research communications
S)-1-phenyl-N,N-bis[(pyridin-2-yl)methyl]ethanamine-κ3N,N′,N′′}bis(thiocyanato-κN)zinc from synchrotron data
of {(aDaegu-Gyeongbuk Branch, Korea Institute of Science and Technology Information, 90 Yutongdanji-ro, Buk-gu, Daegu 41515, Republic of Korea
*Correspondence e-mail: jwshin@kisti.re.kr
The title ZnII complex, [Zn(NCS)2(C20H21N3)], has been characterized by synchrotron single-crystal diffraction and FT–IR spectroscopy. The central ZnII ion has a distorted square-pyramidal coordination geometry, with three N atoms of the chiral (S) 1-phenyl-N,N-bis[(pyridin-2-yl)methyl]ethanamine (S-ppme) ligand and one N atom of a thiocyanate anion in the equatorial plane, and one N atom of another thiocyanate anion at the apical position. The average Zn—NS-ppme and Zn—NNCS bond lengths are 2.183 (2) and 1.986 (2) Å, respectively. In the crystal, intermolecular C—H⋯S hydrogen bonds and a face-to-face π–π interaction [centroid–centroid distance = 3.482 (1) Å] link the molecules and give rise to a supramolecular sheet structure parallel to the ac plane.
Keywords: crystal structure; chiral ligand; sodium thiocyanate; π–π interactions; synchrotron data.
CCDC reference: 1520395
1. Chemical context
Recently, the preparation of new polyamines or their derivatives have attracted increasing attention in organic chemistry, pharmaceutical chemistry and materials science because they can easily interact with metal ions and form stable multifunctional compounds with various applications in magnetic materials, sorption materials, as well as fluorescent substances (Lodeiro & Pina, 2009; Nowicka et al., 2011; Yao et al., 2015). For instance, metal complexes with cyclam or azamacrocyclic ligands have been synthesized and investigated for selective adsorption of CO2 over N2 gases (Huang et al., 2013). In particular, chiral derivatives based on polyamine ligands can easily form chiral metal complexes with interesting properties, such as chiral recognition or as asymmetric catalysts. For example, the chiral two-dimensional coordination polymer, [Ni(LR,R)]3[C6H3(COO)3]2·12H2O·CH3CN {LR,R is 1,8-bis[(R)-α-methylbenzyl]-1,3,6,8,10,13-hexaazacyclotetradecane}, showed an efficient chiral recognition for rac-1,1′-bi-2-naphthol (Ryoo et al., 2010). Moreover, a chiral iron(III) complex containing binol derivatives exhibited high enantioselectivity and high yield for the enantiopure β-amino (Tak et al., 2016). Nevertheless, only a few of these complexes have been reported and characterized because the preparation of these complexes remains a major challenge in synthetic chemistry and materials science (Gu et al., 2016). The thiocyanate ion is a versatile anion which can bridge to metal ions through the S or N atom, thus allowing the assembly of supramolecular compounds (Nawrot et al., 2016). We report here the preparation and of a chiral zinc complex constructed from the versatile tridentate chiral ligand (S)-1-phenyl-N,N-bis[(pyridin-2-yl)methyl]ethanamine (S-ppme) and the thiocyanate ion, namely [Zn(NCS)2(S-ppme)].
2. Structural commentary
A view of the molecular structure of the title compound is shown in Fig. 1. The coordination environment of the ZnII ion can be described as distorted square pyramidal. The ZnII ion is coordinated by three N atoms from the chiral S-ppme ligand and by two N atoms of thiocyanate ions. The thiocyanate ions coordinate through the N atoms in cis positions with respect to each other and are trans to the phenyl group of the chiral S-ppme ligand. The coordinating thiocyanate ions are linear but slightly bent in relation to the ZnII ion [N4—C21—S1 = 179.9 (1)°, N5—C22—S2 = 178.5 (4)°, Zn1—N4—C21 = 171.6 (4)° and Zn1—N5—C22 = 170.3 (4)°]. The bond angle between the thiocyanate ions is 101.43 (2)°. The average N≡C and C—S bond lengths of the thiocyanate ions are 1.158 (4) and 1.629 (6) Å, respectively, which implies that both thiocyanate ions are not delocalized. The former is very similar to the C≡N triple-bond length, while the latter is slightly shorter than reported C—S single-bond length (Hashem et al., 2014). The pyridine rings of the S-ppme ligand are twisted with respect to each other. The average Zn—NS-ppme and Zn—NNCS bond lengths are 2.183 (2) and 1.986 (2) Å, respectively. The bond angles around the ZnII ion range from 73.99 (1) to 156.01 (1)°.
3. Supramolecular features
The thiocyanate ligands form intermolecular C—H⋯S hydrogen bonds with adjacent pyridine groups of the chiral S-ppme ligand, giving rise to a sheet structure parallel to the ac plane (Fig. 2 and Table 1) (Steed & Atwood, 2009). In the sheet, adjacent C8–C12/N3 pyridine rings of chiral S-ppme ligands are also linked through a face-to-face π–π interaction, with a centroid–centroid distance of 3.482 (1) Å and a dihedral angle of 2.947 (1)°.
4. Database survey
A search of the Cambridge Structural Database (Version 5.37, February 2016 with two updates; Groom et al., 2016) gives three copper(II) complexes with the same chiral S-ppme ligand (Rowthu et al., 2011; Woo et al., 2011) for which syntheses, magnetic properties and crystal structures have been reported.
5. Synthesis and crystallization
The chiral S-ppme ligand was prepared according to a slight modification of the method of Rowthu et al. (2011). A methanol solution (5 mL) of KNCS (0.078 g, 0.80 mmol) was added slowly to a methanol solution (15 mL) containing ZnSO4·7H2O (0.115 g, 0.40 mmol). The mixture was stirred for 20 min and the the formed white precipitates were eliminated by filtration. A solution of the chiral S-ppme (0.121 g, 0.40 mmol) in MeOH (10 mL) was added slowly to the filtered solution with vigorous stirring at room temperature. The resulting pale-yellow precipitates were collected by filtration, washed with methanol and diethyl ether, and dried in air. Single crystals were obtained by slow evaporation from methanol solution for a period of several days (yield: 0.123 g, 64%). FT–IR (KBr, cm−1): 3102, 3029, 2995, 2910, 2056, 1606.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95–0.99 Å and Uiso(H) values of 1.2 or 1.5Ueq of the parent atoms.
details are summarized in Table 2Supporting information
CCDC reference: 1520395
https://doi.org/10.1107/S2056989016019253/is5466sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016019253/is5466Isup2.hkl
Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip, 2010).[Zn(NCS)2(C20H21N3)] | F(000) = 1000 |
Mr = 484.93 | Dx = 1.446 Mg m−3 |
Monoclinic, C2 | Synchrotron radiation, λ = 0.630 Å |
a = 19.270 (4) Å | Cell parameters from 32924 reflections |
b = 7.7950 (16) Å | θ = 0.4–33.6° |
c = 14.834 (3) Å | µ = 0.94 mm−1 |
β = 91.71 (3)° | T = 100 K |
V = 2227.2 (8) Å3 | Needle, colorless |
Z = 4 | 0.10 × 0.04 × 0.02 mm |
ADSC Q210 CCD area detector diffractometer | 5123 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.048 |
ω scan | θmax = 26.0°, θmin = 2.4° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997) | h = −26→26 |
Tmin = 0.912, Tmax = 0.981 | k = −10→10 |
11189 measured reflections | l = −20→20 |
6035 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0509P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.093 | (Δ/σ)max < 0.001 |
S = 0.99 | Δρmax = 0.35 e Å−3 |
6035 reflections | Δρmin = −1.03 e Å−3 |
272 parameters | Absolute structure: Flack x determined using 2026 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.010 (6) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.46128 (2) | 0.33954 (6) | 0.76988 (3) | 0.01920 (11) | |
N1 | 0.52691 (16) | 0.5093 (4) | 0.8331 (2) | 0.0213 (7) | |
N2 | 0.40589 (15) | 0.6204 (4) | 0.7503 (2) | 0.0165 (7) | |
N3 | 0.43224 (14) | 0.3562 (5) | 0.6353 (2) | 0.0199 (6) | |
C1 | 0.5905 (2) | 0.4552 (6) | 0.8617 (3) | 0.0287 (9) | |
H1 | 0.6043 | 0.3414 | 0.8480 | 0.034* | |
C2 | 0.6357 (2) | 0.5585 (7) | 0.9097 (3) | 0.0331 (10) | |
H2 | 0.6797 | 0.5161 | 0.9298 | 0.040* | |
C3 | 0.6165 (2) | 0.7254 (7) | 0.9286 (3) | 0.0306 (10) | |
H3 | 0.6474 | 0.7999 | 0.9606 | 0.037* | |
C4 | 0.5509 (2) | 0.7824 (6) | 0.8998 (3) | 0.0254 (9) | |
H4 | 0.5362 | 0.8960 | 0.9126 | 0.030* | |
C5 | 0.50773 (19) | 0.6714 (6) | 0.8525 (3) | 0.0198 (8) | |
C6 | 0.4348 (2) | 0.7272 (5) | 0.8232 (3) | 0.0232 (8) | |
H6A | 0.4042 | 0.7208 | 0.8755 | 0.028* | |
H6B | 0.4360 | 0.8480 | 0.8028 | 0.028* | |
C7 | 0.44001 (19) | 0.6585 (6) | 0.6647 (3) | 0.0194 (7) | |
H7A | 0.4905 | 0.6735 | 0.6761 | 0.023* | |
H7B | 0.4212 | 0.7666 | 0.6388 | 0.023* | |
C8 | 0.42740 (19) | 0.5140 (5) | 0.5994 (3) | 0.0188 (8) | |
C9 | 0.4133 (2) | 0.5404 (7) | 0.5076 (3) | 0.0277 (10) | |
H9 | 0.4107 | 0.6529 | 0.4831 | 0.033* | |
C10 | 0.4032 (2) | 0.3974 (7) | 0.4533 (3) | 0.0360 (13) | |
H10 | 0.3938 | 0.4108 | 0.3905 | 0.043* | |
C11 | 0.4069 (2) | 0.2344 (7) | 0.4910 (3) | 0.0360 (13) | |
H11 | 0.3991 | 0.1356 | 0.4546 | 0.043* | |
C12 | 0.4220 (2) | 0.2182 (6) | 0.5822 (3) | 0.0282 (10) | |
H12 | 0.4252 | 0.1069 | 0.6081 | 0.034* | |
C13 | 0.32788 (18) | 0.6288 (5) | 0.7383 (3) | 0.0188 (8) | |
H13 | 0.3149 | 0.5409 | 0.6917 | 0.023* | |
C14 | 0.30213 (18) | 0.8003 (5) | 0.7011 (3) | 0.0184 (8) | |
C15 | 0.2898 (2) | 0.9419 (5) | 0.7561 (3) | 0.0238 (8) | |
H15 | 0.2977 | 0.9328 | 0.8194 | 0.029* | |
C16 | 0.2663 (2) | 1.0954 (6) | 0.7194 (3) | 0.0286 (10) | |
H16 | 0.2576 | 1.1899 | 0.7579 | 0.034* | |
C17 | 0.2554 (2) | 1.1123 (5) | 0.6272 (3) | 0.0258 (9) | |
H17 | 0.2394 | 1.2179 | 0.6024 | 0.031* | |
C18 | 0.2679 (2) | 0.9745 (6) | 0.5717 (3) | 0.0272 (9) | |
H18 | 0.2616 | 0.9858 | 0.5083 | 0.033* | |
C19 | 0.28976 (18) | 0.8195 (6) | 0.6087 (3) | 0.0221 (8) | |
H19 | 0.2964 | 0.7241 | 0.5701 | 0.027* | |
C20 | 0.2913 (2) | 0.5759 (6) | 0.8239 (3) | 0.0253 (9) | |
H20A | 0.2982 | 0.6648 | 0.8700 | 0.038* | |
H20B | 0.3107 | 0.4672 | 0.8462 | 0.038* | |
H20C | 0.2415 | 0.5619 | 0.8104 | 0.038* | |
N4 | 0.53102 (18) | 0.1463 (5) | 0.7434 (3) | 0.0299 (8) | |
C21 | 0.5672 (2) | 0.0390 (5) | 0.7176 (3) | 0.0210 (8) | |
S1 | 0.61788 (5) | −0.11203 (13) | 0.68120 (7) | 0.0269 (2) | |
N5 | 0.40467 (18) | 0.2318 (5) | 0.8601 (3) | 0.0267 (8) | |
S2 | 0.31745 (6) | 0.13587 (16) | 0.99713 (8) | 0.0303 (3) | |
C22 | 0.3691 (2) | 0.1913 (5) | 0.9177 (3) | 0.0220 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.01633 (18) | 0.0166 (2) | 0.0249 (2) | 0.0000 (2) | 0.00448 (14) | 0.0002 (2) |
N1 | 0.0170 (15) | 0.0190 (17) | 0.0276 (17) | 0.0002 (14) | −0.0009 (13) | 0.0016 (13) |
N2 | 0.0123 (13) | 0.0154 (16) | 0.0221 (16) | −0.0017 (12) | 0.0027 (12) | −0.0035 (12) |
N3 | 0.0122 (12) | 0.0209 (17) | 0.0270 (15) | 0.0012 (16) | 0.0053 (11) | −0.0060 (15) |
C1 | 0.0173 (18) | 0.029 (2) | 0.039 (2) | 0.0041 (18) | −0.0019 (17) | 0.0042 (19) |
C2 | 0.0173 (19) | 0.039 (3) | 0.043 (3) | −0.003 (2) | −0.0062 (18) | 0.004 (2) |
C3 | 0.027 (2) | 0.040 (3) | 0.025 (2) | −0.012 (2) | −0.0027 (17) | 0.0042 (19) |
C4 | 0.0291 (19) | 0.026 (2) | 0.0212 (19) | −0.0066 (18) | 0.0015 (15) | 0.0004 (15) |
C5 | 0.0170 (17) | 0.021 (2) | 0.0212 (18) | −0.0035 (17) | 0.0021 (14) | 0.0012 (15) |
C6 | 0.0206 (18) | 0.022 (2) | 0.027 (2) | 0.0001 (17) | 0.0027 (15) | −0.0061 (16) |
C7 | 0.0145 (16) | 0.0213 (19) | 0.0226 (18) | 0.0009 (16) | 0.0041 (14) | 0.0029 (16) |
C8 | 0.0103 (16) | 0.025 (2) | 0.0217 (19) | 0.0004 (16) | 0.0050 (14) | −0.0006 (16) |
C9 | 0.0163 (18) | 0.044 (3) | 0.023 (2) | 0.005 (2) | 0.0043 (15) | 0.0002 (19) |
C10 | 0.0156 (17) | 0.069 (4) | 0.024 (2) | 0.001 (2) | 0.0044 (15) | −0.011 (2) |
C11 | 0.020 (2) | 0.053 (4) | 0.036 (3) | −0.004 (2) | 0.0055 (19) | −0.026 (2) |
C12 | 0.018 (2) | 0.027 (2) | 0.040 (3) | 0.0004 (19) | 0.0066 (17) | −0.009 (2) |
C13 | 0.0138 (16) | 0.0162 (19) | 0.027 (2) | 0.0018 (15) | 0.0036 (14) | −0.0021 (15) |
C14 | 0.0110 (14) | 0.016 (2) | 0.0280 (19) | 0.0010 (14) | 0.0021 (13) | −0.0027 (14) |
C15 | 0.0221 (19) | 0.021 (2) | 0.029 (2) | 0.0023 (18) | 0.0022 (15) | −0.0063 (17) |
C16 | 0.026 (2) | 0.023 (2) | 0.037 (2) | 0.0081 (19) | −0.0006 (18) | −0.0068 (18) |
C17 | 0.0190 (19) | 0.021 (2) | 0.037 (2) | 0.0048 (17) | −0.0008 (17) | 0.0020 (17) |
C18 | 0.0201 (19) | 0.031 (2) | 0.030 (2) | 0.0104 (19) | −0.0016 (16) | 0.0013 (18) |
C19 | 0.0171 (15) | 0.021 (2) | 0.0277 (18) | 0.0029 (18) | −0.0016 (13) | −0.0064 (18) |
C20 | 0.0179 (17) | 0.027 (2) | 0.031 (2) | 0.0028 (18) | 0.0079 (15) | 0.0043 (18) |
N4 | 0.0291 (18) | 0.027 (2) | 0.034 (2) | 0.0080 (17) | 0.0060 (16) | 0.0060 (16) |
C21 | 0.0214 (18) | 0.020 (2) | 0.0216 (18) | 0.0018 (17) | 0.0034 (14) | 0.0026 (15) |
S1 | 0.0247 (5) | 0.0236 (6) | 0.0326 (5) | 0.0079 (4) | 0.0072 (4) | 0.0012 (4) |
N5 | 0.0260 (18) | 0.0229 (18) | 0.0316 (19) | −0.0019 (15) | 0.0071 (14) | 0.0042 (15) |
S2 | 0.0287 (5) | 0.0326 (6) | 0.0300 (6) | −0.0088 (5) | 0.0087 (4) | 0.0029 (5) |
C22 | 0.0219 (18) | 0.0156 (19) | 0.028 (2) | −0.0021 (17) | −0.0032 (15) | 0.0011 (16) |
Zn1—N5 | 1.942 (3) | C9—H9 | 0.9500 |
Zn1—N1 | 2.039 (3) | C10—C11 | 1.389 (8) |
Zn1—N3 | 2.061 (3) | C10—H10 | 0.9500 |
Zn1—N4 | 2.064 (4) | C11—C12 | 1.381 (7) |
Zn1—N2 | 2.449 (3) | C11—H11 | 0.9500 |
N1—C5 | 1.350 (5) | C12—H12 | 0.9500 |
N1—C1 | 1.352 (5) | C13—C14 | 1.524 (5) |
N2—C6 | 1.461 (5) | C13—C20 | 1.526 (5) |
N2—C7 | 1.478 (5) | C13—H13 | 1.0000 |
N2—C13 | 1.510 (5) | C14—C19 | 1.392 (5) |
N3—C8 | 1.342 (6) | C14—C15 | 1.397 (5) |
N3—C12 | 1.344 (6) | C15—C16 | 1.385 (6) |
C1—C2 | 1.370 (7) | C15—H15 | 0.9500 |
C1—H1 | 0.9500 | C16—C17 | 1.384 (6) |
C2—C3 | 1.383 (7) | C16—H16 | 0.9500 |
C2—H2 | 0.9500 | C17—C18 | 1.378 (6) |
C3—C4 | 1.394 (6) | C17—H17 | 0.9500 |
C3—H3 | 0.9500 | C18—C19 | 1.387 (6) |
C4—C5 | 1.378 (6) | C18—H18 | 0.9500 |
C4—H4 | 0.9500 | C19—H19 | 0.9500 |
C5—C6 | 1.523 (5) | C20—H20A | 0.9800 |
C6—H6A | 0.9900 | C20—H20B | 0.9800 |
C6—H6B | 0.9900 | C20—H20C | 0.9800 |
C7—C8 | 1.500 (6) | N4—C21 | 1.160 (5) |
C7—H7A | 0.9900 | C21—S1 | 1.633 (4) |
C7—H7B | 0.9900 | N5—C22 | 1.155 (5) |
C8—C9 | 1.397 (6) | S2—C22 | 1.624 (4) |
C9—C10 | 1.385 (7) | ||
N5—Zn1—N1 | 108.46 (15) | N3—C8—C9 | 122.1 (4) |
N5—Zn1—N3 | 123.55 (14) | N3—C8—C7 | 115.1 (4) |
N1—Zn1—N3 | 123.46 (14) | C9—C8—C7 | 122.8 (4) |
N5—Zn1—N4 | 101.43 (15) | C10—C9—C8 | 117.9 (5) |
N1—Zn1—N4 | 99.36 (15) | C10—C9—H9 | 121.1 |
N3—Zn1—N4 | 91.21 (14) | C8—C9—H9 | 121.1 |
N5—Zn1—N2 | 102.49 (13) | C9—C10—C11 | 119.9 (4) |
N1—Zn1—N2 | 74.73 (12) | C9—C10—H10 | 120.1 |
N3—Zn1—N2 | 73.99 (13) | C11—C10—H10 | 120.1 |
N4—Zn1—N2 | 156.01 (13) | C12—C11—C10 | 119.0 (5) |
C5—N1—C1 | 118.4 (4) | C12—C11—H11 | 120.5 |
C5—N1—Zn1 | 122.4 (3) | C10—C11—H11 | 120.5 |
C1—N1—Zn1 | 119.1 (3) | N3—C12—C11 | 121.6 (5) |
C6—N2—C7 | 110.6 (3) | N3—C12—H12 | 119.2 |
C6—N2—C13 | 114.7 (3) | C11—C12—H12 | 119.2 |
C7—N2—C13 | 110.9 (3) | N2—C13—C14 | 113.1 (3) |
C6—N2—Zn1 | 105.5 (2) | N2—C13—C20 | 111.9 (3) |
C7—N2—Zn1 | 94.5 (2) | C14—C13—C20 | 112.6 (3) |
C13—N2—Zn1 | 118.8 (2) | N2—C13—H13 | 106.2 |
C8—N3—C12 | 119.6 (4) | C14—C13—H13 | 106.2 |
C8—N3—Zn1 | 117.1 (3) | C20—C13—H13 | 106.2 |
C12—N3—Zn1 | 123.2 (3) | C19—C14—C15 | 117.6 (4) |
N1—C1—C2 | 122.4 (4) | C19—C14—C13 | 119.7 (4) |
N1—C1—H1 | 118.8 | C15—C14—C13 | 122.7 (4) |
C2—C1—H1 | 118.8 | C16—C15—C14 | 120.8 (4) |
C1—C2—C3 | 119.2 (4) | C16—C15—H15 | 119.6 |
C1—C2—H2 | 120.4 | C14—C15—H15 | 119.6 |
C3—C2—H2 | 120.4 | C17—C16—C15 | 120.6 (4) |
C2—C3—C4 | 118.9 (4) | C17—C16—H16 | 119.7 |
C2—C3—H3 | 120.5 | C15—C16—H16 | 119.7 |
C4—C3—H3 | 120.5 | C18—C17—C16 | 119.5 (4) |
C5—C4—C3 | 118.9 (4) | C18—C17—H17 | 120.3 |
C5—C4—H4 | 120.5 | C16—C17—H17 | 120.3 |
C3—C4—H4 | 120.5 | C17—C18—C19 | 119.9 (4) |
N1—C5—C4 | 122.1 (4) | C17—C18—H18 | 120.0 |
N1—C5—C6 | 117.6 (4) | C19—C18—H18 | 120.0 |
C4—C5—C6 | 120.3 (4) | C18—C19—C14 | 121.6 (4) |
N2—C6—C5 | 112.1 (3) | C18—C19—H19 | 119.2 |
N2—C6—H6A | 109.2 | C14—C19—H19 | 119.2 |
C5—C6—H6A | 109.2 | C13—C20—H20A | 109.5 |
N2—C6—H6B | 109.2 | C13—C20—H20B | 109.5 |
C5—C6—H6B | 109.2 | H20A—C20—H20B | 109.5 |
H6A—C6—H6B | 107.9 | C13—C20—H20C | 109.5 |
N2—C7—C8 | 109.6 (3) | H20A—C20—H20C | 109.5 |
N2—C7—H7A | 109.7 | H20B—C20—H20C | 109.5 |
C8—C7—H7A | 109.7 | C21—N4—Zn1 | 171.6 (4) |
N2—C7—H7B | 109.7 | N4—C21—S1 | 179.9 (5) |
C8—C7—H7B | 109.7 | C22—N5—Zn1 | 170.3 (4) |
H7A—C7—H7B | 108.2 | N5—C22—S2 | 178.5 (4) |
C5—N1—C1—C2 | 0.3 (6) | N3—C8—C9—C10 | 0.9 (6) |
Zn1—N1—C1—C2 | −175.7 (4) | C7—C8—C9—C10 | 179.3 (3) |
N1—C1—C2—C3 | −1.2 (7) | C8—C9—C10—C11 | 0.4 (6) |
C1—C2—C3—C4 | 1.4 (7) | C9—C10—C11—C12 | −1.3 (6) |
C2—C3—C4—C5 | −0.8 (6) | C8—N3—C12—C11 | 0.4 (5) |
C1—N1—C5—C4 | 0.3 (6) | Zn1—N3—C12—C11 | −175.8 (3) |
Zn1—N1—C5—C4 | 176.2 (3) | C10—C11—C12—N3 | 0.9 (7) |
C1—N1—C5—C6 | −177.4 (4) | C6—N2—C13—C14 | 70.2 (4) |
Zn1—N1—C5—C6 | −1.5 (5) | C7—N2—C13—C14 | −56.0 (4) |
C3—C4—C5—N1 | 0.0 (6) | Zn1—N2—C13—C14 | −163.8 (2) |
C3—C4—C5—C6 | 177.7 (4) | C6—N2—C13—C20 | −58.3 (4) |
C7—N2—C6—C5 | −72.5 (4) | C7—N2—C13—C20 | 175.5 (3) |
C13—N2—C6—C5 | 161.1 (3) | Zn1—N2—C13—C20 | 67.7 (4) |
Zn1—N2—C6—C5 | 28.5 (4) | N2—C13—C14—C19 | 94.8 (4) |
N1—C5—C6—N2 | −21.4 (5) | C20—C13—C14—C19 | −137.1 (4) |
C4—C5—C6—N2 | 160.8 (3) | N2—C13—C14—C15 | −85.5 (4) |
C6—N2—C7—C8 | 161.8 (3) | C20—C13—C14—C15 | 42.7 (5) |
C13—N2—C7—C8 | −69.7 (4) | C19—C14—C15—C16 | −0.1 (6) |
Zn1—N2—C7—C8 | 53.4 (3) | C13—C14—C15—C16 | −179.9 (4) |
C12—N3—C8—C9 | −1.3 (5) | C14—C15—C16—C17 | −0.9 (7) |
Zn1—N3—C8—C9 | 175.1 (3) | C15—C16—C17—C18 | 0.2 (7) |
C12—N3—C8—C7 | −179.8 (3) | C16—C17—C18—C19 | 1.5 (6) |
Zn1—N3—C8—C7 | −3.4 (4) | C17—C18—C19—C14 | −2.5 (6) |
N2—C7—C8—N3 | −41.4 (4) | C15—C14—C19—C18 | 1.8 (6) |
N2—C7—C8—C9 | 140.1 (4) | C13—C14—C19—C18 | −178.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···S2i | 0.95 | 2.77 | 3.604 (5) | 147 |
C11—H11···S1ii | 0.95 | 2.80 | 3.738 (5) | 169 |
Symmetry codes: (i) −x+1, y+1, −z+2; (ii) −x+1, y, −z+1. |
Acknowledgements
The X-ray crystallography BL2D-SMC beamline at the PLS-II were supported in part by MSIP and POSTECH.
References
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gu, Z.-G., Zhan, C., Zhang, J. & Bu, X. (2016). Chem. Soc. Rev. 45, 3122–3144. CrossRef CAS Google Scholar
Hashem, E., Platts, J. A., Hartl, F., Lorusso, G., Evangelisti, M., Schulzke, C. & Baker, R. J. (2014). Inorg. Chem. 53, 8624–8637. CSD CrossRef CAS Google Scholar
Huang, S.-L., Zhang, L., Lin, Y.-J. & Jin, G.-X. (2013). CrystEngComm, 15, 78–85. CSD CrossRef CAS Google Scholar
Lodeiro, C. & Pina, F. (2009). Coord. Chem. Rev. 253, 1353–1383. CrossRef CAS Google Scholar
Nawrot, I., Machura, B. & Kruszynski, R. (2016). CrystEngComm, 18, 2650–2663. CSD CrossRef CAS Google Scholar
Nowicka, B., Bałanda, M., Gaweł, B., Ćwiak, G., Budziak, A., Łasocha, W. & Sieklucka, B. (2011). Dalton Trans. 40, 3067–3073. CSD CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. Academic Press: New York. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Rowthu, S. R., Shin, J. W., Kim, S.-H., Kim, J. J. & Min, K. S. (2011). Acta Cryst. E67, m873–m874. CSD CrossRef IUCr Journals Google Scholar
Ryoo, J. J., Shin, J. W., Dho, H.-S. & Min, K. S. (2010). Inorg. Chem. 49, 7232–7234. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Steed, J. W. & Atwood, J. L. (2009). In Supramolecular Chemistry, 2nd ed. Chichester: John Wiley & Sons Ltd. Google Scholar
Tak, R., Kumar, M., Kureshy, R. I., Choudhary, M. K., Khan, N. H., Abdi, S. H. R. & Bajaj, H. C. (2016). RSC Adv. 6, 7693–7700. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Woo, A., Lee, Y. H., Hayami, S., Lindoy, L. F., Thuery, P. & Kim, Y. (2011). J. Inclusion Phenom. Macrocycl. Chem. 71, 409–417. CSD CrossRef CAS Google Scholar
Yao, J., Fu, X., Zheng, X.-L., Cao, Z.-Q. & Qu, D.-H. (2015). Dyes Pigm. 121, 12–20. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.