research communications
N′-[(E)-4-hydroxybenzylidene]pyridine-4-carbohydrazide-κN1}diiodidocadmium methanol disolvate
of bis{aYoung Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran, bUniversität Leipzig, Fakultät für Chemie und Mineralogie, Johannisallee 29, D-04103 Leipzig, Germany, cİlke Education and Health Foundation, Cappadocia Vocational College, The Medical Imaging Techniques Program, 50420 Mustafapaşa, Ürgüp, Nevşehir, Turkey, and dDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title compound, [Cd(C13H11IN3O2)2]·2CH3OH, which crystallizes with Z = 4 in the Pbcn, the CdII atom is located on a twofold rotation axis and coordinated by two I− anions and two N atoms from the pyridine rings of the two N′-[(E)-4-hydroxybenzylidene]pyridine-4-carbohydrazide ligands. The geometry around the CdII atom is distorted tetrahedral, with bond angles in the range 94.92 (11)–124.29 (2)°. The iodide anions undergo intermolecular hydrogen-bonding contacts with the C—H groups of the organic ligands of an adjacent complex molecule, generating a chain structure along the b axis. Furthermore, an extensive series of O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bonding interactions involving both the complex molecules and the ethanol solvate molecules generate a three-dimensional network.
Keywords: crystal structure; cadmium; hydrazone-based ligand; hydrogen bonding.
CCDC reference: 1521096
1. Chemical context
et al., 2016), but in some cases they behave as monodentate ligands through the pyridine group alone. The hydrazone-based ligand in the title compound was prepared according to a method reported in the literature (Deng et al., 2005). The of the ligand and three of its ZnII metal complexes have been reported previously (Mahmoudi et al., 2016). However, the title compound is the first reported of a CdII complex of the ligand.
are organic compounds that incorporate –NH–N=CH– units in their molecules. Hydrazone ligands based on pyridine are among the most important classes of flexible and versatile polydentate ligands and usually act as chelating ligands to metal cations (Afkhami2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1. The Cd atom, located on a twofold rotation axis, is coordinated by two Schiff base ligands, acting as monodentate ligands, through the nitrogen atoms of the pyridine rings. The angle between the benzene and pyridine rings is 35.42 (19)°. The Cd—I distance is 2.6909 (5) Å and the Cd—N distance is 2.297 (3) Å. All bonds and angles in the title compound fall within acceptable ranges and are comparable with those reported for related structures of bis{2-[(2,4-dimethylphenyl)iminomethyl]pyridine-κ2N,N′}bis(thiocyanato-κN)cadmium (Malekshahian et al., 2012), di-μ-chlorido-bis(chlorido{N-[phenyl(pyridin-2-yl-κN)methylidene]pyridine-2-carbohydrazide-κ2N,O}cadmium) (Akkurt et al., 2014) and cis-diaquabis[(E)-4-(2-hydroxybenzyl-ideneamino)benzoato-κ2O,O′]cadmium in which layers are built from strong O—H⋯O hydrogen bonding (Yao et al., 2006).
3. Supramolecular features
In the crystal, the iodide anions form intermolecular C1—H1⋯I1 hydrogen-bonding contacts with the C—H groups of the pyridine rings of an adjacent complex molecule. This generates a a chain structure along the b axis. In addition, an extensive series of O—H⋯O, N—H⋯O and C—H⋯O hydrogen-bonding interactions, Table 1, involving both the complex molecules and the methanol solvate molecules, generates a three-dimensional network (Figs. 2, 3 and 4).
4. Synthesis and crystallization
The title compound was synthesized by the reaction of a methanol solution of the ligand and Cd(NO3)2·4H2O in the presence of excess amount of NaI. The ligand (1 mmol, 0.240 g) and cadmium nitrate (1 mmol, 0.308 g) were placed in the main arm of a branched tube; sodium iodide (2 mmol, 0.300 g) was added to the mixture too. Methanol was carefully added to fill the arms. The tube was sealed and the ligand-containing arm was immersed in an oil bath at 333 K while the branched arm was kept at ambient temperature. After 24 h, suitable single crystals had deposited in the cooler arm which were isolated and air dried.
5. Refinement
Crystal data, data collection and structure . All C-bound H atoms were idealized (C—H = 0.98–0.99 Å) and refined using the riding-model approximation with Uiso(H) = 1.2 or 1.5 Ueq(C). The N—H and O—H hydrogen atoms were located from difference maps and refined with the restraints N2—H2N = 0.77 (5), O2—H2O = 0.81 (3), O3—H3O = 0.80 (3) Å and with Uiso(H) = 1.2Ueq(N) or Uiso(H) = 1.5Ueq(O).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1521096
https://doi.org/10.1107/S2056989016019575/sj5516sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016019575/sj5516Isup2.hkl
Data collection: EXPOSE (Stoe & Cie, 2000); cell
CELL (Stoe & Cie, 2000); data reduction: SELECT (Stoe & Cie, 2000) and INTEGRATE (Stoe & Cie, 2000); program(s) used to solve structure: SHELXT-2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and WinGX (Farrugia, 2012).[CdI2(C13H11N3O2)2]·2CH4O | F(000) = 1768 |
Mr = 912.79 | Dx = 1.873 Mg m−3 |
Orthorhombic, Pbcn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2n 2ab | Cell parameters from 428 reflections |
a = 8.0245 (4) Å | θ = 2.9–27.6° |
b = 13.2482 (9) Å | µ = 2.63 mm−1 |
c = 30.4540 (19) Å | T = 213 K |
V = 3237.6 (3) Å3 | Prism, colorless |
Z = 4 | 0.5 × 0.3 × 0.3 mm |
Stoe IPDS1 diffractometer | 3511 independent reflections |
Radiation source: fine-focus sealed tube | 2542 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.000 |
phi scan | θmax = 27.6°, θmin = 2.9° |
Absorption correction: numerical Stoe XRED32 (Stoe & Cie, 2000) | h = 0→9 |
Tmin = 0.337, Tmax = 0.453 | k = 0→17 |
3511 measured reflections | l = 0→39 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.040 | w = 1/[σ2(Fo2) + (0.0655P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.094 | (Δ/σ)max < 0.001 |
S = 0.88 | Δρmax = 1.68 e Å−3 |
3511 reflections | Δρmin = −1.47 e Å−3 |
206 parameters | Extinction correction: SHELXL-2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001XFc2λ3/sin(2θ)]-1/4 |
2 restraints | Extinction coefficient: 0.0026 (2) |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
I1 | −0.24029 (5) | 0.11226 (3) | 0.20424 (2) | 0.0555 (1) | |
Cd1 | 0.00000 | 0.20717 (2) | 0.25000 | 0.0250 (1) | |
O1 | 0.3473 (4) | 0.62436 (18) | 0.12617 (10) | 0.0359 (9) | |
O2 | 1.0000 (4) | 0.70774 (18) | −0.10066 (9) | 0.0310 (8) | |
N1 | 0.1497 (5) | 0.3244 (2) | 0.21085 (10) | 0.0284 (10) | |
N2 | 0.5039 (5) | 0.4973 (2) | 0.09734 (10) | 0.0263 (9) | |
N3 | 0.5712 (5) | 0.5598 (2) | 0.06532 (10) | 0.0269 (10) | |
C1 | 0.0746 (6) | 0.4087 (3) | 0.19639 (12) | 0.0295 (11) | |
C2 | 0.1550 (5) | 0.4791 (3) | 0.17078 (12) | 0.0280 (11) | |
C3 | 0.3166 (5) | 0.4612 (2) | 0.15733 (12) | 0.0247 (10) | |
O3 | 0.6488 (4) | 0.3011 (2) | 0.09399 (12) | 0.0431 (11) | |
C4 | 0.3962 (6) | 0.3747 (3) | 0.17287 (13) | 0.0302 (11) | |
C5 | 0.3096 (6) | 0.3093 (3) | 0.19927 (13) | 0.0319 (13) | |
C6 | 0.3943 (5) | 0.5354 (2) | 0.12611 (12) | 0.0262 (10) | |
C7 | 0.6539 (5) | 0.5138 (3) | 0.03593 (12) | 0.0265 (10) | |
C8 | 0.7372 (5) | 0.5675 (3) | −0.00022 (11) | 0.0244 (10) | |
C9 | 0.7230 (5) | 0.6713 (3) | −0.00636 (13) | 0.0290 (13) | |
C10 | 0.8101 (6) | 0.7194 (3) | −0.03945 (13) | 0.0293 (13) | |
C11 | 0.9119 (5) | 0.6642 (2) | −0.06770 (11) | 0.0230 (10) | |
C12 | 0.9264 (6) | 0.5601 (3) | −0.06211 (12) | 0.0263 (10) | |
C13 | 0.8388 (5) | 0.5132 (3) | −0.02870 (12) | 0.0268 (13) | |
C14 | 0.5662 (7) | 0.2065 (3) | 0.09320 (17) | 0.0450 (16) | |
H1 | −0.03730 | 0.42000 | 0.20410 | 0.0350* | |
H2 | 0.10030 | 0.53890 | 0.16250 | 0.0340* | |
H2N | 0.541 (6) | 0.444 (4) | 0.0984 (14) | 0.0320* | |
H2O | 0.967 (7) | 0.765 (2) | −0.1033 (17) | 0.0460* | |
H4 | 0.50760 | 0.36150 | 0.16530 | 0.0360* | |
H5 | 0.36440 | 0.25140 | 0.20980 | 0.0380* | |
H7 | 0.66220 | 0.44310 | 0.03730 | 0.0320* | |
H9 | 0.65340 | 0.70910 | 0.01220 | 0.0350* | |
H10 | 0.80070 | 0.78960 | −0.04290 | 0.0350* | |
H12 | 0.99500 | 0.52210 | −0.08090 | 0.0320* | |
H13 | 0.84820 | 0.44290 | −0.02520 | 0.0320* | |
H3O | 0.748 (3) | 0.294 (5) | 0.095 (2) | 0.0650* | |
H14A | 0.62690 | 0.15860 | 0.11120 | 0.0670* | |
H14B | 0.56100 | 0.18190 | 0.06320 | 0.0670* | |
H14C | 0.45410 | 0.21430 | 0.10460 | 0.0670* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.0416 (3) | 0.0625 (2) | 0.0624 (2) | −0.0191 (2) | 0.0021 (2) | −0.0255 (2) |
Cd1 | 0.0250 (2) | 0.0179 (2) | 0.0320 (2) | 0.0000 | 0.0051 (2) | 0.0000 |
O1 | 0.041 (2) | 0.0198 (12) | 0.0469 (16) | 0.0042 (12) | 0.0127 (14) | 0.0091 (11) |
O2 | 0.0326 (17) | 0.0217 (11) | 0.0386 (13) | 0.0017 (13) | 0.0098 (13) | 0.0098 (10) |
N1 | 0.035 (2) | 0.0209 (13) | 0.0292 (16) | 0.0023 (13) | 0.0071 (14) | 0.0038 (12) |
N2 | 0.031 (2) | 0.0184 (12) | 0.0294 (14) | 0.0000 (14) | 0.0067 (15) | 0.0076 (11) |
N3 | 0.027 (2) | 0.0232 (13) | 0.0306 (16) | −0.0034 (13) | 0.0036 (14) | 0.0093 (12) |
C1 | 0.027 (2) | 0.0294 (18) | 0.0321 (19) | 0.0061 (16) | 0.0084 (16) | 0.0039 (14) |
C2 | 0.028 (2) | 0.0216 (16) | 0.0345 (19) | 0.0068 (15) | 0.0037 (16) | 0.0054 (14) |
C3 | 0.028 (2) | 0.0198 (15) | 0.0264 (17) | −0.0006 (14) | 0.0006 (15) | 0.0019 (12) |
O3 | 0.031 (2) | 0.0273 (14) | 0.071 (2) | 0.0040 (13) | 0.0092 (16) | 0.0070 (14) |
C4 | 0.024 (2) | 0.0267 (18) | 0.040 (2) | 0.0058 (15) | 0.0078 (17) | 0.0102 (15) |
C5 | 0.034 (3) | 0.0256 (18) | 0.036 (2) | 0.0079 (16) | 0.0064 (17) | 0.0066 (15) |
C6 | 0.026 (2) | 0.0202 (16) | 0.0323 (18) | 0.0002 (14) | −0.0008 (16) | 0.0055 (13) |
C7 | 0.028 (2) | 0.0210 (16) | 0.0304 (18) | −0.0032 (15) | 0.0004 (16) | 0.0062 (14) |
C8 | 0.026 (2) | 0.0224 (15) | 0.0249 (16) | −0.0054 (15) | −0.0014 (15) | 0.0041 (13) |
C9 | 0.027 (3) | 0.0241 (17) | 0.0360 (19) | 0.0039 (15) | 0.0084 (16) | 0.0031 (14) |
C10 | 0.031 (3) | 0.0180 (16) | 0.039 (2) | 0.0031 (15) | 0.0057 (17) | 0.0062 (14) |
C11 | 0.022 (2) | 0.0199 (15) | 0.0271 (17) | −0.0009 (14) | −0.0007 (15) | 0.0050 (13) |
C12 | 0.032 (2) | 0.0184 (15) | 0.0285 (17) | 0.0034 (15) | 0.0018 (16) | 0.0005 (13) |
C13 | 0.033 (3) | 0.0164 (15) | 0.0310 (18) | −0.0025 (15) | −0.0038 (16) | 0.0022 (13) |
C14 | 0.044 (3) | 0.036 (2) | 0.055 (3) | −0.003 (2) | −0.003 (2) | 0.003 (2) |
I1—Cd1 | 2.6909 (5) | C8—C13 | 1.391 (5) |
Cd1—I1i | 2.6909 (5) | C8—C9 | 1.393 (6) |
Cd1—N1 | 2.297 (3) | C9—C10 | 1.382 (6) |
Cd1—N1i | 2.297 (3) | C10—C11 | 1.394 (5) |
O1—C6 | 1.237 (4) | C11—C12 | 1.395 (5) |
O2—C11 | 1.357 (4) | C12—C13 | 1.384 (6) |
N1—C1 | 1.343 (5) | C1—H1 | 0.9400 |
N1—C5 | 1.346 (6) | C2—H2 | 0.9400 |
N2—N3 | 1.389 (4) | O3—H3O | 0.80 (3) |
N2—C6 | 1.340 (5) | C4—H4 | 0.9400 |
O2—H2O | 0.81 (3) | C5—H5 | 0.9400 |
N3—C7 | 1.270 (5) | C7—H7 | 0.9400 |
C1—C2 | 1.376 (6) | C9—H9 | 0.9400 |
C2—C3 | 1.380 (6) | C10—H10 | 0.9400 |
N2—H2N | 0.77 (5) | C12—H12 | 0.9400 |
C3—C4 | 1.395 (5) | C13—H13 | 0.9400 |
C3—C6 | 1.503 (5) | C14—H14A | 0.9700 |
O3—C14 | 1.418 (5) | C14—H14B | 0.9700 |
C4—C5 | 1.371 (6) | C14—H14C | 0.9700 |
C7—C8 | 1.471 (5) | ||
I1—Cd1—N1 | 114.95 (8) | O2—C11—C12 | 117.9 (3) |
I1—Cd1—I1i | 124.29 (2) | O2—C11—C10 | 122.6 (3) |
I1—Cd1—N1i | 102.12 (9) | C10—C11—C12 | 119.5 (3) |
I1i—Cd1—N1 | 102.12 (9) | C11—C12—C13 | 119.4 (4) |
N1—Cd1—N1i | 94.92 (11) | C8—C13—C12 | 121.6 (4) |
I1i—Cd1—N1i | 114.95 (8) | N1—C1—H1 | 119.00 |
Cd1—N1—C1 | 119.9 (3) | C2—C1—H1 | 119.00 |
Cd1—N1—C5 | 122.3 (2) | C1—C2—H2 | 120.00 |
C1—N1—C5 | 117.7 (3) | C3—C2—H2 | 120.00 |
N3—N2—C6 | 119.3 (3) | C14—O3—H3O | 111 (5) |
C11—O2—H2O | 108 (4) | C5—C4—H4 | 121.00 |
N2—N3—C7 | 114.3 (3) | C3—C4—H4 | 120.00 |
N1—C1—C2 | 122.6 (4) | N1—C5—H5 | 119.00 |
C1—C2—C3 | 119.5 (4) | C4—C5—H5 | 119.00 |
C6—N2—H2N | 125 (3) | C8—C7—H7 | 119.00 |
N3—N2—H2N | 115 (3) | N3—C7—H7 | 119.00 |
C2—C3—C4 | 118.1 (3) | C8—C9—H9 | 120.00 |
C2—C3—C6 | 117.7 (3) | C10—C9—H9 | 120.00 |
C4—C3—C6 | 124.2 (4) | C11—C10—H10 | 120.00 |
C3—C4—C5 | 119.1 (4) | C9—C10—H10 | 120.00 |
N1—C5—C4 | 122.9 (4) | C11—C12—H12 | 120.00 |
N2—C6—C3 | 116.1 (3) | C13—C12—H12 | 120.00 |
O1—C6—C3 | 119.7 (3) | C8—C13—H13 | 119.00 |
O1—C6—N2 | 124.0 (3) | C12—C13—H13 | 119.00 |
N3—C7—C8 | 122.2 (4) | O3—C14—H14A | 110.00 |
C7—C8—C9 | 122.7 (3) | O3—C14—H14B | 109.00 |
C7—C8—C13 | 118.9 (4) | O3—C14—H14C | 109.00 |
C9—C8—C13 | 118.4 (3) | H14A—C14—H14B | 110.00 |
C8—C9—C10 | 120.8 (4) | H14A—C14—H14C | 109.00 |
C9—C10—C11 | 120.3 (4) | H14B—C14—H14C | 109.00 |
I1—Cd1—N1—C1 | 66.6 (3) | C2—C3—C6—O1 | 27.7 (5) |
I1i—Cd1—N1—C1 | −156.1 (3) | C2—C3—C4—C5 | 2.5 (6) |
N1i—Cd1—N1—C1 | −39.2 (3) | C6—C3—C4—C5 | −176.2 (4) |
I1—Cd1—N1—C5 | −109.3 (3) | C2—C3—C6—N2 | −147.5 (4) |
I1i—Cd1—N1—C5 | 28.1 (3) | C4—C3—C6—O1 | −153.5 (4) |
N1i—Cd1—N1—C5 | 144.9 (3) | C3—C4—C5—N1 | 0.4 (6) |
C1—N1—C5—C4 | −1.5 (6) | N3—C7—C8—C9 | −4.1 (6) |
Cd1—N1—C1—C2 | −176.4 (3) | N3—C7—C8—C13 | 173.8 (4) |
C5—N1—C1—C2 | −0.4 (6) | C7—C8—C9—C10 | 176.7 (4) |
Cd1—N1—C5—C4 | 174.5 (3) | C13—C8—C9—C10 | −1.2 (6) |
C6—N2—N3—C7 | −170.1 (4) | C7—C8—C13—C12 | −177.1 (4) |
N3—N2—C6—O1 | 0.2 (6) | C9—C8—C13—C12 | 0.9 (6) |
N3—N2—C6—C3 | 175.1 (3) | C8—C9—C10—C11 | 1.0 (6) |
N2—N3—C7—C8 | −178.8 (4) | C9—C10—C11—O2 | −180.0 (4) |
N1—C1—C2—C3 | 3.3 (6) | C9—C10—C11—C12 | −0.5 (6) |
C1—C2—C3—C6 | 174.6 (3) | O2—C11—C12—C13 | 179.8 (4) |
C1—C2—C3—C4 | −4.3 (5) | C10—C11—C12—C13 | 0.3 (6) |
C4—C3—C6—N2 | 31.2 (5) | C11—C12—C13—C8 | −0.5 (6) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O3 | 0.77 (5) | 2.09 (5) | 2.849 (4) | 174 (4) |
O2—H2O···O1ii | 0.81 (3) | 1.89 (4) | 2.656 (4) | 159 (5) |
O3—H3O···O2iii | 0.80 (3) | 2.03 (2) | 2.828 (5) | 173 (4) |
C4—H4···O3 | 0.94 | 2.58 | 3.291 (5) | 133 |
C7—H7···O3 | 0.94 | 2.56 | 3.327 (5) | 140 |
C1—H1···I1iv | 0.94 | 3.11 | 3.811 (4) | 133 |
Symmetry codes: (ii) x+1/2, −y+3/2, −z; (iii) −x+2, −y+1, −z; (iv) −x−1/2, y+1/2, z. |
Acknowledgements
We are grateful to the Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, for the financial support of this research.
References
Afkhami, F. A., Khandar, A. A., Mahmoudi, G., Maniukiewicz, W., Lipkowski, J., White, J. M., Waterman, R., García-Granda, S., Zangrando, E., Bauzá, A. & Frontera, A. (2016). CrystEngComm, 18, 4587–4596. CSD CrossRef CAS Google Scholar
Akkurt, M., Khandar, A. A., Tahir, M. N., Afkhami, F. A. & Yazdi, S. A. H. (2014). Acta Cryst. E70, m213–m214. CSD CrossRef IUCr Journals Google Scholar
Deng, Q.-L., Yu, M., Chen, X., Diao, C.-H., Jing, Z.-L. & Fan, Z. (2005). Acta Cryst. E61, o2545–o2546. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahmoudi, G., Afkhami, F. A., Jena, H. S., Nematollahi, P., Esrafili, M. D., Garczarek, P., Van Hecke, K., Gargari, M. S. & Kirillov, A. M. (2016). New J. Chem. 40, 10116–10126. CSD CrossRef CAS Google Scholar
Malekshahian, M., Talei Bavil Olyai, M. R. & Notash, B. (2012). Acta Cryst. E68, m218–m219. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2000). X-RED32, EXPOSE, CELL and INTEGRATE. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Yao, S.-Q., Zhu, M.-L., Lu, L.-P. & Gao, X.-L. (2006). Acta Cryst. C62, m183–m185. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.