research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of {(S)-1-phenyl-N,N-bis­­[(pyridin-2-yl)meth­yl]ethanamine-κ3N,N′,N′′}bis­­(thio­cyanato-κN)zinc from synchrotron data

CROSSMARK_Color_square_no_text.svg

aDaegu-Gyeongbuk Branch, Korea Institute of Science and Technology Information, 90 Yutongdanji-ro, Buk-gu, Daegu 41515, Republic of Korea
*Correspondence e-mail: jwshin@kisti.re.kr

Edited by H. Ishida, Okayama University, Japan (Received 25 November 2016; accepted 2 December 2016; online 1 January 2017)

The title ZnII complex, [Zn(NCS)2(C20H21N3)], has been characterized by synchrotron single-crystal diffraction and FT–IR spectroscopy. The central ZnII ion has a distorted square-pyramidal coordination geometry, with three N atoms of the chiral (S) 1-phenyl-N,N-bis­[(pyridin-2-yl)meth­yl]ethanamine (S-ppme) ligand and one N atom of a thio­cyanate anion in the equatorial plane, and one N atom of another thio­cyanate anion at the apical position. The average Zn—NS-ppme and Zn—NNCS bond lengths are 2.183 (2) and 1.986 (2) Å, respectively. In the crystal, inter­molecular C—H⋯S hydrogen bonds and a face-to-face ππ inter­action [centroid–centroid distance = 3.482 (1) Å] link the mol­ecules and give rise to a supra­molecular sheet structure parallel to the ac plane.

1. Chemical context

Recently, the preparation of new polyamines or their derivatives have attracted increasing attention in organic chemistry, pharmaceutical chemistry and materials science because they can easily inter­act with metal ions and form stable multifunctional compounds with various applications in magnetic materials, sorption materials, as well as fluorescent substances (Lodeiro & Pina, 2009[Lodeiro, C. & Pina, F. (2009). Coord. Chem. Rev. 253, 1353-1383.]; Nowicka et al., 2011[Nowicka, B., Bałanda, M., Gaweł, B., Ćwiak, G., Budziak, A., Łasocha, W. & Sieklucka, B. (2011). Dalton Trans. 40, 3067-3073.]; Yao et al., 2015[Yao, J., Fu, X., Zheng, X.-L., Cao, Z.-Q. & Qu, D.-H. (2015). Dyes Pigm. 121, 12-20.]). For instance, metal complexes with cyclam or aza­macrocyclic ligands have been synthesized and investigated for selective adsorption of CO2 over N2 gases (Huang et al., 2013[Huang, S.-L., Zhang, L., Lin, Y.-J. & Jin, G.-X. (2013). CrystEngComm, 15, 78-85.]). In particular, chiral derivatives based on polyamine ligands can easily form chiral metal complexes with inter­esting properties, such as chiral recognition or as asymmetric catalysts. For example, the chiral two-dimensional coordination polymer, [Ni(LR,R)]3[C6H3(COO)3]2·12H2O·CH3CN {LR,R is 1,8-bis[(R)-α-methyl­benz­yl]-1,3,6,8,10,13-hexa­aza­cyclo­tetra­deca­ne}, showed an efficient chiral recognition for rac-1,1′-bi-2-naphthol (Ryoo et al., 2010[Ryoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232-7234.]). Moreover, a chiral iron(III) complex containing binol derivatives exhibited high enanti­o­selectivity and high yield for the enanti­opure β-amino alcohols (Tak et al., 2016[Tak, R., Kumar, M., Kureshy, R. I., Choudhary, M. K., Khan, N. H., Abdi, S. H. R. & Bajaj, H. C. (2016). RSC Adv. 6, 7693-7700.]). Nevertheless, only a few of these complexes have been reported and characterized because the preparation of these complexes remains a major challenge in synthetic chemistry and materials science (Gu et al., 2016[Gu, Z.-G., Zhan, C., Zhang, J. & Bu, X. (2016). Chem. Soc. Rev. 45, 3122-3144.]). The thio­cyanate ion is a versatile anion which can bridge to metal ions through the S or N atom, thus allowing the assembly of supra­molecular compounds (Nawrot et al., 2016[Nawrot, I., Machura, B. & Kruszynski, R. (2016). CrystEngComm, 18, 2650-2663.]). We report here the preparation and crystal structure of a chiral zinc complex constructed from the versatile tridentate chiral ligand (S)-1-phenyl-N,N-bis­[(pyridin-2-yl)meth­yl]ethanamine (S-ppme) and the thio­cyanate ion, namely [Zn(NCS)2(S-ppme)].

[Scheme 1]

2. Structural commentary

A view of the mol­ecular structure of the title compound is shown in Fig. 1[link]. The coordination environment of the ZnII ion can be described as distorted square pyramidal. The ZnII ion is coordinated by three N atoms from the chiral S-ppme ligand and by two N atoms of thio­cyanate ions. The thio­cyanate ions coordinate through the N atoms in cis positions with respect to each other and are trans to the phenyl group of the chiral S-ppme ligand. The coordinating thio­cyanate ions are linear but slightly bent in relation to the ZnII ion [N4—C21—S1 = 179.9 (1)°, N5—C22—S2 = 178.5 (4)°, Zn1—N4—C21 = 171.6 (4)° and Zn1—N5—C22 = 170.3 (4)°]. The bond angle between the thio­cyanate ions is 101.43 (2)°. The average N≡C and C—S bond lengths of the thio­cyanate ions are 1.158 (4) and 1.629 (6) Å, respectively, which implies that both thio­cyanate ions are not delocalized. The former is very similar to the C≡N triple-bond length, while the latter is slightly shorter than reported C—S single-bond length (Hashem et al., 2014[Hashem, E., Platts, J. A., Hartl, F., Lorusso, G., Evangelisti, M., Schulzke, C. & Baker, R. J. (2014). Inorg. Chem. 53, 8624-8637.]). The pyridine rings of the S-ppme ligand are twisted with respect to each other. The average Zn—NS-ppme and Zn—NNCS bond lengths are 2.183 (2) and 1.986 (2) Å, respectively. The bond angles around the ZnII ion range from 73.99 (1) to 156.01 (1)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 50% probability.

3. Supra­molecular features

The thio­cyanate ligands form inter­molecular C—H⋯S hydrogen bonds with adjacent pyridine groups of the chiral S-ppme ligand, giving rise to a sheet structure parallel to the ac plane (Fig. 2[link] and Table 1[link]) (Steed & Atwood, 2009[Steed, J. W. & Atwood, J. L. (2009). In Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons Ltd.]). In the sheet, adjacent C8–C12/N3 pyridine rings of chiral S-ppme ligands are also linked through a face-to-face ππ inter­action, with a centroid–centroid distance of 3.482 (1) Å and a dihedral angle of 2.947 (1)°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯S2i 0.95 2.77 3.604 (5) 147
C11—H11⋯S1ii 0.95 2.80 3.738 (5) 169
Symmetry codes: (i) -x+1, y+1, -z+2; (ii) -x+1, y, -z+1.
[Figure 2]
Figure 2
A view of the crystal-packing structure for the title compound, showing the C—H⋯S hydrogen bonds (sky-blue dashed lines) and ππ inter­actions (black dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, February 2016 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gives three copper(II) complexes with the same chiral S-ppme ligand (Rowthu et al., 2011[Rowthu, S. R., Shin, J. W., Kim, S.-H., Kim, J. J. & Min, K. S. (2011). Acta Cryst. E67, m873-m874.]; Woo et al., 2011[Woo, A., Lee, Y. H., Hayami, S., Lindoy, L. F., Thuery, P. & Kim, Y. (2011). J. Inclusion Phenom. Macrocycl. Chem. 71, 409-417.]) for which syntheses, magnetic properties and crystal structures have been reported.

5. Synthesis and crystallization

The chiral S-ppme ligand was prepared according to a slight modification of the method of Rowthu et al. (2011[Rowthu, S. R., Shin, J. W., Kim, S.-H., Kim, J. J. & Min, K. S. (2011). Acta Cryst. E67, m873-m874.]). A methanol solution (5 mL) of KNCS (0.078 g, 0.80 mmol) was added slowly to a methanol solution (15 mL) containing ZnSO4·7H2O (0.115 g, 0.40 mmol). The mixture was stirred for 20 min and the the formed white precipitates were eliminated by filtration. A solution of the chiral S-ppme (0.121 g, 0.40 mmol) in MeOH (10 mL) was added slowly to the filtered solution with vigorous stirring at room temperature. The resulting pale-yellow precipitates were collected by filtration, washed with methanol and diethyl ether, and dried in air. Single crystals were obtained by slow evaporation from methanol solution for a period of several days (yield: 0.123 g, 64%). FT–IR (KBr, cm−1): 3102, 3029, 2995, 2910, 2056, 1606.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95–0.99 Å and Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(NCS)2(C20H21N3)]
Mr 484.93
Crystal system, space group Monoclinic, C2
Temperature (K) 100
a, b, c (Å) 19.270 (4), 7.7950 (16), 14.834 (3)
β (°) 91.71 (3)
V3) 2227.2 (8)
Z 4
Radiation type Synchrotron, λ = 0.630 Å
μ (mm−1) 0.94
Crystal size (mm) 0.10 × 0.04 × 0.02
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press: New York.])
Tmin, Tmax 0.912, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 11189, 6035, 5123
Rint 0.048
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 0.99
No. of reflections 6035
No. of parameters 272
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.35, −1.03
Absolute structure Flack x determined using 2026 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.010 (6)
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. Academic Press: New York.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).

{(S)-1-Phenyl-N,N-bis[(pyridin-2-yl)methyl]ethanamine-κ3N,N',N''}bis(thiocyanato-κN)zinc(II) top
Crystal data top
[Zn(NCS)2(C20H21N3)]F(000) = 1000
Mr = 484.93Dx = 1.446 Mg m3
Monoclinic, C2Synchrotron radiation, λ = 0.630 Å
a = 19.270 (4) ÅCell parameters from 32924 reflections
b = 7.7950 (16) Åθ = 0.4–33.6°
c = 14.834 (3) ŵ = 0.94 mm1
β = 91.71 (3)°T = 100 K
V = 2227.2 (8) Å3Needle, colorless
Z = 40.10 × 0.04 × 0.02 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
5123 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.048
ω scanθmax = 26.0°, θmin = 2.4°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm SCALEPACK; Otwinowski & Minor, 1997)
h = 2626
Tmin = 0.912, Tmax = 0.981k = 1010
11189 measured reflectionsl = 2020
6035 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0509P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.35 e Å3
6035 reflectionsΔρmin = 1.03 e Å3
272 parametersAbsolute structure: Flack x determined using 2026 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.010 (6)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.46128 (2)0.33954 (6)0.76988 (3)0.01920 (11)
N10.52691 (16)0.5093 (4)0.8331 (2)0.0213 (7)
N20.40589 (15)0.6204 (4)0.7503 (2)0.0165 (7)
N30.43224 (14)0.3562 (5)0.6353 (2)0.0199 (6)
C10.5905 (2)0.4552 (6)0.8617 (3)0.0287 (9)
H10.60430.34140.84800.034*
C20.6357 (2)0.5585 (7)0.9097 (3)0.0331 (10)
H20.67970.51610.92980.040*
C30.6165 (2)0.7254 (7)0.9286 (3)0.0306 (10)
H30.64740.79990.96060.037*
C40.5509 (2)0.7824 (6)0.8998 (3)0.0254 (9)
H40.53620.89600.91260.030*
C50.50773 (19)0.6714 (6)0.8525 (3)0.0198 (8)
C60.4348 (2)0.7272 (5)0.8232 (3)0.0232 (8)
H6A0.40420.72080.87550.028*
H6B0.43600.84800.80280.028*
C70.44001 (19)0.6585 (6)0.6647 (3)0.0194 (7)
H7A0.49050.67350.67610.023*
H7B0.42120.76660.63880.023*
C80.42740 (19)0.5140 (5)0.5994 (3)0.0188 (8)
C90.4133 (2)0.5404 (7)0.5076 (3)0.0277 (10)
H90.41070.65290.48310.033*
C100.4032 (2)0.3974 (7)0.4533 (3)0.0360 (13)
H100.39380.41080.39050.043*
C110.4069 (2)0.2344 (7)0.4910 (3)0.0360 (13)
H110.39910.13560.45460.043*
C120.4220 (2)0.2182 (6)0.5822 (3)0.0282 (10)
H120.42520.10690.60810.034*
C130.32788 (18)0.6288 (5)0.7383 (3)0.0188 (8)
H130.31490.54090.69170.023*
C140.30213 (18)0.8003 (5)0.7011 (3)0.0184 (8)
C150.2898 (2)0.9419 (5)0.7561 (3)0.0238 (8)
H150.29770.93280.81940.029*
C160.2663 (2)1.0954 (6)0.7194 (3)0.0286 (10)
H160.25761.18990.75790.034*
C170.2554 (2)1.1123 (5)0.6272 (3)0.0258 (9)
H170.23941.21790.60240.031*
C180.2679 (2)0.9745 (6)0.5717 (3)0.0272 (9)
H180.26160.98580.50830.033*
C190.28976 (18)0.8195 (6)0.6087 (3)0.0221 (8)
H190.29640.72410.57010.027*
C200.2913 (2)0.5759 (6)0.8239 (3)0.0253 (9)
H20A0.29820.66480.87000.038*
H20B0.31070.46720.84620.038*
H20C0.24150.56190.81040.038*
N40.53102 (18)0.1463 (5)0.7434 (3)0.0299 (8)
C210.5672 (2)0.0390 (5)0.7176 (3)0.0210 (8)
S10.61788 (5)0.11203 (13)0.68120 (7)0.0269 (2)
N50.40467 (18)0.2318 (5)0.8601 (3)0.0267 (8)
S20.31745 (6)0.13587 (16)0.99713 (8)0.0303 (3)
C220.3691 (2)0.1913 (5)0.9177 (3)0.0220 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01633 (18)0.0166 (2)0.0249 (2)0.0000 (2)0.00448 (14)0.0002 (2)
N10.0170 (15)0.0190 (17)0.0276 (17)0.0002 (14)0.0009 (13)0.0016 (13)
N20.0123 (13)0.0154 (16)0.0221 (16)0.0017 (12)0.0027 (12)0.0035 (12)
N30.0122 (12)0.0209 (17)0.0270 (15)0.0012 (16)0.0053 (11)0.0060 (15)
C10.0173 (18)0.029 (2)0.039 (2)0.0041 (18)0.0019 (17)0.0042 (19)
C20.0173 (19)0.039 (3)0.043 (3)0.003 (2)0.0062 (18)0.004 (2)
C30.027 (2)0.040 (3)0.025 (2)0.012 (2)0.0027 (17)0.0042 (19)
C40.0291 (19)0.026 (2)0.0212 (19)0.0066 (18)0.0015 (15)0.0004 (15)
C50.0170 (17)0.021 (2)0.0212 (18)0.0035 (17)0.0021 (14)0.0012 (15)
C60.0206 (18)0.022 (2)0.027 (2)0.0001 (17)0.0027 (15)0.0061 (16)
C70.0145 (16)0.0213 (19)0.0226 (18)0.0009 (16)0.0041 (14)0.0029 (16)
C80.0103 (16)0.025 (2)0.0217 (19)0.0004 (16)0.0050 (14)0.0006 (16)
C90.0163 (18)0.044 (3)0.023 (2)0.005 (2)0.0043 (15)0.0002 (19)
C100.0156 (17)0.069 (4)0.024 (2)0.001 (2)0.0044 (15)0.011 (2)
C110.020 (2)0.053 (4)0.036 (3)0.004 (2)0.0055 (19)0.026 (2)
C120.018 (2)0.027 (2)0.040 (3)0.0004 (19)0.0066 (17)0.009 (2)
C130.0138 (16)0.0162 (19)0.027 (2)0.0018 (15)0.0036 (14)0.0021 (15)
C140.0110 (14)0.016 (2)0.0280 (19)0.0010 (14)0.0021 (13)0.0027 (14)
C150.0221 (19)0.021 (2)0.029 (2)0.0023 (18)0.0022 (15)0.0063 (17)
C160.026 (2)0.023 (2)0.037 (2)0.0081 (19)0.0006 (18)0.0068 (18)
C170.0190 (19)0.021 (2)0.037 (2)0.0048 (17)0.0008 (17)0.0020 (17)
C180.0201 (19)0.031 (2)0.030 (2)0.0104 (19)0.0016 (16)0.0013 (18)
C190.0171 (15)0.021 (2)0.0277 (18)0.0029 (18)0.0016 (13)0.0064 (18)
C200.0179 (17)0.027 (2)0.031 (2)0.0028 (18)0.0079 (15)0.0043 (18)
N40.0291 (18)0.027 (2)0.034 (2)0.0080 (17)0.0060 (16)0.0060 (16)
C210.0214 (18)0.020 (2)0.0216 (18)0.0018 (17)0.0034 (14)0.0026 (15)
S10.0247 (5)0.0236 (6)0.0326 (5)0.0079 (4)0.0072 (4)0.0012 (4)
N50.0260 (18)0.0229 (18)0.0316 (19)0.0019 (15)0.0071 (14)0.0042 (15)
S20.0287 (5)0.0326 (6)0.0300 (6)0.0088 (5)0.0087 (4)0.0029 (5)
C220.0219 (18)0.0156 (19)0.028 (2)0.0021 (17)0.0032 (15)0.0011 (16)
Geometric parameters (Å, º) top
Zn1—N51.942 (3)C9—H90.9500
Zn1—N12.039 (3)C10—C111.389 (8)
Zn1—N32.061 (3)C10—H100.9500
Zn1—N42.064 (4)C11—C121.381 (7)
Zn1—N22.449 (3)C11—H110.9500
N1—C51.350 (5)C12—H120.9500
N1—C11.352 (5)C13—C141.524 (5)
N2—C61.461 (5)C13—C201.526 (5)
N2—C71.478 (5)C13—H131.0000
N2—C131.510 (5)C14—C191.392 (5)
N3—C81.342 (6)C14—C151.397 (5)
N3—C121.344 (6)C15—C161.385 (6)
C1—C21.370 (7)C15—H150.9500
C1—H10.9500C16—C171.384 (6)
C2—C31.383 (7)C16—H160.9500
C2—H20.9500C17—C181.378 (6)
C3—C41.394 (6)C17—H170.9500
C3—H30.9500C18—C191.387 (6)
C4—C51.378 (6)C18—H180.9500
C4—H40.9500C19—H190.9500
C5—C61.523 (5)C20—H20A0.9800
C6—H6A0.9900C20—H20B0.9800
C6—H6B0.9900C20—H20C0.9800
C7—C81.500 (6)N4—C211.160 (5)
C7—H7A0.9900C21—S11.633 (4)
C7—H7B0.9900N5—C221.155 (5)
C8—C91.397 (6)S2—C221.624 (4)
C9—C101.385 (7)
N5—Zn1—N1108.46 (15)N3—C8—C9122.1 (4)
N5—Zn1—N3123.55 (14)N3—C8—C7115.1 (4)
N1—Zn1—N3123.46 (14)C9—C8—C7122.8 (4)
N5—Zn1—N4101.43 (15)C10—C9—C8117.9 (5)
N1—Zn1—N499.36 (15)C10—C9—H9121.1
N3—Zn1—N491.21 (14)C8—C9—H9121.1
N5—Zn1—N2102.49 (13)C9—C10—C11119.9 (4)
N1—Zn1—N274.73 (12)C9—C10—H10120.1
N3—Zn1—N273.99 (13)C11—C10—H10120.1
N4—Zn1—N2156.01 (13)C12—C11—C10119.0 (5)
C5—N1—C1118.4 (4)C12—C11—H11120.5
C5—N1—Zn1122.4 (3)C10—C11—H11120.5
C1—N1—Zn1119.1 (3)N3—C12—C11121.6 (5)
C6—N2—C7110.6 (3)N3—C12—H12119.2
C6—N2—C13114.7 (3)C11—C12—H12119.2
C7—N2—C13110.9 (3)N2—C13—C14113.1 (3)
C6—N2—Zn1105.5 (2)N2—C13—C20111.9 (3)
C7—N2—Zn194.5 (2)C14—C13—C20112.6 (3)
C13—N2—Zn1118.8 (2)N2—C13—H13106.2
C8—N3—C12119.6 (4)C14—C13—H13106.2
C8—N3—Zn1117.1 (3)C20—C13—H13106.2
C12—N3—Zn1123.2 (3)C19—C14—C15117.6 (4)
N1—C1—C2122.4 (4)C19—C14—C13119.7 (4)
N1—C1—H1118.8C15—C14—C13122.7 (4)
C2—C1—H1118.8C16—C15—C14120.8 (4)
C1—C2—C3119.2 (4)C16—C15—H15119.6
C1—C2—H2120.4C14—C15—H15119.6
C3—C2—H2120.4C17—C16—C15120.6 (4)
C2—C3—C4118.9 (4)C17—C16—H16119.7
C2—C3—H3120.5C15—C16—H16119.7
C4—C3—H3120.5C18—C17—C16119.5 (4)
C5—C4—C3118.9 (4)C18—C17—H17120.3
C5—C4—H4120.5C16—C17—H17120.3
C3—C4—H4120.5C17—C18—C19119.9 (4)
N1—C5—C4122.1 (4)C17—C18—H18120.0
N1—C5—C6117.6 (4)C19—C18—H18120.0
C4—C5—C6120.3 (4)C18—C19—C14121.6 (4)
N2—C6—C5112.1 (3)C18—C19—H19119.2
N2—C6—H6A109.2C14—C19—H19119.2
C5—C6—H6A109.2C13—C20—H20A109.5
N2—C6—H6B109.2C13—C20—H20B109.5
C5—C6—H6B109.2H20A—C20—H20B109.5
H6A—C6—H6B107.9C13—C20—H20C109.5
N2—C7—C8109.6 (3)H20A—C20—H20C109.5
N2—C7—H7A109.7H20B—C20—H20C109.5
C8—C7—H7A109.7C21—N4—Zn1171.6 (4)
N2—C7—H7B109.7N4—C21—S1179.9 (5)
C8—C7—H7B109.7C22—N5—Zn1170.3 (4)
H7A—C7—H7B108.2N5—C22—S2178.5 (4)
C5—N1—C1—C20.3 (6)N3—C8—C9—C100.9 (6)
Zn1—N1—C1—C2175.7 (4)C7—C8—C9—C10179.3 (3)
N1—C1—C2—C31.2 (7)C8—C9—C10—C110.4 (6)
C1—C2—C3—C41.4 (7)C9—C10—C11—C121.3 (6)
C2—C3—C4—C50.8 (6)C8—N3—C12—C110.4 (5)
C1—N1—C5—C40.3 (6)Zn1—N3—C12—C11175.8 (3)
Zn1—N1—C5—C4176.2 (3)C10—C11—C12—N30.9 (7)
C1—N1—C5—C6177.4 (4)C6—N2—C13—C1470.2 (4)
Zn1—N1—C5—C61.5 (5)C7—N2—C13—C1456.0 (4)
C3—C4—C5—N10.0 (6)Zn1—N2—C13—C14163.8 (2)
C3—C4—C5—C6177.7 (4)C6—N2—C13—C2058.3 (4)
C7—N2—C6—C572.5 (4)C7—N2—C13—C20175.5 (3)
C13—N2—C6—C5161.1 (3)Zn1—N2—C13—C2067.7 (4)
Zn1—N2—C6—C528.5 (4)N2—C13—C14—C1994.8 (4)
N1—C5—C6—N221.4 (5)C20—C13—C14—C19137.1 (4)
C4—C5—C6—N2160.8 (3)N2—C13—C14—C1585.5 (4)
C6—N2—C7—C8161.8 (3)C20—C13—C14—C1542.7 (5)
C13—N2—C7—C869.7 (4)C19—C14—C15—C160.1 (6)
Zn1—N2—C7—C853.4 (3)C13—C14—C15—C16179.9 (4)
C12—N3—C8—C91.3 (5)C14—C15—C16—C170.9 (7)
Zn1—N3—C8—C9175.1 (3)C15—C16—C17—C180.2 (7)
C12—N3—C8—C7179.8 (3)C16—C17—C18—C191.5 (6)
Zn1—N3—C8—C73.4 (4)C17—C18—C19—C142.5 (6)
N2—C7—C8—N341.4 (4)C15—C14—C19—C181.8 (6)
N2—C7—C8—C9140.1 (4)C13—C14—C19—C18178.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···S2i0.952.773.604 (5)147
C11—H11···S1ii0.952.803.738 (5)169
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.
 

Acknowledgements

The X-ray crystallography BL2D-SMC beamline at the PLS-II were supported in part by MSIP and POSTECH.

References

First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGu, Z.-G., Zhan, C., Zhang, J. & Bu, X. (2016). Chem. Soc. Rev. 45, 3122–3144.  CrossRef CAS Google Scholar
First citationHashem, E., Platts, J. A., Hartl, F., Lorusso, G., Evangelisti, M., Schulzke, C. & Baker, R. J. (2014). Inorg. Chem. 53, 8624–8637.  CSD CrossRef CAS Google Scholar
First citationHuang, S.-L., Zhang, L., Lin, Y.-J. & Jin, G.-X. (2013). CrystEngComm, 15, 78–85.  CSD CrossRef CAS Google Scholar
First citationLodeiro, C. & Pina, F. (2009). Coord. Chem. Rev. 253, 1353–1383.  CrossRef CAS Google Scholar
First citationNawrot, I., Machura, B. & Kruszynski, R. (2016). CrystEngComm, 18, 2650–2663.  CSD CrossRef CAS Google Scholar
First citationNowicka, B., Bałanda, M., Gaweł, B., Ćwiak, G., Budziak, A., Łasocha, W. & Sieklucka, B. (2011). Dalton Trans. 40, 3067–3073.  CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press: New York.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRowthu, S. R., Shin, J. W., Kim, S.-H., Kim, J. J. & Min, K. S. (2011). Acta Cryst. E67, m873–m874.  CSD CrossRef IUCr Journals Google Scholar
First citationRyoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232–7234.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteed, J. W. & Atwood, J. L. (2009). In Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons Ltd.  Google Scholar
First citationTak, R., Kumar, M., Kureshy, R. I., Choudhary, M. K., Khan, N. H., Abdi, S. H. R. & Bajaj, H. C. (2016). RSC Adv. 6, 7693–7700.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWoo, A., Lee, Y. H., Hayami, S., Lindoy, L. F., Thuery, P. & Kim, Y. (2011). J. Inclusion Phenom. Macrocycl. Chem. 71, 409–417.  CSD CrossRef CAS Google Scholar
First citationYao, J., Fu, X., Zheng, X.-L., Cao, Z.-Q. & Qu, D.-H. (2015). Dyes Pigm. 121, 12–20.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds