20.982.913.745 (4)144
C255—H255···Cg10.952.653.505 (3)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y, z1; (iv) x+1, y, z.
 

Acknowledgements

We thank the University of Otago for the purchase of the diffractometer. JS also thanks the Department of Chemistry, University of Otago, for support of his work.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAkkurt, M., Jasinski, J. P., Mohamed, S. K., Marzouk, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o299–o300.  CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBahnous, M., Bouraiou, A., Chelghoum, M., Bouacida, S., Roisnel, T., Smati, F., Bentchouala, C., Gros, P. C. & Belfaitah, A. (2013). Bioorg. Med. Chem. Lett. 23, 1274–1278.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBelwal, C. & Joshi, A. (2012). Der Pharma Chem. 4, 1873–1878.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGhoranneviss, M., Mohammadi Ziarani, G., Abbasi, A., Hantehzadeh, M. R. & Farahani, Z. (2008). Acta Cryst. E64, o1233.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationJasinski, J. P., Mohamed, S. K., Akkurt, M., Abdelhamid, A. A. & Albayati, M. R. (2015). Acta Cryst. E71, o77–o78.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKapoor, K., Gupta, V. K., Rajnikant, Gupta, P. & Paul, S. (2011). X-ray Str. Anal. Online, 27, 53–54.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMarzouk, A. A., Abdelhamid, A. A., Mohamed, S. K. & Simpson, J. (2016). Z. Naturforsch. Teil B. doi: 10.1515/znb-2016-0121.  Google Scholar
First citationMohamed, S. K., Akkurt, M., Marzouk, A. A., Abbasov, V. M. & Gurbanov, A. V. (2013a). Acta Cryst. E69, o474–o475.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Marzouk, A. A. E., Santoyo-Gonzalez, F. & Elremaily, M. A. A. (2013c). Acta Cryst. E69, o875–o876.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Akkurt, M., Singh, K., Marzouk, A. A. & Abdelhamid, A. A. (2013b). Acta Cryst. E69, o1243.  CSD CrossRef IUCr Journals Google Scholar
First citationMohamed, S. K., Simpson, J., Marzouk, A. A., Talybov, A. H., Abdelhamid, A. A., Abdullayev, Y. A. & Abbasov, V. M. (2015). Z. Naturforsch. Teil B, 70, 809–817.  CAS Google Scholar
First citationMohammadi, A., Keshvari, H., Sandaroos, R., Maleki, B., Rouhi, H., Moradi, H., Sepehr, Z. & Damavandi, S. (2012). App. Catalysis A General, 37, 429–430.  Google Scholar
First citationRajaraman, D., Sundararajan, G., Rajkumar, R., Bharanidharan, S. & Krishnasamy, K. (2016). J. Mol. Struct. 1108, 698–707.  CSD CrossRef CAS Google Scholar
First citationSharma, D., Narasimhan, B., Kumar, P., Judge, V., Narang, R., De Clercq, E. & Balzarini, J. (2009). Eur. J. Med. Chem. 44, 2347–2353.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, S., Sabarinathan, N. & Antony, S. A. (2014). Int. J. Chem. Tech. Res. 6, 1220–1227.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYanover, D. & Kaftory, M. (2009). Acta Cryst. E65, o711.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds