research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a rare trigonal bipyramidal titanium(IV) coordination complex: tri­chlorido­(3,3′-di-tert-butyl-2′-hy­dr­oxy-5,5′,6,6′-tetra­methyl-1,1′-bi­phenyl-2-olato-κO2)(tetra­hydro­furan-κO)­titanium(IV)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: jotanski@vassar.edu

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 7 December 2016; accepted 19 December 2016; online 1 January 2017)

The title compound, [Ti(C24H33O2)Cl3(C4H8O)], is a rare example of a trigonal–bipyramidal titanium coordination complex with three chloride and two oxygen donor ligands. The asymmetric unit contains two independent mol­ecules having essentially the same conformation. The mol­ecules feature the titanium(IV) metal cation complexed with three chloride ligands, a tetra­hydro­furan mol­ecule, and one oxygen atom from the resolved ligand precursor (R)-(+)-5,5′,6,6′-tetra­methyl-3,3′-di-t-butyl-1,1′-biphenyl-2,2′-diol, where the remaining phenolic hydrogen atom engages in inter­molecular O—H⋯Cl hydrogen bonding. In one mol­ecule, the THF ligand is disordered over two orientations with refined site occupancies of 0.50 (3).

1. Chemical context

Asymmetric Lewis acid catalysis with titanium coordination compounds featuring chiral ligands for the selective synthesis of resolved small mol­ecule organic compounds is a well established field of chemistry (Ramón & Yus, 2006[Ramón, D. J. & Yus, M. (2006). Chem. Rev. 106, 2126-2208.]). Chiral diol ligands such as 1,1′-bi-2-naphthol (BINOL) and 2,2-dimethyl-α,α,α′,α′-tetra­phenyl-1,3-dioxolane-4,5-di­methanol (TADDOL) are two ligand types that have seen frequent use (Baker-Salisbury et al., 2014[Baker-Salisbury, M. G., Starkman, B. S., Frisenda, G. M., Roteta, L. A. & Tanski, J. M. (2014). Inorg. Chim. Acta, 409, 394-398.]). In work aimed at preparing new titanium asymmetric Lewis acid catalysts, the title compound was obtained as a crystalline solid from tetra­chlorido­bis(tetra­hydro­furan)­titanium(IV) and the BINOL ligand (R)-(+)-5,5′,6,6′-tetra­methyl-3,3′-di-t-butyl-1,1′-biphenyl-2,2′-diol (BIPHEN). The complex, [BIPHEN-κ1O]TiCl3(THF), is a rare example of a trigonal–bipyramidal coordination geometry for titanium(IV), with a Chemical Bonding Classification (CBC) designation of TiLX4 (Green, 1995[Green, M. L. H. (1995). J. Organomet. Chem. 500, 127-148.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, [BIPHEN-κ1O]TiCl3(THF), contains two independent mol­ecules (Fig. 1[link]), the only notable difference being the twofold disorder of the tetra­hydro­furan ligand on Ti2. The trigonal–bipyramidal mol­ecules have very similar metrical parameters. The BIPHEN phenoxide distances, Ti1—O11 of 1.767 (4) Å and Ti2—O21 of 1.756 (4) Å are similar, and shorter than the Ti—O bonds to the neutral coordinating tetra­hydro­furan (THF), with Ti1—O13 2.157 (9), Ti1—O13′ 2.112 (9), and Ti2—O23 2.125 (4) Å. The THF occupies an axial position in the trigonal–bipyramidal complex, while the BIPHEN phenoxide is equatorial. The other axial position contains chloride with distances of Ti1—Cl12 2.2728 (17) Å and Ti2—Cl22 2.2685 (18) Å. The remaining two equatorial sites are occupied by chlorides with similar Ti—Cl bond lengths (see Supporting Information). The complex is very nearly trigonal–bipyramidal, with linear axial O—Ti—Cl angles O13—Ti1—Cl12 174.5 (4)°, O13′—Ti1—Cl12 173.9 (4)° and O23—Ti2—Cl22 176.50 (13)°. The angles in the trigonal plane are further away from the ideal 120°, for example O11—Ti1—Cl13 131.13 (13)°, O11—Ti1—Cl11 113.94 (13)°, Cl13—Ti1—Cl11 113.72 (7)°, while the axial-equatorial angles are all quite near 90°. The absolute structure parameters confirm the R axial chirality of the BIPHEN ligand, with Flack x = 0.03 (2) and Hooft y = 0.03 (2) (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

[Figure 1]
Figure 1
A view of the two independent mol­ecules of [BIPHEN-κ1O]TiCl3(THF) with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms on carbon have been removed for clarity.

3. Supra­molecular features

The mol­ecules pack together in the solid state via van der Waals forces and hydrogen bonding between the phenolic OH groups and chloride ligands on neighboring mol­ecules, O12—H1⋯Cl12i and O22—H2⋯Cl22i [symmetry code: (i) x, y + 1, z] with H⋯Cl distances of 2.62 (4) and 2.59 (4) Å, respectively (Table 1[link]). These inter­actions create zigzag chains linking equivalent mol­ecules extending parallel to the b axis (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H1⋯Cl12i 0.85 (3) 2.62 (4) 3.333 (4) 143 (5)
O22—H2⋯Cl22i 0.84 (3) 2.59 (4) 3.350 (4) 153 (5)
Symmetry code: (i) x, y+1, z.
[Figure 2]
Figure 2
A view of the inter­molecular hydrogen bonding in [BIPHEN-κ1O]TiCl3(THF) (dashed lines). Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms on carbon have been removed for clarity.

4. Database survey

The Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains one related titanium BIPHEN structure and a few five-coordinate titanium complexes with three chloride and two oxygen donor ligands. The structure of BIPHEN(TiCl3)2 comprises TiCl3 moieties additionally coordinated by each phenoxide O atom of the ligand (Chisholm et al., 2003[Chisholm, M. H., Lin, C.-C., Gallucci, J. C. & Ko, B.-T. (2003). Dalton Trans. pp. 406-412.]). A very similar structure to the title compound, [(EMind)O]TiCl3(THF), also has a bulky phenoxide ligand in an equatorial position and THF in an axial position on the trigonal–bipyramid (Kanazawa et al., 2016[Kanazawa, S., Ohira, T., Goda, S., Hayakawa, N., Tanikawa, T., Hashizume, D., Ishida, Y., Kawaguchi, H. & Matsuo, T. (2016). Inorg. Chem. 55, 6643-6652.]). Also similar, the same trigonal–bipyramidal arrangement is seen in a complex with two TiCl3(ethyl acetate) units coordinated by phenoxides derived from the diol 2,2′-(1,3-butadiyne-1,4-di­yl)bis­[phenol] (Saied et al., 1998a[Saied, O., Simard, M. & Wuest, J. D. (1998a). Organometallics, 17, 1128-1133.]). The structure of 4,4′-di­methyl­benzo­phenone coordinated to TiCl3 with the bis­(phenoxide) derived from a fluorenediol also contains titanium in a trigonal–bipyramidal coordination environment; however, all three chlorides are in the equatorial plane and the ketone and phenoxide are axial (Saied et al., 1998b[Saied, O., Simard, M. & Wuest, J. D. (1998b). Inorg. Chem. 37, 2620-2625.]). A dinuclear disilane-1,2-diolateoxo-bridged titanium complex (Krempner et al., 2007[Krempner, C., Reinke, H. & Weichert, K. (2007). Polyhedron, 26, 3633-3637.]) exhibits two unique distorted trigonal–bipyramidal coordination environments, while a trinuclear mandelic acid methyl ­ester moiety exhibits two distorted trigonal–bipyramidal coordination environments and a penta­gonal–bipyramidal seven-coordinate titanium (Ziemer et al., 2008[Ziemer, B., Scholtis, S. & Mahrwald, R. (2008). Anal. Sci. 24, 233-234.]).

5. Synthesis and crystallization

Under a nitro­gen atmosphere, tetra­chlorido­bis­(tetra­hydro­furan)­titanium(IV) (23.4 mg, 0.07 mmol) was added to (R)-(+)-5,5′,6,6′-tetra­methyl-3,3′-di-t-butyl-1,1′-biphenyl-2,2′-diol (50 mg, 0.14 mmol) in C6H6 (2.5 ml) and the benzene was allowed to slowly evaporate yielding red plate crystals within seven days. The synthesis could be scaled up and the material collected by filtration, yielding a dark-red crystalline powder; however, the material quickly powders into a pink amorphous solid upon loss of coordinating THF, as observed by 1H NMR of the decomposition product.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms on carbon were included in calculated positions and refined using a riding model with C—H = 0.95, 0.98 and 0.99 Å and Uiso(H) = 1.2, 1.5 and 1.2Ueq(C) of the aryl, methyl and methyl­ene C atoms, respectively. The position of the phenolic hydrogen atoms were found in the difference map and the atom refined semi-freely using a distance restraint d(O—H) = 0.84 Å, and with Uiso(H) = 1.2Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Ti(C24H33O2)Cl3(C4H8O)]
Mr 579.86
Crystal system, space group Monoclinic, P21
Temperature (K) 125
a, b, c (Å) 10.289 (4), 7.141 (3), 40.330 (16)
β (°) 95.164 (7)
V3) 2951 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.59
Crystal size (mm) 0.31 × 0.11 × 0.01
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.81, 0.99
No. of measured, independent and observed [I > 2σ(I)] reflections 76791, 17956, 10069
Rint 0.156
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.124, 1.00
No. of reflections 17956
No. of parameters 653
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.55
Absolute structure Flack x determined using 3136 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.03 (2)
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/6 (Sheldrick, 2015b); molecular graphics: SHELXTL2014 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2008).

trichloro(3,3'-di-t-butyl-2'-hydroxy-5,5',6,6'-tetramethyl-1,1'-biphenyl-2-ol)(tetrahydrofuran)titanium(IV) top
Crystal data top
[TiCl3(C24H33O2)(C4H8O)]F(000) = 1224
Mr = 579.86Dx = 1.305 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.289 (4) ÅCell parameters from 9897 reflections
b = 7.141 (3) Åθ = 2.3–28.9°
c = 40.330 (16) ŵ = 0.59 mm1
β = 95.164 (7)°T = 125 K
V = 2951 (2) Å3Plate, red
Z = 40.31 × 0.11 × 0.01 mm
Data collection top
Bruker APEXII CCD
diffractometer
17956 independent reflections
Radiation source: fine-focus sealed tube10069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.156
Detector resolution: 8.3333 pixels mm-1θmax = 30.6°, θmin = 1.5°
φ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1010
Tmin = 0.81, Tmax = 0.99l = 5757
76791 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.064 w = 1/[σ2(Fo2) + (0.037P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.124(Δ/σ)max = 0.001
S = 1.00Δρmax = 0.56 e Å3
17956 reflectionsΔρmin = 0.55 e Å3
653 parametersAbsolute structure: Flack x determined using 3136 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.03 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.15076 (9)0.06244 (13)0.90044 (2)0.0147 (2)
Ti20.60744 (10)0.57807 (14)0.62786 (3)0.0200 (2)
Cl110.04160 (13)0.0389 (2)0.91666 (3)0.0259 (3)
Cl120.16052 (14)0.17155 (19)0.86255 (4)0.0226 (3)
Cl130.32527 (13)0.0434 (2)0.93240 (3)0.0239 (3)
Cl210.53928 (16)0.4972 (2)0.57555 (4)0.0317 (4)
Cl220.49421 (15)0.3477 (2)0.65118 (4)0.0270 (4)
Cl230.80166 (14)0.4650 (2)0.65011 (4)0.0320 (4)
O110.1354 (3)0.2425 (5)0.87027 (9)0.0136 (8)
O120.3958 (4)0.5492 (6)0.89644 (9)0.0224 (9)
H10.339 (4)0.579 (9)0.8809 (10)0.027*
O210.5361 (4)0.7615 (5)0.64884 (9)0.0185 (9)
O220.3647 (4)1.0640 (6)0.59083 (9)0.0219 (9)
H20.381 (5)1.110 (8)0.6098 (8)0.026*
O230.7241 (4)0.7845 (5)0.60685 (10)0.0247 (10)
C110.4538 (5)0.8656 (7)0.66688 (13)0.0173 (12)
C120.5005 (5)0.9402 (8)0.69815 (13)0.0204 (13)
C130.6393 (6)0.9084 (9)0.71423 (15)0.0294 (15)
C140.7450 (5)0.9710 (10)0.69140 (15)0.0313 (15)
H14A0.83130.96420.70380.047*
H14B0.72771.10010.6840.047*
H14C0.74280.88830.6720.047*
C150.6658 (7)1.0211 (13)0.74656 (16)0.061 (3)
H15A0.75821.01010.75460.091*
H15B0.61190.9720.76340.091*
H15C0.64421.1530.74230.091*
C160.6578 (6)0.6995 (11)0.72326 (17)0.0438 (19)
H16A0.74720.67870.73310.066*
H16B0.6420.62330.70310.066*
H16C0.59610.66380.73930.066*
C170.4077 (5)1.0378 (8)0.71449 (13)0.0213 (13)
H17A0.4351.08980.73570.026*
C180.2776 (5)1.0652 (8)0.70211 (13)0.0197 (12)
C190.1860 (6)1.1667 (8)0.72264 (15)0.0300 (15)
H19A0.15041.27640.71040.045*
H19B0.23321.20720.74360.045*
H19C0.11461.0830.72740.045*
C210.1589 (5)0.3449 (7)0.84236 (12)0.0132 (11)
C220.0537 (5)0.4116 (7)0.82072 (13)0.0143 (12)
C230.0905 (5)0.3701 (8)0.82497 (14)0.0239 (14)
C240.1298 (6)0.4392 (9)0.85904 (14)0.0298 (15)
H24A0.08410.36470.87690.045*
H24B0.22420.42520.85980.045*
H24C0.10580.57130.8620.045*
C250.1147 (6)0.1584 (8)0.82152 (16)0.0319 (16)
H25A0.06370.09250.83960.048*
H25B0.08830.11540.80010.048*
H25C0.20770.13240.82270.048*
C260.1797 (5)0.4689 (11)0.79820 (15)0.0386 (17)
H26A0.16760.60470.80030.058*
H26B0.27080.43740.8010.058*
H26C0.1580.42820.77620.058*
C270.0896 (6)0.5126 (7)0.79334 (13)0.0194 (13)
H27A0.02180.56220.77830.023*
C280.2184 (5)0.5457 (8)0.78653 (12)0.0173 (12)
C290.2458 (6)0.6567 (8)0.75601 (14)0.0279 (15)
H29A0.3030.5840.74270.042*
H29B0.28870.77480.76290.042*
H29C0.16350.68310.74270.042*
C1100.2357 (5)0.9910 (7)0.67039 (13)0.0174 (12)
C1110.0941 (5)1.0074 (8)0.65711 (14)0.0248 (14)
H11A0.06061.13040.66290.037*
H11B0.04330.90910.66690.037*
H11C0.08660.99340.63280.037*
C1120.3253 (5)0.8912 (7)0.65281 (13)0.0164 (12)
C1130.2798 (5)0.8024 (7)0.61991 (13)0.0146 (12)
C1140.3005 (5)0.8944 (7)0.59019 (13)0.0170 (12)
C1150.2562 (5)0.8200 (8)0.55867 (13)0.0192 (12)
C1160.2827 (6)0.9166 (8)0.52556 (14)0.0265 (14)
C1170.4299 (6)0.9452 (10)0.52335 (14)0.0340 (16)
H11D0.46161.04480.53870.051*
H11E0.44540.98050.50060.051*
H11F0.47630.82850.52940.051*
C1180.2144 (7)1.1076 (9)0.52238 (16)0.0396 (18)
H11G0.24971.18960.54050.059*
H11H0.12051.09080.52370.059*
H11I0.22951.16430.50090.059*
C1190.2323 (7)0.7983 (10)0.49540 (15)0.0417 (19)
H11J0.2740.67480.49690.063*
H11K0.25320.86090.47490.063*
H11L0.13760.78350.49510.063*
C1200.1870 (5)0.6522 (8)0.55951 (14)0.0219 (13)
H12B0.15540.5980.53880.026*
C1210.1610 (5)0.5587 (8)0.58838 (14)0.0210 (12)
C1220.0827 (6)0.3803 (8)0.58648 (15)0.0275 (15)
H12C0.01060.39110.60070.041*
H12D0.1390.27530.59410.041*
H12E0.04760.35830.56340.041*
C1230.2093 (5)0.6331 (7)0.61928 (14)0.0161 (12)
C1240.1825 (5)0.5346 (8)0.65082 (13)0.0234 (13)
H12F0.23620.58990.66960.035*
H12G0.20380.40150.6490.035*
H12H0.09010.54820.65440.035*
C1250.6836 (6)0.9795 (8)0.60020 (15)0.0264 (14)
H12I0.65731.040.62060.032*
H12J0.60960.98510.58280.032*
C1260.8018 (6)1.0726 (9)0.58865 (15)0.0305 (14)
H12K0.86281.11260.60770.037*
H12L0.77761.18250.57450.037*
C1270.8605 (7)0.9180 (9)0.56885 (17)0.0390 (18)
H12M0.81550.90860.54620.047*
H12N0.95470.93980.56720.047*
C1280.8390 (6)0.7464 (9)0.58863 (17)0.0360 (17)
H12O0.82290.6370.57380.043*
H12P0.91640.72010.60440.043*
C2100.3203 (5)0.4727 (7)0.80815 (13)0.0154 (11)
C2110.4600 (5)0.4962 (8)0.80030 (13)0.0225 (13)
H21A0.51870.45960.81970.034*
H21B0.47570.62750.79480.034*
H21C0.47630.41690.78130.034*
C2120.2898 (5)0.3722 (7)0.83678 (13)0.0150 (12)
C2130.3973 (5)0.2860 (7)0.85896 (13)0.0152 (12)
C2140.4484 (5)0.3793 (7)0.88810 (13)0.0154 (12)
C2150.5524 (5)0.3068 (7)0.90883 (13)0.0159 (12)
C2160.6054 (5)0.4046 (8)0.94181 (13)0.0194 (13)
C2170.4962 (6)0.4228 (9)0.96536 (14)0.0300 (15)
H21D0.42680.50340.95510.045*
H21E0.53190.4780.98650.045*
H21F0.46050.29860.96950.045*
C2180.7130 (6)0.2885 (9)0.96042 (15)0.0350 (17)
H21G0.6790.16410.96520.052*
H21H0.74270.3510.98140.052*
H21I0.78630.27590.94670.052*
C2190.6617 (6)0.5977 (8)0.93538 (15)0.0297 (15)
H21J0.59170.68090.92620.044*
H21K0.72780.58640.91940.044*
H21L0.70190.64980.95630.044*
C2200.6074 (5)0.1392 (7)0.89813 (14)0.0190 (13)
H22B0.67940.08770.91150.023*
C2210.5627 (5)0.0441 (8)0.86906 (13)0.0172 (12)
C2220.6268 (6)0.1334 (7)0.85938 (14)0.0227 (13)
H22C0.64640.12530.83610.034*
H22D0.5680.23920.86210.034*
H22E0.7080.15190.87370.034*
C2230.4542 (5)0.1158 (7)0.84961 (13)0.0169 (12)
C2240.4013 (5)0.0151 (7)0.81800 (13)0.0218 (13)
H22F0.31650.06850.810.033*
H22G0.39090.11840.82270.033*
H22H0.46240.03030.80090.033*
O130.1609 (13)0.2791 (12)0.9378 (2)0.011 (2)*0.50 (3)
C2250.0961 (19)0.463 (2)0.9323 (4)0.023 (4)*0.50 (3)
H22A0.1470.54340.91820.028*0.50 (3)
H22I0.00740.44640.9210.028*0.50 (3)
C2260.0890 (18)0.549 (2)0.9649 (4)0.020 (4)*0.50 (3)
H22J0.16230.63740.96980.024*0.50 (3)
H22K0.0060.61830.96560.024*0.50 (3)
C2270.0964 (18)0.3992 (17)0.9888 (3)0.017 (3)*0.50 (3)
H22L0.00770.36430.99430.02*0.50 (3)
H22M0.14760.43941.00950.02*0.50 (3)
C2280.1629 (17)0.2306 (15)0.9735 (3)0.011 (3)*0.50 (3)
H22N0.25350.21490.98370.013*0.50 (3)
H22O0.11370.11370.97660.013*0.50 (3)
O13'0.1223 (14)0.2678 (12)0.9368 (2)0.012 (2)*0.50 (3)
C25'0.1329 (16)0.4767 (18)0.9327 (3)0.009 (3)*0.50 (3)
H25D0.21690.50980.9240.011*0.50 (3)
H25E0.06080.52390.91710.011*0.50 (3)
C26'0.1253 (17)0.559 (2)0.9660 (4)0.017 (3)*0.50 (3)
H26D0.19450.65420.97060.021*0.50 (3)
H26E0.03950.61960.96740.021*0.50 (3)
C27'0.1427 (19)0.4070 (18)0.9899 (3)0.024 (4)*0.50 (3)
H27B0.08470.42511.00790.029*0.50 (3)
H27C0.23410.4040.99990.029*0.50 (3)
C28'0.110 (2)0.2295 (16)0.9720 (3)0.021 (3)*0.50 (3)
H28A0.17140.12910.98020.025*0.50 (3)
H28B0.02030.18970.97550.025*0.50 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0174 (5)0.0126 (4)0.0144 (5)0.0020 (4)0.0022 (4)0.0006 (4)
Ti20.0205 (6)0.0159 (5)0.0242 (6)0.0012 (5)0.0056 (4)0.0011 (5)
Cl110.0196 (7)0.0328 (8)0.0262 (8)0.0006 (7)0.0063 (6)0.0057 (7)
Cl120.0287 (8)0.0172 (7)0.0221 (8)0.0018 (6)0.0026 (6)0.0055 (6)
Cl130.0232 (8)0.0240 (7)0.0238 (8)0.0021 (6)0.0016 (6)0.0012 (7)
Cl210.0380 (9)0.0324 (9)0.0250 (8)0.0008 (7)0.0044 (7)0.0047 (7)
Cl220.0267 (9)0.0213 (7)0.0335 (9)0.0064 (7)0.0054 (7)0.0046 (7)
Cl230.0224 (8)0.0300 (8)0.0437 (9)0.0024 (7)0.0041 (7)0.0068 (8)
O110.014 (2)0.0145 (19)0.012 (2)0.0001 (15)0.0020 (16)0.0013 (15)
O120.024 (2)0.019 (2)0.022 (2)0.0096 (19)0.0064 (17)0.0041 (19)
O210.017 (2)0.018 (2)0.021 (2)0.0008 (16)0.0048 (17)0.0007 (17)
O220.030 (2)0.0184 (19)0.018 (2)0.007 (2)0.0026 (18)0.001 (2)
O230.024 (2)0.018 (2)0.034 (3)0.0026 (17)0.015 (2)0.0032 (18)
C110.021 (3)0.017 (3)0.015 (3)0.001 (2)0.006 (2)0.000 (2)
C120.024 (3)0.025 (3)0.012 (3)0.005 (3)0.002 (2)0.003 (3)
C130.020 (3)0.047 (4)0.021 (3)0.003 (3)0.002 (3)0.003 (3)
C140.019 (3)0.040 (4)0.036 (4)0.003 (3)0.008 (3)0.000 (3)
C150.034 (4)0.116 (8)0.031 (4)0.009 (5)0.005 (3)0.037 (5)
C160.029 (4)0.075 (5)0.027 (4)0.009 (4)0.001 (3)0.022 (4)
C170.025 (3)0.024 (3)0.016 (3)0.006 (3)0.002 (2)0.001 (3)
C180.028 (3)0.013 (2)0.019 (3)0.002 (3)0.010 (2)0.003 (3)
C190.032 (4)0.031 (4)0.027 (4)0.009 (3)0.004 (3)0.002 (3)
C210.022 (3)0.007 (2)0.011 (3)0.005 (2)0.004 (2)0.000 (2)
C220.014 (3)0.015 (3)0.013 (3)0.001 (2)0.001 (2)0.001 (2)
C230.014 (3)0.034 (3)0.022 (3)0.001 (3)0.007 (3)0.009 (3)
C240.022 (3)0.035 (4)0.032 (4)0.009 (3)0.004 (3)0.004 (3)
C250.026 (4)0.037 (4)0.033 (4)0.015 (3)0.002 (3)0.002 (3)
C260.014 (3)0.060 (5)0.041 (4)0.004 (3)0.000 (3)0.017 (4)
C270.025 (3)0.018 (3)0.014 (3)0.003 (2)0.002 (2)0.001 (2)
C280.021 (3)0.015 (3)0.015 (3)0.000 (2)0.001 (2)0.003 (2)
C290.031 (4)0.029 (3)0.023 (3)0.006 (3)0.003 (3)0.005 (3)
C1100.019 (3)0.013 (3)0.021 (3)0.001 (2)0.007 (2)0.003 (2)
C1110.024 (3)0.024 (3)0.027 (3)0.000 (3)0.005 (3)0.002 (3)
C1120.019 (3)0.014 (3)0.017 (3)0.004 (2)0.006 (2)0.001 (2)
C1130.009 (3)0.018 (3)0.017 (3)0.003 (2)0.000 (2)0.001 (2)
C1140.017 (3)0.016 (3)0.018 (3)0.002 (2)0.000 (2)0.002 (2)
C1150.020 (3)0.020 (3)0.018 (3)0.001 (3)0.002 (2)0.000 (2)
C1160.036 (4)0.031 (3)0.013 (3)0.003 (3)0.002 (3)0.004 (3)
C1170.042 (4)0.044 (4)0.017 (3)0.001 (3)0.009 (3)0.005 (3)
C1180.053 (5)0.039 (4)0.027 (4)0.010 (3)0.002 (3)0.014 (3)
C1190.057 (5)0.049 (5)0.019 (4)0.010 (4)0.001 (3)0.001 (3)
C1200.020 (3)0.026 (3)0.019 (3)0.004 (3)0.002 (3)0.005 (3)
C1210.017 (3)0.017 (3)0.029 (3)0.001 (3)0.001 (2)0.002 (3)
C1220.028 (4)0.028 (3)0.026 (4)0.004 (3)0.006 (3)0.009 (3)
C1230.015 (3)0.014 (3)0.021 (3)0.002 (2)0.006 (2)0.002 (2)
C1240.020 (3)0.024 (3)0.027 (3)0.003 (2)0.000 (3)0.006 (3)
C1250.034 (4)0.017 (3)0.029 (3)0.005 (3)0.007 (3)0.002 (3)
C1260.035 (4)0.021 (3)0.037 (4)0.004 (3)0.009 (3)0.006 (3)
C1270.041 (4)0.035 (4)0.044 (4)0.001 (3)0.023 (4)0.006 (3)
C1280.034 (4)0.032 (4)0.045 (4)0.001 (3)0.024 (3)0.001 (3)
C2100.016 (3)0.012 (2)0.019 (3)0.004 (2)0.004 (2)0.002 (2)
C2110.025 (3)0.027 (3)0.016 (3)0.004 (3)0.008 (2)0.000 (3)
C2120.019 (3)0.010 (2)0.015 (3)0.001 (2)0.003 (2)0.001 (2)
C2130.014 (3)0.017 (3)0.015 (3)0.000 (2)0.003 (2)0.001 (2)
C2140.015 (3)0.011 (2)0.021 (3)0.005 (2)0.005 (2)0.001 (2)
C2150.011 (3)0.018 (3)0.019 (3)0.002 (2)0.002 (2)0.000 (2)
C2160.017 (3)0.025 (3)0.015 (3)0.003 (2)0.003 (2)0.003 (2)
C2170.031 (4)0.039 (4)0.019 (3)0.000 (3)0.001 (3)0.006 (3)
C2180.038 (4)0.038 (4)0.026 (4)0.015 (3)0.014 (3)0.008 (3)
C2190.033 (4)0.029 (4)0.026 (4)0.012 (3)0.003 (3)0.007 (3)
C2200.012 (3)0.022 (3)0.024 (3)0.001 (2)0.002 (2)0.005 (3)
C2210.017 (3)0.017 (3)0.018 (3)0.002 (2)0.005 (2)0.001 (2)
C2220.023 (3)0.016 (3)0.030 (4)0.004 (2)0.003 (3)0.001 (3)
C2230.020 (3)0.016 (3)0.016 (3)0.000 (2)0.005 (2)0.003 (2)
C2240.027 (3)0.021 (3)0.018 (3)0.004 (2)0.003 (3)0.006 (2)
Geometric parameters (Å, º) top
Ti1—O111.767 (4)C119—H11J0.98
Ti1—O13'2.112 (9)C119—H11K0.98
Ti1—O132.157 (9)C119—H11L0.98
Ti1—Cl132.2451 (18)C120—C1211.389 (8)
Ti1—Cl112.2587 (18)C120—H12B0.95
Ti1—Cl122.2728 (17)C121—C1231.404 (7)
Ti2—O211.756 (4)C121—C1221.506 (8)
Ti2—O232.125 (4)C122—H12C0.98
Ti2—Cl212.2381 (19)C122—H12D0.98
Ti2—Cl232.2645 (19)C122—H12E0.98
Ti2—Cl222.2685 (18)C123—C1241.501 (7)
O11—C211.382 (6)C124—H12F0.98
O12—C2141.383 (6)C124—H12G0.98
O12—H10.85 (3)C124—H12H0.98
O21—C111.382 (6)C125—C1261.497 (8)
O22—C1141.379 (6)C125—H12I0.99
O22—H20.84 (3)C125—H12J0.99
O23—C1251.471 (7)C126—C1271.520 (8)
O23—C1281.473 (7)C126—H12K0.99
C11—C1121.403 (7)C126—H12L0.99
C11—C121.413 (7)C127—C1281.489 (8)
C12—C171.394 (7)C127—H12M0.99
C12—C131.532 (8)C127—H12N0.99
C13—C151.535 (9)C128—H12O0.99
C13—C161.544 (9)C128—H12P0.99
C13—C141.553 (8)C210—C2121.418 (7)
C14—H14A0.98C210—C2111.509 (7)
C14—H14B0.98C211—H21A0.98
C14—H14C0.98C211—H21B0.98
C15—H15A0.98C211—H21C0.98
C15—H15B0.98C212—C2131.492 (7)
C15—H15C0.98C213—C2141.411 (7)
C16—H16A0.98C213—C2231.415 (7)
C16—H16B0.98C214—C2151.396 (7)
C16—H16C0.98C215—C2201.408 (7)
C17—C181.400 (7)C215—C2161.557 (7)
C17—H17A0.95C216—C2181.525 (8)
C18—C1101.415 (7)C216—C2191.527 (8)
C18—C191.496 (7)C216—C2171.540 (8)
C19—H19A0.98C217—H21D0.98
C19—H19B0.98C217—H21E0.98
C19—H19C0.98C217—H21F0.98
C21—C2121.398 (7)C218—H21G0.98
C21—C221.411 (7)C218—H21H0.98
C22—C271.396 (7)C218—H21I0.98
C22—C231.538 (8)C219—H21J0.98
C23—C261.526 (8)C219—H21K0.98
C23—C251.536 (8)C219—H21L0.98
C23—C241.547 (8)C220—C2211.397 (7)
C24—H24A0.98C220—H22B0.95
C24—H24B0.98C221—C2231.402 (7)
C24—H24C0.98C221—C2221.497 (7)
C25—H25A0.98C222—H22C0.98
C25—H25B0.98C222—H22D0.98
C25—H25C0.98C222—H22E0.98
C26—H26A0.98C223—C2241.521 (7)
C26—H26B0.98C224—H22F0.98
C26—H26C0.98C224—H22G0.98
C27—C281.398 (7)C224—H22H0.98
C27—H27A0.95O13—C2281.478 (14)
C28—C2101.402 (7)O13—C2251.481 (18)
C28—C291.512 (7)C225—C2261.46 (2)
C29—H29A0.98C225—H22A0.99
C29—H29B0.98C225—H22I0.99
C29—H29C0.98C226—C2271.436 (19)
C110—C1121.406 (7)C226—H22J0.99
C110—C1111.511 (7)C226—H22K0.99
C111—H11A0.98C227—C2281.541 (18)
C111—H11B0.98C227—H22L0.99
C111—H11C0.98C227—H22M0.99
C112—C1131.506 (7)C228—H22N0.99
C113—C1141.400 (7)C228—H22O0.99
C113—C1231.409 (7)O13'—C28'1.465 (15)
C114—C1151.415 (7)O13'—C25'1.506 (17)
C115—C1201.396 (8)C25'—C26'1.474 (19)
C115—C1161.549 (8)C25'—H25D0.99
C116—C1191.533 (8)C25'—H25E0.99
C116—C1181.534 (8)C26'—C27'1.451 (19)
C116—C1171.538 (8)C26'—H26D0.99
C117—H11D0.98C26'—H26E0.99
C117—H11E0.98C27'—C28'1.481 (19)
C117—H11F0.98C27'—H27B0.99
C118—H11G0.98C27'—H27C0.99
C118—H11H0.98C28'—H28A0.99
C118—H11I0.98C28'—H28B0.99
O11—Ti1—O13'87.9 (3)C120—C121—C123118.8 (5)
O11—Ti1—O1387.4 (3)C120—C121—C122120.4 (5)
O11—Ti1—Cl13131.13 (13)C123—C121—C122120.7 (5)
O13'—Ti1—Cl1389.4 (3)C121—C122—H12C109.5
O13—Ti1—Cl1381.6 (3)C121—C122—H12D109.5
O11—Ti1—Cl11113.94 (13)H12C—C122—H12D109.5
O13'—Ti1—Cl1180.9 (4)C121—C122—H12E109.5
O13—Ti1—Cl1190.9 (4)H12C—C122—H12E109.5
Cl13—Ti1—Cl11113.72 (7)H12D—C122—H12E109.5
O11—Ti1—Cl1294.51 (12)C121—C123—C113118.8 (5)
O13'—Ti1—Cl12173.9 (4)C121—C123—C124119.8 (5)
O13—Ti1—Cl12174.5 (4)C113—C123—C124121.4 (5)
Cl13—Ti1—Cl1293.26 (6)C123—C124—H12F109.5
Cl11—Ti1—Cl1292.98 (7)C123—C124—H12G109.5
O21—Ti2—O2387.15 (16)H12F—C124—H12G109.5
O21—Ti2—Cl21122.51 (14)C123—C124—H12H109.5
O23—Ti2—Cl2186.77 (12)H12F—C124—H12H109.5
O21—Ti2—Cl23117.88 (14)H12G—C124—H12H109.5
O23—Ti2—Cl2384.00 (12)O23—C125—C126104.6 (5)
Cl21—Ti2—Cl23118.16 (7)O23—C125—H12I110.8
O21—Ti2—Cl2295.09 (13)C126—C125—H12I110.8
O23—Ti2—Cl22176.50 (13)O23—C125—H12J110.8
Cl21—Ti2—Cl2294.27 (7)C126—C125—H12J110.8
Cl23—Ti2—Cl2292.57 (7)H12I—C125—H12J108.9
C21—O11—Ti1159.1 (3)C125—C126—C127102.3 (5)
C214—O12—H1108 (4)C125—C126—H12K111.3
C11—O21—Ti2163.3 (3)C127—C126—H12K111.3
C114—O22—H2114 (4)C125—C126—H12L111.3
C125—O23—C128108.1 (4)C127—C126—H12L111.3
C125—O23—Ti2124.6 (3)H12K—C126—H12L109.2
C128—O23—Ti2125.3 (3)C128—C127—C126103.3 (5)
O21—C11—C112117.2 (5)C128—C127—H12M111.1
O21—C11—C12119.9 (5)C126—C127—H12M111.1
C112—C11—C12123.0 (5)C128—C127—H12N111.1
C17—C12—C11114.7 (5)C126—C127—H12N111.1
C17—C12—C13121.7 (5)H12M—C127—H12N109.1
C11—C12—C13123.5 (5)O23—C128—C127106.3 (5)
C12—C13—C15111.7 (5)O23—C128—H12O110.5
C12—C13—C16109.5 (5)C127—C128—H12O110.5
C15—C13—C16107.3 (6)O23—C128—H12P110.5
C12—C13—C14112.5 (5)C127—C128—H12P110.5
C15—C13—C14105.8 (5)H12O—C128—H12P108.7
C16—C13—C14109.9 (5)C28—C210—C212119.1 (5)
C13—C14—H14A109.5C28—C210—C211120.1 (5)
C13—C14—H14B109.5C212—C210—C211120.8 (5)
H14A—C14—H14B109.5C210—C211—H21A109.5
C13—C14—H14C109.5C210—C211—H21B109.5
H14A—C14—H14C109.5H21A—C211—H21B109.5
H14B—C14—H14C109.5C210—C211—H21C109.5
C13—C15—H15A109.5H21A—C211—H21C109.5
C13—C15—H15B109.5H21B—C211—H21C109.5
H15A—C15—H15B109.5C21—C212—C210119.3 (5)
C13—C15—H15C109.5C21—C212—C213121.2 (5)
H15A—C15—H15C109.5C210—C212—C213119.3 (5)
H15B—C15—H15C109.5C214—C213—C223119.7 (5)
C13—C16—H16A109.5C214—C213—C212120.4 (5)
C13—C16—H16B109.5C223—C213—C212119.8 (5)
H16A—C16—H16B109.5O12—C214—C215118.4 (5)
C13—C16—H16C109.5O12—C214—C213119.5 (5)
H16A—C16—H16C109.5C215—C214—C213122.1 (5)
H16B—C16—H16C109.5C214—C215—C220116.0 (5)
C12—C17—C18125.1 (5)C214—C215—C216122.4 (5)
C12—C17—H17A117.5C220—C215—C216121.6 (5)
C18—C17—H17A117.5C218—C216—C219107.7 (5)
C17—C18—C110118.2 (5)C218—C216—C217106.2 (5)
C17—C18—C19120.0 (5)C219—C216—C217109.7 (5)
C110—C18—C19121.7 (5)C218—C216—C215111.1 (5)
C18—C19—H19A109.5C219—C216—C215111.7 (5)
C18—C19—H19B109.5C217—C216—C215110.2 (4)
H19A—C19—H19B109.5C216—C217—H21D109.5
C18—C19—H19C109.5C216—C217—H21E109.5
H19A—C19—H19C109.5H21D—C217—H21E109.5
H19B—C19—H19C109.5C216—C217—H21F109.5
O11—C21—C212116.6 (4)H21D—C217—H21F109.5
O11—C21—C22120.1 (5)H21E—C217—H21F109.5
C212—C21—C22123.3 (5)C216—C218—H21G109.5
C27—C22—C21114.9 (5)C216—C218—H21H109.5
C27—C22—C23121.0 (5)H21G—C218—H21H109.5
C21—C22—C23124.1 (5)C216—C218—H21I109.5
C26—C23—C25108.0 (5)H21G—C218—H21I109.5
C26—C23—C22110.9 (5)H21H—C218—H21I109.5
C25—C23—C22109.3 (5)C216—C219—H21J109.5
C26—C23—C24107.0 (5)C216—C219—H21K109.5
C25—C23—C24109.9 (5)H21J—C219—H21K109.5
C22—C23—C24111.7 (5)C216—C219—H21L109.5
C23—C24—H24A109.5H21J—C219—H21L109.5
C23—C24—H24B109.5H21K—C219—H21L109.5
H24A—C24—H24B109.5C221—C220—C215124.0 (5)
C23—C24—H24C109.5C221—C220—H22B118.0
H24A—C24—H24C109.5C215—C220—H22B118.0
H24B—C24—H24C109.5C220—C221—C223118.5 (5)
C23—C25—H25A109.5C220—C221—C222120.7 (5)
C23—C25—H25B109.5C223—C221—C222120.7 (5)
H25A—C25—H25B109.5C221—C222—H22C109.5
C23—C25—H25C109.5C221—C222—H22D109.5
H25A—C25—H25C109.5H22C—C222—H22D109.5
H25B—C25—H25C109.5C221—C222—H22E109.5
C23—C26—H26A109.5H22C—C222—H22E109.5
C23—C26—H26B109.5H22D—C222—H22E109.5
H26A—C26—H26B109.5C221—C223—C213119.5 (5)
C23—C26—H26C109.5C221—C223—C224120.2 (5)
H26A—C26—H26C109.5C213—C223—C224120.3 (5)
H26B—C26—H26C109.5C223—C224—H22F109.5
C22—C27—C28124.5 (5)C223—C224—H22G109.5
C22—C27—H27A117.8H22F—C224—H22G109.5
C28—C27—H27A117.8C223—C224—H22H109.5
C27—C28—C210119.0 (5)H22F—C224—H22H109.5
C27—C28—C29119.9 (5)H22G—C224—H22H109.5
C210—C28—C29121.2 (5)C228—O13—C225108.7 (9)
C28—C29—H29A109.5C228—O13—Ti1120.5 (6)
C28—C29—H29B109.5C225—O13—Ti1122.6 (9)
H29A—C29—H29B109.5C226—C225—O13107.2 (11)
C28—C29—H29C109.5C226—C225—H22A110.3
H29A—C29—H29C109.5O13—C225—H22A110.3
H29B—C29—H29C109.5C226—C225—H22I110.3
C112—C110—C18119.1 (5)O13—C225—H22I110.3
C112—C110—C111121.0 (5)H22A—C225—H22I108.5
C18—C110—C111119.8 (5)C227—C226—C225106.7 (13)
C110—C111—H11A109.5C227—C226—H22J110.4
C110—C111—H11B109.5C225—C226—H22J110.4
H11A—C111—H11B109.5C227—C226—H22K110.4
C110—C111—H11C109.5C225—C226—H22K110.4
H11A—C111—H11C109.5H22J—C226—H22K108.6
H11B—C111—H11C109.5C226—C227—C228108.2 (11)
C11—C112—C110119.9 (5)C226—C227—H22L110.1
C11—C112—C113120.5 (5)C228—C227—H22L110.1
C110—C112—C113119.5 (5)C226—C227—H22M110.1
C114—C113—C123120.3 (5)C228—C227—H22M110.1
C114—C113—C112119.8 (5)H22L—C227—H22M108.4
C123—C113—C112119.7 (5)O13—C228—C227103.8 (9)
O22—C114—C113120.4 (5)O13—C228—H22N111.0
O22—C114—C115117.5 (5)C227—C228—H22N111.0
C113—C114—C115122.1 (5)O13—C228—H22O111.0
C120—C115—C114115.1 (5)C227—C228—H22O111.0
C120—C115—C116122.2 (5)H22N—C228—H22O109.0
C114—C115—C116122.7 (5)C28'—O13'—C25'107.6 (9)
C119—C116—C118107.7 (5)C28'—O13'—Ti1125.0 (7)
C119—C116—C117106.9 (5)C25'—O13'—Ti1126.7 (7)
C118—C116—C117108.8 (5)C26'—C25'—O13'106.6 (10)
C119—C116—C115111.4 (5)C26'—C25'—H25D110.4
C118—C116—C115110.7 (5)O13'—C25'—H25D110.4
C117—C116—C115111.1 (5)C26'—C25'—H25E110.4
C116—C117—H11D109.5O13'—C25'—H25E110.4
C116—C117—H11E109.5H25D—C25'—H25E108.6
H11D—C117—H11E109.5C27'—C26'—C25'107.1 (12)
C116—C117—H11F109.5C27'—C26'—H26D110.3
H11D—C117—H11F109.5C25'—C26'—H26D110.3
H11E—C117—H11F109.5C27'—C26'—H26E110.3
C116—C118—H11G109.5C25'—C26'—H26E110.3
C116—C118—H11H109.5H26D—C26'—H26E108.6
H11G—C118—H11H109.5C26'—C27'—C28'107.9 (11)
C116—C118—H11I109.5C26'—C27'—H27B110.1
H11G—C118—H11I109.5C28'—C27'—H27B110.1
H11H—C118—H11I109.5C26'—C27'—H27C110.1
C116—C119—H11J109.5C28'—C27'—H27C110.1
C116—C119—H11K109.5H27B—C27'—H27C108.4
H11J—C119—H11K109.5O13'—C28'—C27'106.1 (10)
C116—C119—H11L109.5O13'—C28'—H28A110.5
H11J—C119—H11L109.5C27'—C28'—H28A110.5
H11K—C119—H11L109.5O13'—C28'—H28B110.5
C121—C120—C115124.8 (5)C27'—C28'—H28B110.5
C121—C120—H12B117.6H28A—C28'—H28B108.7
C115—C120—H12B117.6
O13'—Ti1—O11—C21141.2 (10)C115—C120—C121—C1231.6 (8)
O13—Ti1—O11—C21130.3 (10)C115—C120—C121—C122178.6 (5)
Cl13—Ti1—O11—C2153.8 (10)C120—C121—C123—C1131.5 (8)
Cl11—Ti1—O11—C21139.8 (9)C122—C121—C123—C113178.7 (5)
Cl12—Ti1—O11—C2144.5 (9)C120—C121—C123—C124180.0 (5)
O23—Ti2—O21—C11166.2 (13)C122—C121—C123—C1240.2 (8)
Cl21—Ti2—O21—C1181.9 (13)C114—C113—C123—C1210.2 (8)
Cl23—Ti2—O21—C11112.1 (13)C112—C113—C123—C121176.2 (5)
Cl22—Ti2—O21—C1116.5 (13)C114—C113—C123—C124178.2 (5)
Ti2—O21—C11—C11263.3 (14)C112—C113—C123—C1242.3 (7)
Ti2—O21—C11—C12116.5 (12)C128—O23—C125—C12620.2 (6)
O21—C11—C12—C17178.2 (5)Ti2—O23—C125—C126174.8 (3)
C112—C11—C12—C171.6 (8)O23—C125—C126—C12736.0 (6)
O21—C11—C12—C131.6 (8)C125—C126—C127—C12838.4 (7)
C112—C11—C12—C13178.2 (5)C125—O23—C128—C1274.2 (7)
C17—C12—C13—C158.9 (9)Ti2—O23—C128—C127160.6 (4)
C11—C12—C13—C15174.8 (6)C126—C127—C128—O2326.4 (7)
C17—C12—C13—C16109.8 (6)C27—C28—C210—C2121.8 (8)
C11—C12—C13—C1666.5 (7)C29—C28—C210—C212178.9 (5)
C17—C12—C13—C14127.7 (6)C27—C28—C210—C211176.3 (5)
C11—C12—C13—C1455.9 (8)C29—C28—C210—C2112.9 (8)
C11—C12—C17—C180.3 (8)O11—C21—C212—C210178.6 (4)
C13—C12—C17—C18177.0 (5)C22—C21—C212—C2100.4 (8)
C12—C17—C18—C1100.9 (9)O11—C21—C212—C2133.2 (7)
C12—C17—C18—C19177.7 (5)C22—C21—C212—C213175.1 (5)
Ti1—O11—C21—C21243.0 (12)C28—C210—C212—C211.4 (7)
Ti1—O11—C21—C22135.3 (8)C211—C210—C212—C21176.7 (5)
O11—C21—C22—C27179.8 (4)C28—C210—C212—C213176.9 (5)
C212—C21—C22—C271.6 (7)C211—C210—C212—C2131.2 (7)
O11—C21—C22—C233.1 (8)C21—C212—C213—C21487.0 (6)
C212—C21—C22—C23175.1 (5)C210—C212—C213—C21497.5 (6)
C27—C22—C23—C265.7 (7)C21—C212—C213—C22397.2 (6)
C21—C22—C23—C26177.8 (5)C210—C212—C213—C22378.3 (6)
C27—C22—C23—C25113.2 (6)C223—C213—C214—O12177.5 (5)
C21—C22—C23—C2563.3 (7)C212—C213—C214—O121.6 (7)
C27—C22—C23—C24124.9 (5)C223—C213—C214—C2151.6 (8)
C21—C22—C23—C2458.6 (7)C212—C213—C214—C215177.5 (5)
C21—C22—C27—C281.1 (7)O12—C214—C215—C220176.3 (5)
C23—C22—C27—C28175.6 (5)C213—C214—C215—C2202.8 (8)
C22—C27—C28—C2100.5 (8)O12—C214—C215—C2163.6 (8)
C22—C27—C28—C29179.8 (5)C213—C214—C215—C216177.3 (5)
C17—C18—C110—C1120.8 (8)C214—C215—C216—C218176.4 (5)
C19—C18—C110—C112177.7 (5)C220—C215—C216—C2183.8 (7)
C17—C18—C110—C111176.3 (5)C214—C215—C216—C21963.4 (7)
C19—C18—C110—C1112.2 (8)C220—C215—C216—C219116.5 (6)
O21—C11—C112—C110178.1 (4)C214—C215—C216—C21758.9 (7)
C12—C11—C112—C1101.6 (8)C220—C215—C216—C217121.3 (5)
O21—C11—C112—C1131.9 (7)C214—C215—C220—C2211.1 (8)
C12—C11—C112—C113177.8 (5)C216—C215—C220—C221179.0 (5)
C18—C110—C112—C110.4 (8)C215—C220—C221—C2231.8 (8)
C111—C110—C112—C11175.0 (5)C215—C220—C221—C222179.9 (5)
C18—C110—C112—C113176.6 (5)C220—C221—C223—C2133.0 (8)
C111—C110—C112—C1131.2 (7)C222—C221—C223—C213178.6 (5)
C11—C112—C113—C11485.7 (6)C220—C221—C223—C224179.2 (5)
C110—C112—C113—C11498.1 (6)C222—C221—C223—C2240.9 (8)
C11—C112—C113—C12398.3 (6)C214—C213—C223—C2211.4 (8)
C110—C112—C113—C12377.9 (6)C212—C213—C223—C221174.4 (5)
C123—C113—C114—O22177.3 (5)C214—C213—C223—C224179.2 (5)
C112—C113—C114—O221.3 (7)C212—C213—C223—C2243.3 (7)
C123—C113—C114—C1152.1 (8)C228—O13—C225—C22614.4 (16)
C112—C113—C114—C115178.0 (5)Ti1—O13—C225—C226162.9 (10)
O22—C114—C115—C120177.4 (5)O13—C225—C226—C22723.0 (19)
C113—C114—C115—C1202.0 (8)C225—C226—C227—C22822.7 (19)
O22—C114—C115—C1162.9 (8)C225—O13—C228—C2270.7 (13)
C113—C114—C115—C116177.7 (5)Ti1—O13—C228—C227149.9 (14)
C120—C115—C116—C1193.9 (8)C226—C227—C228—O1313.6 (16)
C114—C115—C116—C119175.9 (5)C28'—O13'—C25'—C26'0.7 (14)
C120—C115—C116—C118115.9 (6)Ti1—O13'—C25'—C26'171.3 (10)
C114—C115—C116—C11864.3 (7)O13'—C25'—C26'—C27'13.6 (18)
C120—C115—C116—C117123.0 (6)C25'—C26'—C27'—C28'21 (2)
C114—C115—C116—C11756.7 (7)C25'—O13'—C28'—C27'12.1 (14)
C114—C115—C120—C1210.2 (8)Ti1—O13'—C28'—C27'158.7 (16)
C116—C115—C120—C121179.6 (5)C26'—C27'—C28'—O13'20.9 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H1···Cl12i0.85 (3)2.62 (4)3.333 (4)143 (5)
O22—H2···Cl22i0.84 (3)2.59 (4)3.350 (4)153 (5)
C125—H12J···O220.992.633.324 (7)127
C228—H22O···Cl110.992.983.538 (14)117
C25—H25D···O120.992.253.231 (16)170
C28—H28A···Cl130.992.883.448 (16)117
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation. We acknowledge the Salmon Fund of Vassar College for funding publication expenses.

References

First citationBaker-Salisbury, M. G., Starkman, B. S., Frisenda, G. M., Roteta, L. A. & Tanski, J. M. (2014). Inorg. Chim. Acta, 409, 394–398.  CAS Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChisholm, M. H., Lin, C.-C., Gallucci, J. C. & Ko, B.-T. (2003). Dalton Trans. pp. 406–412.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGreen, M. L. H. (1995). J. Organomet. Chem. 500, 127–148.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKanazawa, S., Ohira, T., Goda, S., Hayakawa, N., Tanikawa, T., Hashizume, D., Ishida, Y., Kawaguchi, H. & Matsuo, T. (2016). Inorg. Chem. 55, 6643–6652.  CSD CrossRef CAS Google Scholar
First citationKrempner, C., Reinke, H. & Weichert, K. (2007). Polyhedron, 26, 3633–3637.  CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRamón, D. J. & Yus, M. (2006). Chem. Rev. 106, 2126–2208.  Web of Science PubMed Google Scholar
First citationSaied, O., Simard, M. & Wuest, J. D. (1998a). Organometallics, 17, 1128–1133.  CSD CrossRef CAS Google Scholar
First citationSaied, O., Simard, M. & Wuest, J. D. (1998b). Inorg. Chem. 37, 2620–2625.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationZiemer, B., Scholtis, S. & Mahrwald, R. (2008). Anal. Sci. 24, 233–234.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds