research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{N′-[(E)-4-hy­dr­oxy­benzyl­­idene]pyridine-4-carbohydrazide-κN1}di­iodidocadmium methanol disolvate

CROSSMARK_Color_square_no_text.svg

aYoung Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran, bUniversität Leipzig, Fakultät für Chemie und Mineralogie, Johannisallee 29, D-04103 Leipzig, Germany, cİlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, and dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

Edited by J. Simpson, University of Otago, New Zealand (Received 30 November 2016; accepted 7 December 2016; online 1 January 2017)

In the title compound, [Cd(C13H11IN3O2)2]·2CH3OH, which crystallizes with Z = 4 in the space group Pbcn, the CdII atom is located on a twofold rotation axis and coordinated by two I anions and two N atoms from the pyridine rings of the two N′-[(E)-4-hy­droxy­benzyl­idene]pyridine-4-carbohydrazide ligands. The geometry around the CdII atom is distorted tetra­hedral, with bond angles in the range 94.92 (11)–124.29 (2)°. The iodide anions undergo inter­molecular hydrogen-bonding contacts with the C—H groups of the organic ligands of an adjacent complex mol­ecule, generating a chain structure along the b axis. Furthermore, an extensive series of O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bonding inter­actions involving both the complex mol­ecules and the ethanol solvate mol­ecules generate a three-dimensional network.

1. Chemical context

Hydrazones are organic compounds that incorporate –NH–N=CH– units in their mol­ecules. Hydrazone ligands based on pyridine are among the most important classes of flexible and versatile polydentate ligands and usually act as chelating ligands to metal cations (Afkhami et al., 2016[Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Lipkowski, J., White, J. M., Waterman, R., García-Granda, S., Zangrando, E., Bauzá, A. & Frontera, A. (2016). CrystEngComm, 18, 4587-4596.]), but in some cases they behave as monodentate ligands through the pyridine group alone. The hydrazone-based ligand in the title compound was prepared according to a method reported in the literature (Deng et al., 2005[Deng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005). Acta Cryst. E61, o2545-o2546.]). The crystal structure of the ligand and three of its ZnII metal complexes have been reported previously (Mahmoudi et al., 2016[Mahmoudi, G., Afkhami, F. A., Jena, H. S., Nematollahi, P., Esrafili, M. D., Garczarek, P., Van Hecke, K., Gargari, M. S. & Kirillov, A. M. (2016). New J. Chem. 40, 10116-10126.]). However, the title compound is the first reported crystal structure of a CdII complex of the ligand.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The Cd atom, located on a twofold rotation axis, is coordinated by two Schiff base ligands, acting as monodentate ligands, through the nitro­gen atoms of the pyridine rings. The angle between the benzene and pyridine rings is 35.42 (19)°. The Cd—I distance is 2.6909 (5) Å and the Cd—N distance is 2.297 (3) Å. All bonds and angles in the title compound fall within acceptable ranges and are comparable with those reported for related structures of bis­{2-[(2,4-di­methyl­phen­yl)imino­meth­yl]pyridine-κ2N,N′}bis­(thio­cyanato-κN)cadmium (Malekshahian et al., 2012[Malekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218-m219.]), di-μ-chlorido-bis­(chlorido­{N-[phen­yl(pyridin-2-yl-κN)methyl­idene]pyridine-2-carbohydrazide-κ2N,O}cadmium) (Akkurt et al., 2014[Akkurt, M., Khandar, A. A., Tahir, M. N., Afkhami, F. A. & Yazdi, S. A. H. (2014). Acta Cryst. E70, m213-m214.]) and cis-di­aqua­bis[(E)-4-(2-hy­droxy­benzyl-idene­amino)­benzoato-κ2O,O′]cadmium in which layers are built from strong O—H⋯O hydrogen bonding (Yao et al., 2006[Yao, S.-Q., Zhu, M.-L., Lu, L.-P. & Gao, X.-L. (2006). Acta Cryst. C62, m183-m185.]).

[Figure 1]
Figure 1
The molecular components of the title compound, showing the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level [symmetry code: (a) −x, y, −z + [{1\over 2}]].

3. Supra­molecular features

In the crystal, the iodide anions form inter­molecular C1—H1⋯I1 hydrogen-bonding contacts with the C—H groups of the pyridine rings of an adjacent complex mol­ecule. This generates a a chain structure along the b axis. In addition, an extensive series of O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bonding inter­actions, Table 1[link], involving both the complex mol­ecules and the methanol solvate mol­ecules, generates a three-dimensional network (Figs. 2[link], 3[link] and 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O3 0.77 (5) 2.09 (5) 2.849 (4) 174 (4)
O2—H2O⋯O1ii 0.81 (3) 1.89 (4) 2.656 (4) 159 (5)
O3—H3O⋯O2iii 0.80 (3) 2.03 (2) 2.828 (5) 173 (4)
C4—H4⋯O3 0.94 2.58 3.291 (5) 133
C7—H7⋯O3 0.94 2.56 3.327 (5) 140
C1—H1⋯I1iv 0.94 3.11 3.811 (4) 133
Symmetry codes: (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) -x+2, -y+1, -z; (iv) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].
[Figure 2]
Figure 2
View of the hydrogen bonding and packing of the title compound along the a axis.
[Figure 3]
Figure 3
View of the hydrogen bonding and packing of the title compound along the b axis.
[Figure 4]
Figure 4
View of the hydrogen bonding and packing of the title compound along the c axis.

4. Synthesis and crystallization

The title compound was synthesized by the reaction of a methanol solution of the ligand and Cd(NO3)2·4H2O in the presence of excess amount of NaI. The ligand (1 mmol, 0.240 g) and cadmium nitrate (1 mmol, 0.308 g) were placed in the main arm of a branched tube; sodium iodide (2 mmol, 0.300 g) was added to the mixture too. Methanol was carefully added to fill the arms. The tube was sealed and the ligand-containing arm was immersed in an oil bath at 333 K while the branched arm was kept at ambient temperature. After 24 h, suitable single crystals had deposited in the cooler arm which were isolated and air dried.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were ideal­ized (C—H = 0.98–0.99 Å) and refined using the riding-model approximation with Uiso(H) = 1.2 or 1.5 Ueq(C). The N—H and O—H hydrogen atoms were located from difference maps and refined with the restraints N2—H2N = 0.77 (5), O2—H2O = 0.81 (3), O3—H3O = 0.80 (3) Å and with Uiso(H) = 1.2Ueq(N) or Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula [Cd(C13H11IN3O2)2]·2CH4O
Mr 912.79
Crystal system, space group Orthorhombic, Pbcn
Temperature (K) 213
a, b, c (Å) 8.0245 (4), 13.2482 (9), 30.4540 (19)
V3) 3237.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.63
Crystal size (mm) 0.5 × 0.3 × 0.3
 
Data collection
Diffractometer Stoe IPDS1
Absorption correction Numerical (X-RED32; Stoe & Cie, 2000[Stoe & Cie (2000). X-RED32, EXPOSE, CELL and INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.])
Tmin, Tmax 0.337, 0.453
No. of measured, independent and observed [I > 2σ(I)] reflections 3511, 3511, 2542
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.094, 0.88
No. of reflections 3511
No. of parameters 206
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.68, −1.47
Computer programs: EXPOSE, CELL, SELECT and INTEGRATE (Stoe & Cie, 2000[Stoe & Cie (2000). X-RED32, EXPOSE, CELL and INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: EXPOSE (Stoe & Cie, 2000); cell refinement: CELL (Stoe & Cie, 2000); data reduction: SELECT (Stoe & Cie, 2000) and INTEGRATE (Stoe & Cie, 2000); program(s) used to solve structure: SHELXT-2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 2012).

Bis{N'-[(E)-4-hydroxybenzylidene]pyridine-4-carbohydrazide-κN1}diiodidocadmium methanol disolvate top
Crystal data top
[CdI2(C13H11N3O2)2]·2CH4OF(000) = 1768
Mr = 912.79Dx = 1.873 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 428 reflections
a = 8.0245 (4) Åθ = 2.9–27.6°
b = 13.2482 (9) ŵ = 2.63 mm1
c = 30.4540 (19) ÅT = 213 K
V = 3237.6 (3) Å3Prism, colorless
Z = 40.5 × 0.3 × 0.3 mm
Data collection top
Stoe IPDS1
diffractometer
3511 independent reflections
Radiation source: fine-focus sealed tube2542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
phi scanθmax = 27.6°, θmin = 2.9°
Absorption correction: numerical
Stoe XRED32 (Stoe & Cie, 2000)
h = 09
Tmin = 0.337, Tmax = 0.453k = 017
3511 measured reflectionsl = 039
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0655P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 0.88Δρmax = 1.68 e Å3
3511 reflectionsΔρmin = 1.47 e Å3
206 parametersExtinction correction: SHELXL-2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001XFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0026 (2)
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.24029 (5)0.11226 (3)0.20424 (2)0.0555 (1)
Cd10.000000.20717 (2)0.250000.0250 (1)
O10.3473 (4)0.62436 (18)0.12617 (10)0.0359 (9)
O21.0000 (4)0.70774 (18)0.10066 (9)0.0310 (8)
N10.1497 (5)0.3244 (2)0.21085 (10)0.0284 (10)
N20.5039 (5)0.4973 (2)0.09734 (10)0.0263 (9)
N30.5712 (5)0.5598 (2)0.06532 (10)0.0269 (10)
C10.0746 (6)0.4087 (3)0.19639 (12)0.0295 (11)
C20.1550 (5)0.4791 (3)0.17078 (12)0.0280 (11)
C30.3166 (5)0.4612 (2)0.15733 (12)0.0247 (10)
O30.6488 (4)0.3011 (2)0.09399 (12)0.0431 (11)
C40.3962 (6)0.3747 (3)0.17287 (13)0.0302 (11)
C50.3096 (6)0.3093 (3)0.19927 (13)0.0319 (13)
C60.3943 (5)0.5354 (2)0.12611 (12)0.0262 (10)
C70.6539 (5)0.5138 (3)0.03593 (12)0.0265 (10)
C80.7372 (5)0.5675 (3)0.00022 (11)0.0244 (10)
C90.7230 (5)0.6713 (3)0.00636 (13)0.0290 (13)
C100.8101 (6)0.7194 (3)0.03945 (13)0.0293 (13)
C110.9119 (5)0.6642 (2)0.06770 (11)0.0230 (10)
C120.9264 (6)0.5601 (3)0.06211 (12)0.0263 (10)
C130.8388 (5)0.5132 (3)0.02870 (12)0.0268 (13)
C140.5662 (7)0.2065 (3)0.09320 (17)0.0450 (16)
H10.037300.420000.204100.0350*
H20.100300.538900.162500.0340*
H2N0.541 (6)0.444 (4)0.0984 (14)0.0320*
H2O0.967 (7)0.765 (2)0.1033 (17)0.0460*
H40.507600.361500.165300.0360*
H50.364400.251400.209800.0380*
H70.662200.443100.037300.0320*
H90.653400.709100.012200.0350*
H100.800700.789600.042900.0350*
H120.995000.522100.080900.0320*
H130.848200.442900.025200.0320*
H3O0.748 (3)0.294 (5)0.095 (2)0.0650*
H14A0.626900.158600.111200.0670*
H14B0.561000.181900.063200.0670*
H14C0.454100.214300.104600.0670*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0416 (3)0.0625 (2)0.0624 (2)0.0191 (2)0.0021 (2)0.0255 (2)
Cd10.0250 (2)0.0179 (2)0.0320 (2)0.00000.0051 (2)0.0000
O10.041 (2)0.0198 (12)0.0469 (16)0.0042 (12)0.0127 (14)0.0091 (11)
O20.0326 (17)0.0217 (11)0.0386 (13)0.0017 (13)0.0098 (13)0.0098 (10)
N10.035 (2)0.0209 (13)0.0292 (16)0.0023 (13)0.0071 (14)0.0038 (12)
N20.031 (2)0.0184 (12)0.0294 (14)0.0000 (14)0.0067 (15)0.0076 (11)
N30.027 (2)0.0232 (13)0.0306 (16)0.0034 (13)0.0036 (14)0.0093 (12)
C10.027 (2)0.0294 (18)0.0321 (19)0.0061 (16)0.0084 (16)0.0039 (14)
C20.028 (2)0.0216 (16)0.0345 (19)0.0068 (15)0.0037 (16)0.0054 (14)
C30.028 (2)0.0198 (15)0.0264 (17)0.0006 (14)0.0006 (15)0.0019 (12)
O30.031 (2)0.0273 (14)0.071 (2)0.0040 (13)0.0092 (16)0.0070 (14)
C40.024 (2)0.0267 (18)0.040 (2)0.0058 (15)0.0078 (17)0.0102 (15)
C50.034 (3)0.0256 (18)0.036 (2)0.0079 (16)0.0064 (17)0.0066 (15)
C60.026 (2)0.0202 (16)0.0323 (18)0.0002 (14)0.0008 (16)0.0055 (13)
C70.028 (2)0.0210 (16)0.0304 (18)0.0032 (15)0.0004 (16)0.0062 (14)
C80.026 (2)0.0224 (15)0.0249 (16)0.0054 (15)0.0014 (15)0.0041 (13)
C90.027 (3)0.0241 (17)0.0360 (19)0.0039 (15)0.0084 (16)0.0031 (14)
C100.031 (3)0.0180 (16)0.039 (2)0.0031 (15)0.0057 (17)0.0062 (14)
C110.022 (2)0.0199 (15)0.0271 (17)0.0009 (14)0.0007 (15)0.0050 (13)
C120.032 (2)0.0184 (15)0.0285 (17)0.0034 (15)0.0018 (16)0.0005 (13)
C130.033 (3)0.0164 (15)0.0310 (18)0.0025 (15)0.0038 (16)0.0022 (13)
C140.044 (3)0.036 (2)0.055 (3)0.003 (2)0.003 (2)0.003 (2)
Geometric parameters (Å, º) top
I1—Cd12.6909 (5)C8—C131.391 (5)
Cd1—I1i2.6909 (5)C8—C91.393 (6)
Cd1—N12.297 (3)C9—C101.382 (6)
Cd1—N1i2.297 (3)C10—C111.394 (5)
O1—C61.237 (4)C11—C121.395 (5)
O2—C111.357 (4)C12—C131.384 (6)
N1—C11.343 (5)C1—H10.9400
N1—C51.346 (6)C2—H20.9400
N2—N31.389 (4)O3—H3O0.80 (3)
N2—C61.340 (5)C4—H40.9400
O2—H2O0.81 (3)C5—H50.9400
N3—C71.270 (5)C7—H70.9400
C1—C21.376 (6)C9—H90.9400
C2—C31.380 (6)C10—H100.9400
N2—H2N0.77 (5)C12—H120.9400
C3—C41.395 (5)C13—H130.9400
C3—C61.503 (5)C14—H14A0.9700
O3—C141.418 (5)C14—H14B0.9700
C4—C51.371 (6)C14—H14C0.9700
C7—C81.471 (5)
I1—Cd1—N1114.95 (8)O2—C11—C12117.9 (3)
I1—Cd1—I1i124.29 (2)O2—C11—C10122.6 (3)
I1—Cd1—N1i102.12 (9)C10—C11—C12119.5 (3)
I1i—Cd1—N1102.12 (9)C11—C12—C13119.4 (4)
N1—Cd1—N1i94.92 (11)C8—C13—C12121.6 (4)
I1i—Cd1—N1i114.95 (8)N1—C1—H1119.00
Cd1—N1—C1119.9 (3)C2—C1—H1119.00
Cd1—N1—C5122.3 (2)C1—C2—H2120.00
C1—N1—C5117.7 (3)C3—C2—H2120.00
N3—N2—C6119.3 (3)C14—O3—H3O111 (5)
C11—O2—H2O108 (4)C5—C4—H4121.00
N2—N3—C7114.3 (3)C3—C4—H4120.00
N1—C1—C2122.6 (4)N1—C5—H5119.00
C1—C2—C3119.5 (4)C4—C5—H5119.00
C6—N2—H2N125 (3)C8—C7—H7119.00
N3—N2—H2N115 (3)N3—C7—H7119.00
C2—C3—C4118.1 (3)C8—C9—H9120.00
C2—C3—C6117.7 (3)C10—C9—H9120.00
C4—C3—C6124.2 (4)C11—C10—H10120.00
C3—C4—C5119.1 (4)C9—C10—H10120.00
N1—C5—C4122.9 (4)C11—C12—H12120.00
N2—C6—C3116.1 (3)C13—C12—H12120.00
O1—C6—C3119.7 (3)C8—C13—H13119.00
O1—C6—N2124.0 (3)C12—C13—H13119.00
N3—C7—C8122.2 (4)O3—C14—H14A110.00
C7—C8—C9122.7 (3)O3—C14—H14B109.00
C7—C8—C13118.9 (4)O3—C14—H14C109.00
C9—C8—C13118.4 (3)H14A—C14—H14B110.00
C8—C9—C10120.8 (4)H14A—C14—H14C109.00
C9—C10—C11120.3 (4)H14B—C14—H14C109.00
I1—Cd1—N1—C166.6 (3)C2—C3—C6—O127.7 (5)
I1i—Cd1—N1—C1156.1 (3)C2—C3—C4—C52.5 (6)
N1i—Cd1—N1—C139.2 (3)C6—C3—C4—C5176.2 (4)
I1—Cd1—N1—C5109.3 (3)C2—C3—C6—N2147.5 (4)
I1i—Cd1—N1—C528.1 (3)C4—C3—C6—O1153.5 (4)
N1i—Cd1—N1—C5144.9 (3)C3—C4—C5—N10.4 (6)
C1—N1—C5—C41.5 (6)N3—C7—C8—C94.1 (6)
Cd1—N1—C1—C2176.4 (3)N3—C7—C8—C13173.8 (4)
C5—N1—C1—C20.4 (6)C7—C8—C9—C10176.7 (4)
Cd1—N1—C5—C4174.5 (3)C13—C8—C9—C101.2 (6)
C6—N2—N3—C7170.1 (4)C7—C8—C13—C12177.1 (4)
N3—N2—C6—O10.2 (6)C9—C8—C13—C120.9 (6)
N3—N2—C6—C3175.1 (3)C8—C9—C10—C111.0 (6)
N2—N3—C7—C8178.8 (4)C9—C10—C11—O2180.0 (4)
N1—C1—C2—C33.3 (6)C9—C10—C11—C120.5 (6)
C1—C2—C3—C6174.6 (3)O2—C11—C12—C13179.8 (4)
C1—C2—C3—C44.3 (5)C10—C11—C12—C130.3 (6)
C4—C3—C6—N231.2 (5)C11—C12—C13—C80.5 (6)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O30.77 (5)2.09 (5)2.849 (4)174 (4)
O2—H2O···O1ii0.81 (3)1.89 (4)2.656 (4)159 (5)
O3—H3O···O2iii0.80 (3)2.03 (2)2.828 (5)173 (4)
C4—H4···O30.942.583.291 (5)133
C7—H7···O30.942.563.327 (5)140
C1—H1···I1iv0.943.113.811 (4)133
Symmetry codes: (ii) x+1/2, y+3/2, z; (iii) x+2, y+1, z; (iv) x1/2, y+1/2, z.
 

Acknowledgements

We are grateful to the Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, for the financial support of this research.

References

First citationAfkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Lipkowski, J., White, J. M., Waterman, R., García-Granda, S., Zangrando, E., Bauzá, A. & Frontera, A. (2016). CrystEngComm, 18, 4587–4596.  CSD CrossRef CAS Google Scholar
First citationAkkurt, M., Khandar, A. A., Tahir, M. N., Afkhami, F. A. & Yazdi, S. A. H. (2014). Acta Cryst. E70, m213–m214.  CSD CrossRef IUCr Journals Google Scholar
First citationDeng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005). Acta Cryst. E61, o2545–o2546.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahmoudi, G., Afkhami, F. A., Jena, H. S., Nematollahi, P., Esrafili, M. D., Garczarek, P., Van Hecke, K., Gargari, M. S. & Kirillov, A. M. (2016). New J. Chem. 40, 10116–10126.  CSD CrossRef CAS Google Scholar
First citationMalekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218–m219.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2000). X-RED32, EXPOSE, CELL and INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationYao, S.-Q., Zhu, M.-L., Lu, L.-P. & Gao, X.-L. (2006). Acta Cryst. C62, m183–m185.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds