research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and absolute configuration of (3aR,3′aR,7aS,7′aS)-2,2,2′,2′-tetra­methyl-3a,6,7,7a,3′a,6′,7′,7′a-octa­hydro-4,4′-bi[1,3-benzodioxol­yl], obtained from a Pd-catalyzed homocoupling reaction

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia, bDepartamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo, Uruguay, cDepartamento de Química Orgánica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre/RS, 91501-970, Brazil, and dCryssmat-Lab/Cátedra de Física/DETEMA, Universidad de la República, Montevideo, Uruguay
*Correspondence e-mail: leopoldo@fq.edu.uy

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 5 December 2016; accepted 14 December 2016; online 1 January 2017)

The absolute configuration, i.e. (3aR,3′aR,7aS,7′aS), of the title compound, C18H26O4, synthesized via a palladium-catalyzed homocoupling reaction, was determined on the basis of the synthetic pathway and was confirmed by X-ray diffraction. The homocoupled mol­ecule is formed by two chemically identical moieties built up from two five- and six-membered fused rings. The supra­molecular assembly is controlled mainly by C—H⋯O inter­actions that lead to the formation of hydrogen-bonded chains of mol­ecules along the [001] direction, while weak dipolar inter­actions and van der Waals forces hold the chains together in the crystal structure.

1. Chemical context

Over the last few years, we have focused our efforts on the synthesis of vinyl­sulfimines as precursors in γ-lactamization reactions to generate asymmetric pyrrolidone derivatives which are of inter­est in medicinal chemistry (Silveira et al., 2012[Silveira, G. P., Bonfante de Carvallho, C. & Oliver, A. G. (2012). Acta Cryst. E68, o2048-o2048.], 2014[Silveira, G. P., da Silva, V. F. & Oliver, A. G. (2014). Acta Cryst. E70, o1257-o1258.]; Silveira & Marino, 2013[Silveira, G. P. & Marino, J. P. (2013). J. Org. Chem. 78, 3379-3383.]; Pereira et al., 2015[Pereira, P. A., Noll, B. C., Oliver, A. G. & Silveira, G. P. (2015). Acta Cryst. E71, o1097-o1098.]). Encouraged by our previous experience in functionalizing halo-cyclo­hexa­diendiols (Heguaburu et al., 2008[Heguaburu, V., Mandolesi Sá, M., Schapiro, V. & Pandolfi, E. (2008). Tetrahedron Lett. 49, 6787-6790.]; Labora et al., 2010[Labora, M., Pandolfi, E. & Schapiro, V. (2010). Tetrahedron Asymmetry, 21, 153-155.]; Heguaburu et al., 2010[Heguaburu, V., Schapiro, V. & Pandolfi, E. (2010). Tetrahedron Lett. 51, 6921-6923.]; Labora et al., 2008[Labora, M., Heguaburu, V., Pandolfi, E. & Schapiro, V. (2008). Tetrahedron Asymmetry, 19, 893-895.]), we synthesized a vinylic sulfide (mol­ecule 3 in Fig. 1[link]) from protected iodo-cyclo­hexenediol (mol­ecule 1 in Fig. 1[link]). This latter compound was obtained firstly by regioselective reduction of iodo­cyclo­hexa­dienediol derived from the biotransformation of iodo­benzene (González et al., 1997[González, D., Schapiro, V., Seoane, G. & Hudlicky, T. (1997). Tetrahedron Asymmetry, 8, 975-977.]). The obtained compound was treated with lithium iso­propyl­thiol­ate in the presence of 5% of Pd (PPh3)4 as catalyst to obtain the vinyl sulfide in 85% yield. Surprisingly, one of the attempts to perform this reaction proceeded to afford traces of the homocoupled product (mol­ecule 2 in Fig. 1[link]). Considering this finding, we decided to prepare this new compound via a palladium-catalyzed homocoupling reaction of the vinylic iodide (mol­ecule 1 in Fig. 1[link]), mediated by indium, according to the Lee protocol (Lee et al., 2005[Lee, P. H., Seomoon, D. & Lee, K. (2005). Org. Lett. 7, 343-345.]). Herein, we report this new synthetic method and the crystal structure of the title compound.

[Scheme 1]
[Figure 1]
Figure 1
Synthetic pathway showing the formation of the homocoupled compound C18H26O4.

2. Structural commentary

The absolute configuration of the title compound (Fig. 2[link]) was determined to be 3aR,3′aR,7aS,7′aS by considering the synthetic pathway and confirmed by X-ray diffraction on the basis of the anomalous dispersion of light atoms only. The mol­ecule is built up from two chemically identical moieties (called A and B), each one composed of two fused rings and connected through the C4A—C4B bond. The six-membered rings (C3AA/AB, C7AA/AB, C7A/B, C6A/B, C5A/B, C4A/B) adopt an envelope conformation with atoms C7A/B (located para to C4A/B) as the flap [puckering parameters are Q = 0.403 (2) Å, θ = 49.2 (3)°, φ = 108.2 (4)° and Q = 0.490 (2) Å, θ = 58.5 (2)°, φ = 114.9 (3)°, respectively]. The five-membered rings (O1A/B, C2A/B, O3A/B, C3AA/AB, C7AA/AB) adopt a twisted conformation [puckering parameters Q(2) = 0.3285 (17) Å, φ(2) = 115.6 (3)° and Q(2) = 0.3268 (18) Å, φ(2) = 101.4 (3)°, respectively]). In fragment A, the flap of the envelope is oriented away from the five-membered ring while in fragment B, both C7 and the five-membered ring are on the same side of the plane of the envelope, making them conformationally different. The dihedral angle between the least-square planes through the six-membered rings is 43.15 (9)° while the dihedral angles between the five and six-membered rings are 69.31 (10) and 76.95 (10)° in A and B, respectively, leaving the two five-membered rings on opposite sides of the C4A—C4B bond and almost in the same plane, normal to the bis­ector plane of both six-membered rings.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound, showing anisotropic displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, weak C22A—H22F⋯O3Bi [symmetry code: (i) x, y, z − 1] inter­actions link the mol­ecules in chains running along [001], see Fig. 3[link] and Table 1[link]. In the [100] and [010] directions, only weak dipolar inter­actions or van der Waals forces act between neighboring chains to stabilize the three-dimensional array of the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C22A—H22F⋯O3Bi 0.96 2.56 3.510 (3) 171
Symmetry code: (i) x, y, z-1.
[Figure 3]
Figure 3
The crystal structure of the title compound, showing the C—H⋯O hydrogen-bonding inter­actions (dotted lines) along the [001] direction.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 5.36 with one update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using as a criterion the existence of mol­ecular structures composed of two similar fragments of fused five and six-membered rings gave no results. However, a search for similar systems considering only the six-membered ring resulted in four hits, viz. two different crystal structures for (5,5′-diphenyl-1,1′-bi(cyclo­hex-1-en-1-yl)-4,4′-di­yl)di­methanol in space groups P1 and P[\overline{1}], (S,S)-2,2′-bis­(di­phenyl­phosphino­yl)bi(cyclo­hex-1-ene) and (3S,6R)-3-isopropyl-2-[(3R,6S)-6-isopropyl-3-methyl-1-cyclo­hexen­yl]-6-methyl­cyclo­hexene; none of which is composed of fused rings. These results demonstrate the rarity of this sort of mol­ecule. While there are no reports about such systems, the structure of (3aS,4S,5R,7aR)-2,2,7-trimethyl-3a,4,5,7a-tetra­hydro-1,3-benzo­dioxole-4,5-diol was published recently (Macías et al., 2015[Macías, M. A., Suescun, L., Pandolfi, E., Schapiro, V., Tibhe, G. D. & Mombrú, Á. W. (2015). Acta Cryst. E71, 1013-1016.]). In this case, the conformation of the fused rings keeps a level of similarity with the structural assembly of the title compound.

5. Synthesis and crystallization

A mixture of the vinylic iodide (mol­ecule 1 in Fig. 1[link].) (140 mg, 0.5 mmol), Pd(PPh3)4 (10% wt., 14.4 mg, 0.025 mmol), indium (28.7 mg, 0.25 mmol), and lithium chloride (31.8 mg, 0.75 mmol) in dry THF (2 mL) was stirred at reflux for 4 h under a nitro­gen atmosphere. The reaction mixture was quenched with NaHCO3 (sat. aq.). The aqueous layer was extracted with ethyl acetate (3 × 20 mL), and the combined organic phases were washed with brine, dried with Na2SO4, filtered and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexa­nes/ethyl acetate 95:5) to give the desired homocoupled product (43.5 mg, 57%).

Crystals suitable for X-ray crystallographic analysis were obtained by dissolving the title compound in the minimum volume of ethyl acetate, adding hexa­nes until the solution became slightly turbid, and slowly evaporating the solvent at room temperature. 1H NMR (400 MHz, CDCl3) δ: 6.16 (t, J = 4.2 Hz, 2H), 4.72 (d, J = 5.6 Hz, 2H), 4.33–4.29 (m, 2H), 2.36–2.27 (m, 2H), 2.09–2.00 (m, 2H), 1.87–1.71 (m, 4H), 1.40 (s, 6H); 1.39 (s, 6H). All spectroscopic and analytical data were in full agreement with the literature (Boyd et al., 2011[Boyd, D. R., Sharma, N. D., Kaik, M., Bell, M., Berberian, M. V., McIntyre, P. B. A., Kelly, B., Hardacre, C., Stevenson, P. J. & Allen, C. C. R. (2011). Adv. Synth. Catal. 353, 2455-2465.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C were placed in calculated positions (C—H = 0.93–0.98 Å) and included as riding contributions with isotropic displacement parameters set to 1.2–1.5 times the Ueq of the parent atom.

Table 2
Experimental details

Crystal data
Chemical formula C18H26O4
Mr 306.39
Crystal system, space group Monoclinic, P21
Temperature (K) 298
a, b, c (Å) 6.2927 (7), 17.9903 (19), 7.2991 (8)
β (°) 95.216 (4)
V3) 822.89 (16)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.69
Crystal size (mm) 0.40 × 0.35 × 0.30
 
Data collection
Diffractometer Bruker D8 Venture/Photon 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.687, 0.754
No. of measured, independent and observed [I > 2σ(I)] reflections 27011, 3232, 3135
Rint 0.026
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.071, 1.08
No. of reflections 3232
No. of parameters 204
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.10
Absolute structure Flack x determined using 1475 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.04 (4)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.], 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008, 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

(3aR,3'aR,7aS,7'aS)-2,2,2',2'-Tetramethyl-3a,6,7,7a,3'a,6',7',7'a-octahydro-4,4'-bi[1,3-benzodioxolyl] top
Crystal data top
C18H26O4F(000) = 332
Mr = 306.39Dx = 1.237 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 6.2927 (7) ÅCell parameters from 9685 reflections
b = 17.9903 (19) Åθ = 4.9–72.4°
c = 7.2991 (8) ŵ = 0.69 mm1
β = 95.216 (4)°T = 298 K
V = 822.89 (16) Å3Parallelepiped, yellow
Z = 20.40 × 0.35 × 0.30 mm
Data collection top
Bruker D8 Venture/Photon 100 CMOS
diffractometer
3232 independent reflections
Radiation source: Cu Incoatec microsource3135 reflections with I > 2σ(I)
Detector resolution: 10.4167 pixels mm-1Rint = 0.026
φ and ω scansθmax = 72.4°, θmin = 4.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
h = 77
Tmin = 0.687, Tmax = 0.754k = 2122
27011 measured reflectionsl = 99
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.0652P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.13 e Å3
3232 reflectionsΔρmin = 0.10 e Å3
204 parametersExtinction correction: SHELXL, Fc* = kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0184 (15)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack x determined using 1475 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C7A0.6166 (3)1.13949 (11)0.8000 (3)0.0486 (4)
H7AA0.59161.19100.76520.058*
H7AB0.66391.13820.93020.058*
C6B0.5034 (4)0.77162 (12)0.6693 (3)0.0621 (6)
H6BA0.55540.75230.55770.074*
H6BB0.36030.75260.67740.074*
C2A0.8127 (3)1.05458 (10)0.4052 (2)0.0451 (4)
C7B0.6472 (4)0.74545 (11)0.8343 (3)0.0553 (5)
H7BA0.58350.75800.94640.066*
H7BB0.66250.69190.82970.066*
C22A0.6299 (3)1.01769 (13)0.2920 (3)0.0580 (5)
H22D0.56091.05320.20840.087*
H22E0.52910.99910.37190.087*
H22F0.68320.97730.22350.087*
C2B1.0094 (3)0.83055 (10)1.1168 (3)0.0480 (4)
C21A0.9882 (4)1.07986 (15)0.2908 (3)0.0674 (6)
H21D1.04461.03770.23060.101*
H21E1.10001.10300.36910.101*
H21F0.93141.11490.20000.101*
C21B1.2355 (4)0.85972 (14)1.1342 (4)0.0659 (6)
H21A1.28030.86871.01390.099*
H21B1.32840.82371.19700.099*
H21C1.24170.90531.20290.099*
C22B0.9298 (5)0.81210 (16)1.2994 (3)0.0716 (7)
H22A0.79010.79051.28000.107*
H22B0.92310.85671.37100.107*
H22C1.02540.77741.36370.107*
C6A0.4092 (3)1.09664 (11)0.7669 (3)0.0548 (5)
H6AA0.31591.11020.86020.066*
H6AB0.33891.11050.64810.066*
C5B0.4969 (3)0.85505 (11)0.6607 (3)0.0491 (4)
H5B0.38140.87740.59350.059*
C5A0.4430 (3)1.01436 (10)0.7714 (3)0.0452 (4)
H5A0.32770.98450.79400.054*
C4B0.6466 (3)0.89895 (9)0.7434 (2)0.0363 (3)
C4A0.6263 (2)0.98093 (9)0.7455 (2)0.0354 (4)
C3AB0.8491 (3)0.86610 (9)0.8348 (2)0.0370 (4)
H3AB0.97180.88670.77850.044*
O3B0.8671 (2)0.88358 (7)1.02685 (17)0.0462 (3)
C3AA0.8247 (2)1.02504 (9)0.7153 (2)0.0355 (3)
H3AA0.93381.01590.81730.043*
O3A0.90773 (18)1.00550 (6)0.54514 (17)0.0426 (3)
C7AB0.8628 (3)0.78135 (10)0.8361 (2)0.0452 (4)
H7B0.93300.76450.72900.054*
O1B0.9974 (3)0.76615 (7)1.0002 (2)0.0601 (4)
C7AA0.7894 (3)1.10842 (9)0.6933 (3)0.0423 (4)
H7A0.92351.13490.72630.051*
O1A0.7303 (3)1.11563 (8)0.50051 (18)0.0580 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C7A0.0564 (11)0.0367 (9)0.0508 (10)0.0081 (8)0.0048 (8)0.0077 (8)
C6B0.0703 (14)0.0432 (11)0.0720 (14)0.0180 (10)0.0032 (11)0.0097 (10)
C2A0.0536 (10)0.0381 (9)0.0439 (9)0.0048 (8)0.0056 (8)0.0063 (7)
C7B0.0742 (13)0.0309 (9)0.0634 (12)0.0063 (8)0.0210 (10)0.0003 (8)
C22A0.0607 (11)0.0618 (13)0.0506 (11)0.0013 (10)0.0001 (9)0.0027 (9)
C2B0.0613 (11)0.0383 (9)0.0438 (9)0.0127 (8)0.0026 (8)0.0052 (7)
C21A0.0667 (14)0.0740 (15)0.0628 (13)0.0058 (11)0.0129 (10)0.0236 (11)
C21B0.0605 (13)0.0570 (13)0.0785 (15)0.0122 (10)0.0026 (11)0.0089 (11)
C22B0.0899 (17)0.0771 (17)0.0488 (12)0.0198 (14)0.0117 (11)0.0137 (11)
C6A0.0462 (10)0.0513 (12)0.0652 (12)0.0139 (8)0.0034 (8)0.0090 (9)
C5B0.0524 (10)0.0445 (10)0.0495 (10)0.0073 (8)0.0002 (8)0.0003 (8)
C5A0.0372 (8)0.0459 (10)0.0521 (10)0.0014 (7)0.0022 (7)0.0023 (8)
C4B0.0419 (8)0.0333 (8)0.0342 (8)0.0025 (6)0.0060 (6)0.0024 (6)
C4A0.0371 (8)0.0348 (8)0.0334 (8)0.0008 (6)0.0019 (6)0.0006 (6)
C3AB0.0435 (8)0.0295 (8)0.0386 (8)0.0007 (6)0.0074 (6)0.0005 (6)
O3B0.0590 (7)0.0379 (6)0.0405 (6)0.0146 (6)0.0024 (5)0.0036 (5)
C3AA0.0347 (7)0.0317 (8)0.0391 (8)0.0016 (6)0.0025 (6)0.0019 (6)
O3A0.0453 (6)0.0363 (6)0.0472 (6)0.0065 (5)0.0097 (5)0.0063 (5)
C7AB0.0606 (11)0.0331 (9)0.0433 (9)0.0062 (8)0.0133 (8)0.0010 (7)
O1B0.0851 (9)0.0355 (7)0.0581 (8)0.0181 (7)0.0034 (7)0.0022 (6)
C7AA0.0477 (9)0.0297 (8)0.0481 (9)0.0021 (7)0.0038 (7)0.0010 (7)
O1A0.0899 (10)0.0370 (7)0.0464 (7)0.0179 (7)0.0028 (7)0.0078 (5)
Geometric parameters (Å, º) top
C7A—C7AA1.502 (3)C21B—H21B0.9600
C7A—C6A1.516 (3)C21B—H21C0.9600
C7A—H7AA0.9700C22B—H22A0.9600
C7A—H7AB0.9700C22B—H22B0.9600
C6B—C5B1.503 (3)C22B—H22C0.9600
C6B—C7B1.514 (3)C6A—C5A1.495 (3)
C6B—H6BA0.9700C6A—H6AA0.9700
C6B—H6BB0.9700C6A—H6AB0.9700
C2A—O1A1.423 (2)C5B—C4B1.331 (3)
C2A—O3A1.439 (2)C5B—H5B0.9300
C2A—C22A1.508 (3)C5A—C4A1.329 (2)
C2A—C21A1.514 (3)C5A—H5A0.9300
C7B—C7AB1.501 (3)C4B—C4A1.481 (2)
C7B—H7BA0.9700C4B—C3AB1.505 (2)
C7B—H7BB0.9700C4A—C3AA1.512 (2)
C22A—H22D0.9600C3AB—O3B1.431 (2)
C22A—H22E0.9600C3AB—C7AB1.527 (2)
C22A—H22F0.9600C3AB—H3AB0.9800
C2B—O3B1.427 (2)C3AA—O3A1.434 (2)
C2B—O1B1.435 (2)C3AA—C7AA1.523 (2)
C2B—C22B1.502 (3)C3AA—H3AA0.9800
C2B—C21B1.511 (3)C7AB—O1B1.430 (2)
C21A—H21D0.9600C7AB—H7B0.9800
C21A—H21E0.9600C7AA—O1A1.428 (2)
C21A—H21F0.9600C7AA—H7A0.9800
C21B—H21A0.9600
C7AA—C7A—C6A112.42 (16)H22A—C22B—H22B109.5
C7AA—C7A—H7AA109.1C2B—C22B—H22C109.5
C6A—C7A—H7AA109.1H22A—C22B—H22C109.5
C7AA—C7A—H7AB109.1H22B—C22B—H22C109.5
C6A—C7A—H7AB109.1C5A—C6A—C7A112.39 (15)
H7AA—C7A—H7AB107.9C5A—C6A—H6AA109.1
C5B—C6B—C7B110.85 (17)C7A—C6A—H6AA109.1
C5B—C6B—H6BA109.5C5A—C6A—H6AB109.1
C7B—C6B—H6BA109.5C7A—C6A—H6AB109.1
C5B—C6B—H6BB109.5H6AA—C6A—H6AB107.9
C7B—C6B—H6BB109.5C4B—C5B—C6B123.93 (18)
H6BA—C6B—H6BB108.1C4B—C5B—H5B118.0
O1A—C2A—O3A105.85 (14)C6B—C5B—H5B118.0
O1A—C2A—C22A108.30 (16)C4A—C5A—C6A124.64 (17)
O3A—C2A—C22A111.49 (15)C4A—C5A—H5A117.7
O1A—C2A—C21A110.76 (17)C6A—C5A—H5A117.7
O3A—C2A—C21A107.39 (16)C5B—C4B—C4A122.49 (16)
C22A—C2A—C21A112.85 (18)C5B—C4B—C3AB120.26 (16)
C7AB—C7B—C6B110.32 (16)C4A—C4B—C3AB117.22 (14)
C7AB—C7B—H7BA109.6C5A—C4A—C4B121.95 (15)
C6B—C7B—H7BA109.6C5A—C4A—C3AA121.45 (15)
C7AB—C7B—H7BB109.6C4B—C4A—C3AA116.60 (14)
C6B—C7B—H7BB109.6O3B—C3AB—C4B109.67 (13)
H7BA—C7B—H7BB108.1O3B—C3AB—C7AB102.38 (13)
C2A—C22A—H22D109.5C4B—C3AB—C7AB116.09 (15)
C2A—C22A—H22E109.5O3B—C3AB—H3AB109.5
H22D—C22A—H22E109.5C4B—C3AB—H3AB109.5
C2A—C22A—H22F109.5C7AB—C3AB—H3AB109.5
H22D—C22A—H22F109.5C2B—O3B—C3AB107.11 (13)
H22E—C22A—H22F109.5O3A—C3AA—C4A111.61 (13)
O3B—C2B—O1B105.65 (14)O3A—C3AA—C7AA102.20 (13)
O3B—C2B—C22B108.06 (17)C4A—C3AA—C7AA114.69 (14)
O1B—C2B—C22B110.10 (19)O3A—C3AA—H3AA109.4
O3B—C2B—C21B110.69 (17)C4A—C3AA—H3AA109.4
O1B—C2B—C21B109.18 (18)C7AA—C3AA—H3AA109.4
C22B—C2B—C21B112.9 (2)C3AA—O3A—C2A107.67 (12)
C2A—C21A—H21D109.5O1B—C7AB—C7B113.01 (16)
C2A—C21A—H21E109.5O1B—C7AB—C3AB102.98 (15)
H21D—C21A—H21E109.5C7B—C7AB—C3AB112.28 (15)
C2A—C21A—H21F109.5O1B—C7AB—H7B109.5
H21D—C21A—H21F109.5C7B—C7AB—H7B109.5
H21E—C21A—H21F109.5C3AB—C7AB—H7B109.5
C2B—C21B—H21A109.5C7AB—O1B—C2B109.73 (13)
C2B—C21B—H21B109.5O1A—C7AA—C7A109.95 (15)
H21A—C21B—H21B109.5O1A—C7AA—C3AA102.46 (14)
C2B—C21B—H21C109.5C7A—C7AA—C3AA114.67 (15)
H21A—C21B—H21C109.5O1A—C7AA—H7A109.8
H21B—C21B—H21C109.5C7A—C7AA—H7A109.8
C2B—C22B—H22A109.5C3AA—C7AA—H7A109.8
C2B—C22B—H22B109.5C2A—O1A—C7AA109.73 (13)
C5B—C6B—C7B—C7AB52.6 (2)C7AA—C3AA—O3A—C2A31.87 (16)
C7AA—C7A—C6A—C5A44.4 (2)O1A—C2A—O3A—C3AA17.72 (18)
C7B—C6B—C5B—C4B21.4 (3)C22A—C2A—O3A—C3AA99.84 (17)
C7A—C6A—C5A—C4A21.2 (3)C21A—C2A—O3A—C3AA136.07 (17)
C6B—C5B—C4B—C4A174.59 (18)C6B—C7B—C7AB—O1B172.70 (16)
C6B—C5B—C4B—C3AB7.3 (3)C6B—C7B—C7AB—C3AB56.7 (2)
C6A—C5A—C4A—C4B177.19 (17)O3B—C3AB—C7AB—O1B31.08 (16)
C6A—C5A—C4A—C3AA2.4 (3)C4B—C3AB—C7AB—O1B150.49 (15)
C5B—C4B—C4A—C5A41.2 (3)O3B—C3AB—C7AB—C7B90.79 (17)
C3AB—C4B—C4A—C5A140.59 (17)C4B—C3AB—C7AB—C7B28.6 (2)
C5B—C4B—C4A—C3AA138.43 (17)C7B—C7AB—O1B—C2B104.65 (19)
C3AB—C4B—C4A—C3AA39.8 (2)C3AB—C7AB—O1B—C2B16.7 (2)
C5B—C4B—C3AB—O3B119.03 (18)O3B—C2B—O1B—C7AB4.1 (2)
C4A—C4B—C3AB—O3B62.73 (18)C22B—C2B—O1B—C7AB120.57 (19)
C5B—C4B—C3AB—C7AB3.7 (2)C21B—C2B—O1B—C7AB114.94 (18)
C4A—C4B—C3AB—C7AB178.09 (14)C6A—C7A—C7AA—O1A63.7 (2)
O1B—C2B—O3B—C3AB25.2 (2)C6A—C7A—C7AA—C3AA51.0 (2)
C22B—C2B—O3B—C3AB143.02 (19)O3A—C3AA—C7AA—O1A33.75 (16)
C21B—C2B—O3B—C3AB92.87 (19)C4A—C3AA—C7AA—O1A87.19 (17)
C4B—C3AB—O3B—C2B158.69 (15)O3A—C3AA—C7AA—C7A152.83 (14)
C7AB—C3AB—O3B—C2B34.88 (17)C4A—C3AA—C7AA—C7A31.9 (2)
C5A—C4A—C3AA—O3A122.95 (16)O3A—C2A—O1A—C7AA5.2 (2)
C4B—C4A—C3AA—O3A56.69 (18)C22A—C2A—O1A—C7AA124.91 (17)
C5A—C4A—C3AA—C7AA7.3 (2)C21A—C2A—O1A—C7AA110.85 (19)
C4B—C4A—C3AA—C7AA172.30 (14)C7A—C7AA—O1A—C2A146.62 (16)
C4A—C3AA—O3A—C2A91.17 (15)C3AA—C7AA—O1A—C2A24.27 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22A—H22F···O3Bi0.962.563.510 (3)171
Symmetry code: (i) x, y, z1.
 

Acknowledgements

The authors wish to thank CAPES/UDELAR (project No. 049/2013) for financial support. GPS and GDV acknowledge CAPES Science Without Borders – Special Visiting Researcher grant No. 096–2013. The authors also wish to thank ANII (EQC_2012_07), CSIC and the Facultad de Química for funds to purchase the diffractometer.

References

First citationBoyd, D. R., Sharma, N. D., Kaik, M., Bell, M., Berberian, M. V., McIntyre, P. B. A., Kelly, B., Hardacre, C., Stevenson, P. J. & Allen, C. C. R. (2011). Adv. Synth. Catal. 353, 2455–2465.  CrossRef CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGonzález, D., Schapiro, V., Seoane, G. & Hudlicky, T. (1997). Tetrahedron Asymmetry, 8, 975–977.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeguaburu, V., Mandolesi Sá, M., Schapiro, V. & Pandolfi, E. (2008). Tetrahedron Lett. 49, 6787–6790.  CrossRef CAS Google Scholar
First citationHeguaburu, V., Schapiro, V. & Pandolfi, E. (2010). Tetrahedron Lett. 51, 6921–6923.  Web of Science CrossRef CAS Google Scholar
First citationLabora, M., Heguaburu, V., Pandolfi, E. & Schapiro, V. (2008). Tetrahedron Asymmetry, 19, 893–895.  Web of Science CrossRef CAS Google Scholar
First citationLabora, M., Pandolfi, E. & Schapiro, V. (2010). Tetrahedron Asymmetry, 21, 153–155.  Web of Science CrossRef CAS Google Scholar
First citationLee, P. H., Seomoon, D. & Lee, K. (2005). Org. Lett. 7, 343–345.  CrossRef CAS Google Scholar
First citationMacías, M. A., Suescun, L., Pandolfi, E., Schapiro, V., Tibhe, G. D. & Mombrú, Á. W. (2015). Acta Cryst. E71, 1013–1016.  CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPereira, P. A., Noll, B. C., Oliver, A. G. & Silveira, G. P. (2015). Acta Cryst. E71, o1097–o1098.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilveira, G. P., Bonfante de Carvallho, C. & Oliver, A. G. (2012). Acta Cryst. E68, o2048–o2048.  CSD CrossRef IUCr Journals Google Scholar
First citationSilveira, G. P., da Silva, V. F. & Oliver, A. G. (2014). Acta Cryst. E70, o1257–o1258.  CSD CrossRef IUCr Journals Google Scholar
First citationSilveira, G. P. & Marino, J. P. (2013). J. Org. Chem. 78, 3379–3383.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds