research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (6E,20E)-3,24-di­fluoro-13,14,28,29-tetra­hydro-5H,22H-tetra­benzo[e,j,p,u][1,4,12,15]tetra­oxa­cyclo­docosine-5,22-dione

CROSSMARK_Color_square_no_text.svg

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester, M1 5GD, England, and, Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cChemistry Department, College of Education, Salahaddin University-Hawler, Erbil, Kurdistan Region, Iraq, and dChemistry Department, Summerstrand Campus (South), PO Box 77000, Nelson Mandela, Metropolitan University, South Africa
*Correspondence e-mail: shaabankamel@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 26 November 2016; accepted 27 November 2016; online 1 January 2017)

The conformation of the title compound, C34H26F2O6, is cone-shaped, partially determined by intra­molecular C—H⋯O short contacts. The benzene rings at the top of the cone are inclined to one another by 73.10 (7)°, while the benzene rings at the bottom of the cone are inclined to one another by 35.49 (8)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional supra­molecular structure. There are also C—H⋯π contacts present within the framework structure.

1. Chemical context

Macrocyclic compounds are known for their various applications, particularly in coordination chemistry (Delgado; 1995[Delgado, R. (1995). Revista Portuguesa de Química, 2, 18-29.]). The study of synthetic macrocyclic compounds is an important area of chemistry in view of their presence in many biologically significant naturally occurring metal complexes. Such compounds have received special attention because of their presence in many important biological systems such as metallo-porphyrins (for example haemoglobin, myoglobin, cytochromes, chloro­phylls), corrins (vitamin B12) and anti­biotics (valinomycin, nona­ctin) with anti­biotic, anti­fungal, anti­cancer and immunosuppressive activities as seen for erythromycin (McGuire et al., 1952[McGuire, J. M., Bunch, R. L., Anderson, R. C., Boaz, H. E., Flynn, E. H., Powell, H. M. & Smith, J. W. (1952). Antibiot. Chemother. 2, 281-283.]; Woodward et al.; 1981[Woodward, R. B., Logusch, E., Nambiar, K. P., Sakan, K., Ward, D. E., Au-Yeung, B. W., Balaram, P., Browne, L. J., Card, P. J. & Chen, C. H. (1981). J. Am. Chem. Soc. 103, 3215-3217.]), amphotericin B (Vandeputte et al., 1956[Vandeputte, J., Wachtel, J. L. & Stiller, E. T. (1956). Antibiot. Annu. 587-591.]; Nicolaou et al., 1988[Nicolaou, K. C., Daines, O. Y., Ogawa, Y. & Chakraborty, T. K. (1988). J. Am. Chem. Soc. 110, 4696-4705.]), epithilone B (Gerth et al., 1996[Gerth, K., Bedorf, N., HÖfle, G., Irschik, H. & Reichenbach, H. (1996). J. Antibiot. 49, 560-563.]; Bode & Carreira; 2001[Bode, J. W. & Carreira, E. M. (2001). J. Org. Chem. 66, 6410-6424.]) and rapamycin (Vezina et al., 1975[Vézina, C., Kudelski, A. & Sehgal, S. N. (1975). J. Antibiot. 28, 721-726.]; Smith et al., 1997[Smith, A. B., Condon, S. M., McCauley, J. A., Leazer, J. L., Leahy, J. W. & Maleczka, R. E. (1997). J. Am. Chem. Soc. 119, 962-973.]). In addition, macrocyclic compounds having ether linkages and chalcone moieties have important applications (Rina et al., 2012[Rina, M., Mandal, T. K., Asok, K. & Mallik, A. K. (2012). ARKIVOC (ix). pp. 95-110.], Matsushima et al., 2001[Matsushima, R., Fujimoto, S. & Tokumura, K. (2001). Bull. Chem. Soc. Jpn, 74, 827-832.]). In this context the title compound was prepared and herein we report on its synthesis and crystal structure.

2. Structural commentary

The title compound, Fig. 1[link], has a cone-shaped conformation, partially determined by intra­molecular C—H⋯O short contacts (Table 1[link] and Fig. 1[link]). The benzene rings at the top of the cone (C11–C16 and C31–C36) are inclined to one another by 73.10 (7)°, while the benzene rings at the bottom of the cone (C21–C26 and C41–C46) are inclined to one another by 35.49 (8)° (Fig. 2[link]). The bond lengths and angles are similar to those observed in one of the starting materials for the synthesis of the title compound, viz. 2,2′-[ethane-1,2-diylbis(­oxy)]dibenzaldehyde (Aravindan et al., 2003[Aravindan, P. G., Yogavel, M., Thirumavalavan, M., Akilan, P., Velmurugan, D., Kandaswamy, M., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o806-o807.]; Zhang et al., 2003[Zhang, J., Han, Q., Yang, X., Xu, X. & Wang, X. (2003). Nanjing Ligong Daxue Xuebao, 27, 128.]); both measured at room temperature. A low temperature (120 K) structure analysis of the same compound has also been reported (Akkurt et al., 2013[Akkurt, M., Mohamed, S. K., Horton, P. N., Abdel-Raheem, E. M. M. & Albayati, M. R. (2013). Acta Cryst. E69, o1260.]).

[Scheme 1]

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4 0.95 2.35 2.7023 (16) 101
C9—H9⋯O1 0.95 2.40 2.7281 (16) 100
C4—H4⋯F2i 0.95 2.37 3.1387 (17) 138
C15—H15⋯O3ii 0.95 2.51 3.3211 (19) 143
C33—H33⋯F2iii 0.95 2.53 3.483 (2) 176
C34—H34⋯O6iv 0.95 2.51 3.3649 (17) 150
C36—H36⋯F2i 0.95 2.43 3.3380 (19) 161
C44—H44⋯O1v 0.95 2.58 3.4986 (18) 163
C46—H46⋯Cg3iii 0.95 2.84 3.6829 (16) 149
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with atom labelling and 50% probability displacement ellipsoids. The short intra­molecular C—H⋯O contacts are shown as dashed lines (see Table 1[link]).
[Figure 2]
Figure 2
A CPK model of the title compound, illustrating the cone-shaped conformation.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯F hydrogen bonds, forming a three-dimensional supra­molecular structure (Fig. 3[link] and Table 1[link]). There are also C—H⋯π inter­actions present, involving inversion-related mol­ecules, within the three-dimensional framework (Table 1[link]).

[Figure 3]
Figure 3
The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1[link]), and for clarity only the H atoms involved in hydrogen bonding have been included.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated the presence of the subunit 1,2-bis­(2-vinyl­phen­oxy)ethane in a number of macrocyclic-type compounds. However, no macrocyclic-type compounds were found containing the subunit 2,2′-[ethane-1,2-diylbis(­oxy)]dibenzaldehyde. The title compound, which contains both these subunits, is unique; no other reports of mol­ecules of this type were found.

5. Synthesis and crystallization

The title compound has been synthesized by two methods, illustrated in Fig. 4[link].

[Figure 4]
Figure 4
Reaction scheme.

Method (a): High-dilution method

A mixture of 2,2′-[ethane-1,2-diylbis(­oxy)]dibenzaldehyde (A) (67.6 mg; 0.25 mmol) and 1,1′-{(ethane-1,2-diylbis(­oxy)]bis­(5-fluoro-2,1-phenyl­ene)}bis­(ethan-1-one) (B) (83.6 mg; 0.25 mmol) was dissolved in a KOH solution (10%, 130–160 ml) in MeOH/H2O (3:1) and the mixture was refluxed for 6 h. The reaction mixture was left at room temperature with stirring for ca four days, then the solvent was reduced to nearly half volume under reduced pressure. The resulting precipitate was collected by filtration, dried and recrystallized from chloro­form/methanol solution (1:1) to give yellow block-shaped crystals, suitable for x-ray diffraction (yield 80%, m.p. 553–554 K).

Method (b): Ultrasound-assisted synthesis

Compound A (0.55 mmol, 0.15 gm) was dissolved in ethanol (5 ml) and added to a solution of compound B (0.55 mmol) in ethanol (5 ml), and solid NaOH (0.3 gm) was added to the mixture. The mixture was then irradiated in the water bath of an ultrasonic cleaner at room temperature for 20 min. The mixture solidified and the product was separated by filtration under vacuum, washed with ethanol, dried and purified by recrystallization from chloro­form solution (yield 74%). Single crystals were obtained by slow evaporation of a dilute solution of the title compound in chloro­form over 13 days at room temperature (m.p. 553–554 K).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C34H26F2O6
Mr 568.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 200
a, b, c (Å) 16.2618 (7), 11.6708 (5), 14.7359 (7)
β (°) 96.945 (2)
V3) 2776.2 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.63 × 0.29 × 0.15
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.894, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 38582, 6911, 5302
Rint 0.020
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.106, 1.01
No. of reflections 6911
No. of parameters 379
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/7 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014/7 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2014/7 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015b); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014/7 (Sheldrick, 2015b) and PLATON (Spek, 2009).

(6E,20E)-3,24-Difluoro-13,14,28,29-tetrahydro-5H,22H-tetrabenzo[e,j,p,u] [1,4,12,15]tetraoxacyclodocosine-5,22-dione top
Crystal data top
C34H26F2O6F(000) = 1184
Mr = 568.55Dx = 1.360 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.2618 (7) ÅCell parameters from 9878 reflections
b = 11.6708 (5) Åθ = 2.5–28.2°
c = 14.7359 (7) ŵ = 0.10 mm1
β = 96.945 (2)°T = 200 K
V = 2776.2 (2) Å3Block, yellow
Z = 40.63 × 0.29 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
6911 independent reflections
Radiation source: sealed tube5302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.3333 pixels mm-1θmax = 28.3°, θmin = 2.5°
φ and ω scansh = 2120
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1515
Tmin = 0.894, Tmax = 1.000l = 1919
38582 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0392P)2 + 1.1029P]
where P = (Fo2 + 2Fc2)/3
6911 reflections(Δ/σ)max < 0.001
379 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.39 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.00518 (7)0.16078 (10)0.73153 (8)0.0712 (3)
F20.30286 (7)0.77217 (11)0.36051 (9)0.0823 (4)
O10.07789 (6)0.21042 (8)0.53657 (8)0.0426 (2)
O20.12188 (7)0.44266 (9)0.50741 (7)0.0479 (3)
O30.13697 (6)0.63181 (11)0.65378 (8)0.0567 (3)
O40.45695 (6)0.39443 (9)0.59069 (6)0.0389 (2)
O50.41025 (6)0.24383 (8)0.44309 (6)0.0365 (2)
O60.23814 (6)0.05205 (9)0.57921 (8)0.0473 (3)
C10.02059 (8)0.30158 (12)0.51429 (11)0.0423 (3)
H1A0.00960.34290.57030.051*
H1B0.03250.27140.48350.051*
C20.05993 (9)0.37973 (13)0.45186 (11)0.0433 (3)
H2A0.08510.33490.40530.052*
H2B0.01810.43240.42020.052*
C30.20104 (8)0.60305 (12)0.62506 (10)0.0376 (3)
C40.27425 (8)0.57029 (12)0.68694 (10)0.0388 (3)
H40.27300.58050.75070.047*
C50.34280 (8)0.52688 (11)0.65906 (9)0.0335 (3)
H50.34290.51770.59500.040*
C60.51460 (8)0.32791 (12)0.54755 (10)0.0368 (3)
H6A0.52130.25110.57600.044*
H6B0.56930.36610.55350.044*
C70.48031 (8)0.31774 (12)0.44922 (9)0.0372 (3)
H7A0.46380.39420.42420.045*
H7B0.52280.28590.41350.045*
C80.26989 (8)0.11337 (11)0.44357 (9)0.0337 (3)
H80.31690.08880.48340.040*
C90.19546 (8)0.08387 (12)0.46483 (9)0.0352 (3)
H90.14770.10890.42640.042*
C100.18427 (8)0.01401 (11)0.54551 (9)0.0336 (3)
C110.05441 (8)0.11931 (11)0.58468 (9)0.0341 (3)
C120.10509 (8)0.02187 (11)0.58816 (9)0.0321 (3)
C130.08374 (9)0.07270 (12)0.63846 (10)0.0387 (3)
H130.11660.14020.64130.046*
C140.01517 (10)0.06726 (14)0.68353 (10)0.0454 (4)
C150.03344 (9)0.02861 (14)0.68325 (11)0.0468 (4)
H150.07950.03050.71730.056*
C160.01442 (9)0.12229 (13)0.63273 (10)0.0421 (3)
H160.04820.18890.63060.050*
C210.16576 (9)0.52274 (13)0.46597 (10)0.0399 (3)
C220.20682 (8)0.60381 (12)0.52387 (10)0.0352 (3)
C230.25285 (8)0.68864 (13)0.48752 (12)0.0452 (4)
H230.28080.74550.52570.054*
C240.25707 (9)0.68851 (16)0.39503 (13)0.0559 (5)
C250.21969 (11)0.6085 (2)0.33750 (12)0.0684 (6)
H250.22560.60990.27420.082*
C260.17280 (11)0.52466 (18)0.37308 (11)0.0607 (5)
H260.14540.46830.33390.073*
C310.41776 (8)0.49208 (11)0.71727 (9)0.0329 (3)
C320.47646 (8)0.42363 (11)0.68041 (9)0.0332 (3)
C330.54911 (8)0.39044 (13)0.73364 (10)0.0393 (3)
H330.58810.34290.70850.047*
C340.56427 (9)0.42722 (14)0.82355 (10)0.0442 (3)
H340.61420.40560.85970.053*
C350.50782 (10)0.49464 (14)0.86091 (10)0.0455 (4)
H350.51880.51960.92250.055*
C360.43489 (9)0.52605 (13)0.80844 (10)0.0409 (3)
H360.39570.57160.83500.049*
C410.35808 (8)0.24427 (11)0.36284 (9)0.0333 (3)
C420.28472 (8)0.18095 (11)0.36335 (9)0.0337 (3)
C430.22821 (9)0.18261 (13)0.28370 (10)0.0429 (3)
H430.17760.14180.28280.051*
C440.24391 (10)0.24171 (15)0.20655 (11)0.0503 (4)
H440.20450.24160.15340.060*
C450.31735 (11)0.30101 (14)0.20740 (11)0.0501 (4)
H450.32890.34080.15420.060*
C460.37440 (9)0.30306 (13)0.28523 (10)0.0419 (3)
H460.42460.34470.28540.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0696 (7)0.0713 (7)0.0754 (7)0.0146 (6)0.0193 (6)0.0290 (6)
F20.0549 (6)0.0891 (8)0.1024 (9)0.0128 (6)0.0076 (6)0.0586 (7)
O10.0308 (5)0.0332 (5)0.0649 (7)0.0023 (4)0.0108 (4)0.0063 (5)
O20.0516 (6)0.0491 (6)0.0411 (6)0.0208 (5)0.0019 (5)0.0028 (5)
O30.0340 (5)0.0756 (8)0.0623 (7)0.0065 (5)0.0129 (5)0.0085 (6)
O40.0311 (5)0.0489 (6)0.0351 (5)0.0073 (4)0.0020 (4)0.0084 (4)
O50.0345 (5)0.0411 (5)0.0330 (5)0.0087 (4)0.0010 (4)0.0006 (4)
O60.0344 (5)0.0437 (6)0.0630 (7)0.0062 (4)0.0029 (5)0.0083 (5)
C10.0292 (6)0.0323 (7)0.0637 (10)0.0012 (5)0.0018 (6)0.0020 (6)
C20.0398 (7)0.0360 (7)0.0506 (8)0.0017 (6)0.0087 (6)0.0006 (6)
C30.0306 (6)0.0341 (7)0.0485 (8)0.0021 (5)0.0063 (6)0.0064 (6)
C40.0370 (7)0.0429 (8)0.0363 (7)0.0010 (6)0.0031 (5)0.0087 (6)
C50.0341 (6)0.0335 (7)0.0324 (6)0.0010 (5)0.0019 (5)0.0022 (5)
C60.0268 (6)0.0379 (7)0.0453 (8)0.0013 (5)0.0021 (5)0.0061 (6)
C70.0329 (6)0.0390 (7)0.0408 (7)0.0060 (6)0.0087 (5)0.0057 (6)
C80.0298 (6)0.0342 (7)0.0361 (7)0.0005 (5)0.0003 (5)0.0046 (5)
C90.0303 (6)0.0383 (7)0.0364 (7)0.0015 (5)0.0009 (5)0.0041 (6)
C100.0275 (6)0.0322 (6)0.0401 (7)0.0028 (5)0.0008 (5)0.0046 (5)
C110.0288 (6)0.0327 (6)0.0401 (7)0.0067 (5)0.0013 (5)0.0045 (5)
C120.0274 (6)0.0345 (7)0.0331 (6)0.0046 (5)0.0013 (5)0.0036 (5)
C130.0373 (7)0.0374 (7)0.0393 (7)0.0058 (6)0.0032 (6)0.0012 (6)
C140.0448 (8)0.0500 (9)0.0410 (8)0.0150 (7)0.0034 (6)0.0065 (7)
C150.0398 (8)0.0572 (9)0.0453 (8)0.0138 (7)0.0129 (6)0.0087 (7)
C160.0338 (7)0.0408 (8)0.0524 (9)0.0051 (6)0.0086 (6)0.0122 (6)
C210.0343 (7)0.0443 (8)0.0395 (7)0.0034 (6)0.0021 (6)0.0082 (6)
C220.0248 (6)0.0350 (7)0.0451 (7)0.0041 (5)0.0016 (5)0.0059 (6)
C230.0299 (7)0.0387 (8)0.0661 (10)0.0003 (6)0.0020 (6)0.0107 (7)
C240.0336 (7)0.0656 (11)0.0672 (11)0.0028 (7)0.0011 (7)0.0377 (9)
C250.0500 (10)0.1086 (16)0.0438 (9)0.0169 (10)0.0062 (7)0.0300 (10)
C260.0565 (10)0.0842 (13)0.0384 (8)0.0195 (9)0.0065 (7)0.0085 (8)
C310.0329 (6)0.0339 (6)0.0314 (6)0.0037 (5)0.0021 (5)0.0016 (5)
C320.0317 (6)0.0343 (7)0.0326 (6)0.0045 (5)0.0002 (5)0.0012 (5)
C330.0315 (6)0.0422 (8)0.0426 (8)0.0012 (6)0.0016 (5)0.0035 (6)
C340.0383 (7)0.0506 (9)0.0405 (8)0.0078 (6)0.0084 (6)0.0112 (7)
C350.0506 (8)0.0539 (9)0.0304 (7)0.0085 (7)0.0025 (6)0.0022 (6)
C360.0441 (8)0.0448 (8)0.0337 (7)0.0022 (6)0.0038 (6)0.0022 (6)
C410.0344 (6)0.0337 (6)0.0315 (6)0.0026 (5)0.0029 (5)0.0031 (5)
C420.0332 (6)0.0338 (7)0.0340 (7)0.0021 (5)0.0033 (5)0.0037 (5)
C430.0355 (7)0.0469 (8)0.0442 (8)0.0007 (6)0.0036 (6)0.0021 (6)
C440.0521 (9)0.0539 (9)0.0411 (8)0.0043 (8)0.0105 (7)0.0036 (7)
C450.0602 (10)0.0506 (9)0.0383 (8)0.0006 (8)0.0010 (7)0.0085 (7)
C460.0438 (8)0.0429 (8)0.0392 (7)0.0038 (6)0.0055 (6)0.0021 (6)
Geometric parameters (Å, º) top
F1—C141.3628 (18)C12—C131.3966 (19)
F2—C241.3632 (18)C13—C141.367 (2)
O1—C111.3581 (16)C13—H130.9500
O1—C11.4262 (16)C14—C151.370 (2)
O2—C211.3643 (17)C15—C161.379 (2)
O2—C21.4230 (17)C15—H150.9500
O3—C31.2183 (16)C16—H160.9500
O4—C321.3651 (16)C21—C261.388 (2)
O4—C61.4247 (16)C21—C221.390 (2)
O5—C411.3695 (15)C22—C231.387 (2)
O5—C71.4231 (15)C23—C241.373 (2)
O6—C101.2261 (16)C23—H230.9500
C1—C21.493 (2)C24—C251.355 (3)
C1—H1A0.9900C25—C261.382 (3)
C1—H1B0.9900C25—H250.9500
C2—H2A0.9900C26—H260.9500
C2—H2B0.9900C31—C361.3962 (19)
C3—C41.460 (2)C31—C321.4035 (19)
C3—C221.505 (2)C32—C331.3918 (18)
C4—C51.3338 (19)C33—C341.386 (2)
C4—H40.9500C33—H330.9500
C5—C311.4608 (18)C34—C351.374 (2)
C5—H50.9500C34—H340.9500
C6—C71.4931 (19)C35—C361.385 (2)
C6—H6A0.9900C35—H350.9500
C6—H6B0.9900C36—H360.9500
C7—H7A0.9900C41—C461.3867 (19)
C7—H7B0.9900C41—C421.4041 (18)
C8—C91.3317 (18)C42—C431.4006 (19)
C8—C421.4652 (19)C43—C441.380 (2)
C8—H80.9500C43—H430.9500
C9—C101.471 (2)C44—C451.379 (2)
C9—H90.9500C44—H440.9500
C10—C121.5022 (18)C45—C461.385 (2)
C11—C161.3955 (19)C45—H450.9500
C11—C121.4017 (19)C46—H460.9500
C11—O1—C1119.15 (11)C14—C15—H15120.6
C21—O2—C2117.92 (11)C16—C15—H15120.6
C32—O4—C6118.67 (10)C15—C16—C11120.02 (14)
C41—O5—C7117.40 (10)C15—C16—H16120.0
O1—C1—C2106.30 (11)C11—C16—H16120.0
O1—C1—H1A110.5O2—C21—C26124.24 (14)
C2—C1—H1A110.5O2—C21—C22115.48 (12)
O1—C1—H1B110.5C26—C21—C22120.25 (14)
C2—C1—H1B110.5C23—C22—C21119.38 (14)
H1A—C1—H1B108.7C23—C22—C3119.20 (13)
O2—C2—C1106.68 (12)C21—C22—C3121.41 (12)
O2—C2—H2A110.4C24—C23—C22118.46 (15)
C1—C2—H2A110.4C24—C23—H23120.8
O2—C2—H2B110.4C22—C23—H23120.8
C1—C2—H2B110.4C25—C24—F2118.96 (17)
H2A—C2—H2B108.6C25—C24—C23123.32 (15)
O3—C3—C4121.47 (14)F2—C24—C23117.70 (17)
O3—C3—C22120.06 (13)C24—C25—C26118.48 (17)
C4—C3—C22118.44 (12)C24—C25—H25120.8
C5—C4—C3123.76 (13)C26—C25—H25120.8
C5—C4—H4118.1C25—C26—C21120.06 (17)
C3—C4—H4118.1C25—C26—H26120.0
C4—C5—C31126.44 (13)C21—C26—H26120.0
C4—C5—H5116.8C36—C31—C32117.91 (12)
C31—C5—H5116.8C36—C31—C5122.77 (13)
O4—C6—C7106.72 (10)C32—C31—C5119.30 (12)
O4—C6—H6A110.4O4—C32—C33123.95 (12)
C7—C6—H6A110.4O4—C32—C31115.31 (11)
O4—C6—H6B110.4C33—C32—C31120.74 (12)
C7—C6—H6B110.4C34—C33—C32119.55 (14)
H6A—C6—H6B108.6C34—C33—H33120.2
O5—C7—C6108.18 (11)C32—C33—H33120.2
O5—C7—H7A110.1C35—C34—C33120.69 (13)
C6—C7—H7A110.1C35—C34—H34119.7
O5—C7—H7B110.1C33—C34—H34119.7
C6—C7—H7B110.1C34—C35—C36119.78 (14)
H7A—C7—H7B108.4C34—C35—H35120.1
C9—C8—C42124.89 (12)C36—C35—H35120.1
C9—C8—H8117.6C35—C36—C31121.33 (14)
C42—C8—H8117.6C35—C36—H36119.3
C8—C9—C10122.56 (12)C31—C36—H36119.3
C8—C9—H9118.7O5—C41—C46123.62 (12)
C10—C9—H9118.7O5—C41—C42115.56 (11)
O6—C10—C9121.58 (12)C46—C41—C42120.82 (12)
O6—C10—C12118.40 (12)C43—C42—C41117.39 (13)
C9—C10—C12120.02 (11)C43—C42—C8121.89 (12)
O1—C11—C16122.60 (13)C41—C42—C8120.70 (12)
O1—C11—C12116.94 (11)C44—C43—C42121.96 (14)
C16—C11—C12120.39 (13)C44—C43—H43119.0
C13—C12—C11118.54 (12)C42—C43—H43119.0
C13—C12—C10117.03 (12)C45—C44—C43119.33 (14)
C11—C12—C10124.34 (12)C45—C44—H44120.3
C14—C13—C12119.41 (14)C43—C44—H44120.3
C14—C13—H13120.3C44—C45—C46120.58 (15)
C12—C13—H13120.3C44—C45—H45119.7
F1—C14—C13118.59 (15)C46—C45—H45119.7
F1—C14—C15118.66 (14)C45—C46—C41119.89 (14)
C13—C14—C15122.75 (14)C45—C46—H46120.1
C14—C15—C16118.84 (14)C41—C46—H46120.1
C11—O1—C1—C2172.73 (12)C4—C3—C22—C21109.61 (15)
C21—O2—C2—C1178.45 (12)C21—C22—C23—C240.8 (2)
O1—C1—C2—O275.81 (14)C3—C22—C23—C24179.61 (13)
O3—C3—C4—C5172.72 (15)C22—C23—C24—C251.2 (2)
C22—C3—C4—C58.9 (2)C22—C23—C24—F2179.71 (13)
C3—C4—C5—C31179.75 (13)F2—C24—C25—C26179.42 (17)
C32—O4—C6—C7175.40 (11)C23—C24—C25—C262.1 (3)
C41—O5—C7—C6164.74 (11)C24—C25—C26—C210.9 (3)
O4—C6—C7—O571.01 (14)O2—C21—C26—C25179.07 (16)
C42—C8—C9—C10178.86 (12)C22—C21—C26—C251.0 (3)
C8—C9—C10—O625.3 (2)C4—C5—C31—C3616.4 (2)
C8—C9—C10—C12155.24 (13)C4—C5—C31—C32165.00 (14)
C1—O1—C11—C1616.33 (19)C6—O4—C32—C331.32 (19)
C1—O1—C11—C12166.75 (12)C6—O4—C32—C31178.13 (12)
O1—C11—C12—C13178.80 (11)C36—C31—C32—O4179.10 (12)
C16—C11—C12—C131.80 (19)C5—C31—C32—O40.44 (18)
O1—C11—C12—C102.40 (19)C36—C31—C32—C330.4 (2)
C16—C11—C12—C10174.60 (12)C5—C31—C32—C33179.02 (12)
O6—C10—C12—C1323.85 (18)O4—C32—C33—C34178.22 (13)
C9—C10—C12—C13155.65 (12)C31—C32—C33—C341.2 (2)
O6—C10—C12—C11152.60 (13)C32—C33—C34—C350.9 (2)
C9—C10—C12—C1127.90 (18)C33—C34—C35—C360.2 (2)
C11—C12—C13—C140.82 (19)C34—C35—C36—C311.0 (2)
C10—C12—C13—C14175.85 (12)C32—C31—C36—C350.8 (2)
C12—C13—C14—F1179.36 (13)C5—C31—C36—C35177.86 (14)
C12—C13—C14—C151.3 (2)C7—O5—C41—C466.93 (19)
F1—C14—C15—C16178.23 (13)C7—O5—C41—C42172.61 (11)
C13—C14—C15—C162.5 (2)O5—C41—C42—C43177.69 (12)
C14—C15—C16—C111.4 (2)C46—C41—C42—C431.9 (2)
O1—C11—C16—C15177.51 (13)O5—C41—C42—C84.12 (18)
C12—C11—C16—C150.7 (2)C46—C41—C42—C8176.32 (13)
C2—O2—C21—C2620.2 (2)C9—C8—C42—C4326.3 (2)
C2—O2—C21—C22161.70 (13)C9—C8—C42—C41155.60 (13)
O2—C21—C22—C23179.87 (12)C41—C42—C43—C441.4 (2)
C26—C21—C22—C231.9 (2)C8—C42—C43—C44176.79 (14)
O2—C21—C22—C31.14 (19)C42—C43—C44—C450.1 (2)
C26—C21—C22—C3179.34 (15)C43—C44—C45—C461.0 (3)
O3—C3—C22—C23106.71 (16)C44—C45—C46—C410.6 (2)
C4—C3—C22—C2371.66 (17)O5—C41—C46—C45178.58 (14)
O3—C3—C22—C2172.03 (19)C42—C41—C46—C450.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O40.952.352.7023 (16)101
C9—H9···O10.952.402.7281 (16)100
C4—H4···F2i0.952.373.1387 (17)138
C15—H15···O3ii0.952.513.3211 (19)143
C33—H33···F2iii0.952.533.483 (2)176
C34—H34···O6iv0.952.513.3649 (17)150
C36—H36···F2i0.952.433.3380 (19)161
C44—H44···O1v0.952.583.4986 (18)163
C46—H46···Cg3iii0.952.843.6829 (16)149
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x, y1/2, z+3/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+3/2; (v) x, y+1/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge the X-ray staff at Nelson Mandela Metropolitan University, South Africa for providing the X-ray data.

References

First citationAkkurt, M., Mohamed, S. K., Horton, P. N., Abdel-Raheem, E. M. M. & Albayati, M. R. (2013). Acta Cryst. E69, o1260.  CSD CrossRef IUCr Journals Google Scholar
First citationAravindan, P. G., Yogavel, M., Thirumavalavan, M., Akilan, P., Velmurugan, D., Kandaswamy, M., Shanmuga Sundara Raj, S. & Fun, H.-K. (2003). Acta Cryst. E59, o806–o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBode, J. W. & Carreira, E. M. (2001). J. Org. Chem. 66, 6410–6424.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelgado, R. (1995). Revista Portuguesa de Química, 2, 18–29.  CAS Google Scholar
First citationGerth, K., Bedorf, N., HÖfle, G., Irschik, H. & Reichenbach, H. (1996). J. Antibiot. 49, 560–563.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatsushima, R., Fujimoto, S. & Tokumura, K. (2001). Bull. Chem. Soc. Jpn, 74, 827–832.  Web of Science CrossRef CAS Google Scholar
First citationMcGuire, J. M., Bunch, R. L., Anderson, R. C., Boaz, H. E., Flynn, E. H., Powell, H. M. & Smith, J. W. (1952). Antibiot. Chemother. 2, 281–283.  CAS Google Scholar
First citationNicolaou, K. C., Daines, O. Y., Ogawa, Y. & Chakraborty, T. K. (1988). J. Am. Chem. Soc. 110, 4696–4705.  CrossRef CAS Web of Science Google Scholar
First citationRina, M., Mandal, T. K., Asok, K. & Mallik, A. K. (2012). ARKIVOC (ix). pp. 95-110.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmith, A. B., Condon, S. M., McCauley, J. A., Leazer, J. L., Leahy, J. W. & Maleczka, R. E. (1997). J. Am. Chem. Soc. 119, 962–973.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVandeputte, J., Wachtel, J. L. & Stiller, E. T. (1956). Antibiot. Annu. 587–591.  Google Scholar
First citationVézina, C., Kudelski, A. & Sehgal, S. N. (1975). J. Antibiot. 28, 721–726.  Google Scholar
First citationWoodward, R. B., Logusch, E., Nambiar, K. P., Sakan, K., Ward, D. E., Au-Yeung, B. W., Balaram, P., Browne, L. J., Card, P. J. & Chen, C. H. (1981). J. Am. Chem. Soc. 103, 3215–3217.  CrossRef CAS Web of Science Google Scholar
First citationZhang, J., Han, Q., Yang, X., Xu, X. & Wang, X. (2003). Nanjing Ligong Daxue Xuebao, 27, 128.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds