research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-9-({[4-(di­ethyl­amino)­phen­yl]imino}­meth­yl)-2,3,6,7-tetra­hydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of , Oman, bDepartment of Applied Chemistry, Aligarh Muslim University, 202002 UP, India, and cDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Vladimirska Str. 64, 01601 Kiev, Ukraine
*Correspondence e-mail: igolenya@ua.fm

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 1 December 2016; accepted 9 December 2016; online 1 January 2017)

The title compound, C23H29N3O, was synthesized from the condensation reaction of 8-hy­droxy­julolidine-9-carbaldehyde and N,N-diethyl-p-phenyl­enedi­amine. The hy­droxy group forms a intra­molecular hydrogen bond to the imine N atom and generates an S(6) ring motif. The conformation about the C=N bond is E, and the aromatic ring of the julolidine moiety is inclined to the benzene ring by 3.74 (14)°. One of the fused non-aromatic rings of the julolidine moiety adopts an envelope conformation and the other has a screw-boat conformation. In the crystal, mol­ecules are linked by C—H⋯π inter­actions involving the aromatic julolidine ring, forming slabs parallel to the bc plane. The tricyclic fragment of the julolidine ring and the azomethine C=N bond are disordered over two sets of sites with a refined occupancy ratio of 0.773 (3):0.227 (3).

1. Chemical context

8-Hy­droxy­julolidine-9-carboxaldehyde is a well-known chromo­phore used in fluorescence chemosensors, and chemosensors with the julolidine moiety are usually soluble in aqueous solutions (Narayanaswamy & Govindaraju, 2012[Narayanaswamy, N. & Govindaraju, T. (2012). Sens. Actuators B Chem. 161, 304-310.]; Maity et al., 2011[Maity, D., Manna, A. K., Karthigeyan, D., Kundu, T. K., Pati, S. K. & Govindaraju, T. (2011). Chem. Eur. J. 17, 11152-11161.]; Na et al., 2013[Na, Y. J., Hwang, I. H., Jo, H. Y., Lee, S. A., Park, G. J. & Kim, C. (2013). Inorg. Chem. Commun. 35, 342-345.]; Noh et al., 2013[Noh, J. Y., Kim, S., Hwang, I. H., Lee, G. Y., Kang, J., Kim, S. H., Min, J., Park, S., Kim, C. & Kim, J. (2013). Dyes Pigments, 99, 1016-1021.]). Compounds containing a julolidine group exhibit chromogenic naked-eye detection of copper, zinc, iron and aluminium ions as well as fluoride ions (Choi et al., 2015[Choi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 86463-86472.]; Wang et al., 2013a[Wang, L., Li, H. & Cao, D. (2013a). Sens. Actuators B Chem. 181, 749-755.],b[Wang, M., Wang, J., Xue, W. & Wu, A. (2013b). Dyes Pigments, 97, 475-480.]; Kim et al., 2015[Kim, Y. S., Park, G. J., Lee, J. J., Lee, S. Y., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 11229-11239.]; Jo et al., 2015[Jo, T. G., Na, Y. J., Lee, J. J., Lee, M. M., Lee, S. Y. & Kim, C. (2015). New J. Chem. 39, 2580-2587.]). There are many reports in the literature on 8-hy­droxy­julolidine-9-carboxaldehyde-based Schiff bases and their application as metal sensors (Park et al., 2014[Park, G. J., Park, D. Y., Park, K.-M., Kim, Y., Kim, S.-J., Chang, P.-S. & Kim, C. (2014). Tetrahedron, 70, 7429-7438.]; Lee et al., 2014[Lee, S. A., You, G. R., Choi, Y. W., Jo, H. Y., Kim, A. R., Noh, I., Kim, S.-J., Kim, Y. & Kim, C. (2014). Dalton Trans. 43, 6650-6659.]; Kim et al., 2016[Kim, Y. S., Lee, J. J., Choi, Y. W., You, G. R., Nguyen, L., Noh, I. & Kim, C. (2016). Dyes Pigments, 129, 43-53.]). Julolidine dyes exhibit excited state intra­molecular proton transfer (Nano et al., 2015[Nano, A., Gullo, M. P., Ventura, B., Armaroli, N., Barbieri, A. & Ziessel, R. (2015). Chem. Commun. 51, 3351-3354.]), and julolidine ring-containing compounds are also used as fluorescent probes for the measurement of cell membrane viscosity.

[Scheme 1]

The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of new organic and polynuclear coordination compounds (Faizi & Sen, 2014[Faizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206-m207.]; Faizi et al., 2015[Faizi, M. S. H., Iskenderov, T. S. & Sharkina, N. O. (2015). Acta Cryst. E71, 28-30.], 2016a[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016a). Sens. Actuators B Chem. 222, 15-20.],b[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016b). Acta Cryst. E72, 1366-1369.]). We report herein on the synthesis and crystal structure of a new julolidine derivative.

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The conformation about the azomethine N2=C11 bond [1.285 (3) A°] is E, and the C14—N2—C12—C13 torsion angle is 177.86 (5)°. The mol­ecule is non-planar, with the dihedral angle between benzene ring (C1–C6) and the aromatic ring (C12–C17) of the julolidine moiety being 3.74 (14)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 40% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 1[link]). The minor component of the disordered fragment has been omitted for clarity.

Depending on the tautomers, two types of intra­molecular hydrogen bonds are observed in Schiff bases: O—H⋯N in phenol–imine and N—H⋯O in keto–amine tautomers. The present analysis shows that the title compound exists in the phenol–imine form (Fig. 1[link]). It exhibits an intra­molecular O—H⋯N hydrogen bond, which generates an S(6) ring motif (Fig. 1[link] and Table 1[link]). This intra­molecular O—H⋯N hydrogen bond has been detected previously in julolidine derivatives (Barbero et al., 2012[Barbero, N., Barolo, C., Marabello, D., Buscaino, R., Gervasio, G. & Viscardi, G. (2012). Dyes Pigments, 92, 1177-1183.]). The C13—O1 [1.344 (2) Å] bond length is in agreement with the values reported for similar compounds, viz. 5-di­ethyl­amino-2-[(E)-(2,4-di­meth­oxy­phen­yl)imino­meth­yl]phenol and 8-{(E)-[(4-chloro­phen­yl)imino]­meth­yl}-1,1,7,7-tetra­methyl-1,2,3,5,6,7-hexa­hydro­pyrido[3,2,1-ij]quinolin-9-ol (Kantar et al., 2013[Kantar, E. N., Köysal, Y., Akdemir, N., Ağar, A. A. & Soylu, M. S. (2013). Acta Cryst. E69, o883.]). One of the fused non-aromatic rings of the julolidine moiety (N1/C14/C15/C18–C20) adopts an envelope conformation while the other (N1/C15/C16/C21–C23) has a screw-boat conformation.

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.83 2.557 (4) 147
C7—H7ACg1i 0.97 2.79 3.574 (3) 138
C20—H20BCg1ii 0.97 2.62 3.521 (3) 154
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+2, -z+1.

3. Supra­molecular features

In the crystal, mol­ecules are linked by C—H⋯π inter­actions (Table 1[link]), involving the aromatic julolidine ring, forming layers lying parallel to the bc plane, as illustrated in Fig. 2[link].

[Figure 2]
Figure 2
A view along the b axis of the crystal packing of the title compound. The C—H⋯π inter­actions are shown as dashed lines (see Table 1[link]) and the minor component of the disordered fragment has been omitted for clarity.

4. Database survey

There are very few examples of similar compounds in the literature and, to the best of our knowledge, the new fluorescent chemosensor for the selective detection of Zn2+ in aqueous solution, mentioned in the Chemical context section (Choi et al., 2015[Choi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 86463-86472.]), has not been characterized crystallographically. A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 121 hits for the julolidine moiety. Of these, six have an OH group in position 8, and four also have a C=N group in position 1. Of the latter, one compound, viz. 9-{[(4-chlorophen­yl)imino]­meth­yl}-1,1,7,7-tetra­methyl-2,3,6,7-tetra­hydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (CSD refcode: IGALUZ; Kantar et al., 2013[Kantar, E. N., Köysal, Y., Akdemir, N., Ağar, A. A. & Soylu, M. S. (2013). Acta Cryst. E69, o883.]), resembles the title compound and also exists in the phenol–imine form with an intra­molecular O—H⋯N hydrogen bond.

5. Synthesis and crystallization

An ethano­lic solution of 8-hy­droxy­julolidine-9-carboxaldehyde (100 mg, 0.46 mmol) was added to N,N-diethyl-p-phenyl­enedi­amine (75 mg, 0.46 mmol) in absolute ethanol (3 ml). Two drops of HCl were added to the reaction solution and it was stirred for 30 min at room temperature. The resulting yellow precipitate was recovered by filtration, washed several times with a small portions of ice EtOH and then with diethyl ether to give 130 mg (78%) of the title compound. Colourless block-like crystals, suitable for X-ray diffraction analysis, were obtained within three days by slow evaporation of a solution in methanol.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the H atoms were located from difference Fourier maps but in the final cycles of refinement they were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 0.93–0.98 Å with Uiso(H) = 1.5Ueq(O, C-meth­yl) and 1.2Ueq(C) for other H atoms. The tricyclic fragment of the julolidine ring and the azomethine C=N bond are disordered over two sets of sites with a refined occupancy ratio of 0.773 (3):0.227 (3). The non-hydrogen atoms of the major fraction were refined anisotropically while those of the minor fraction were refined isotropically, and one disordered atom, C21A, is probably further disordered, but this was not corrected for. The bond lengths C1—N2 and C1—N2A were refined with distance restraints of 1.40 (2) Å.

Table 2
Experimental details

Crystal data
Chemical formula C23H29N3O
Mr 363.49
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 11.565 (2), 8.0504 (16), 20.665 (4)
β (°) 97.68 (3)
V3) 1906.7 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.18 × 0.14 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.894, 0.943
No. of measured, independent and observed [I > 2σ(I)] reflections 15990, 3900, 2582
Rint 0.077
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.150, 1.06
No. of reflections 3900
No. of parameters 286
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

(E)-9-({[4-(Diethylamino)phenyl]imino}methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol top
Crystal data top
C23H29N3OF(000) = 784
Mr = 363.49Dx = 1.266 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.565 (2) ÅCell parameters from 1274 reflections
b = 8.0504 (16) Åθ = 2.8–25.3°
c = 20.665 (4) ŵ = 0.08 mm1
β = 97.68 (3)°T = 293 K
V = 1906.7 (7) Å3Block, colourless
Z = 40.18 × 0.14 × 0.11 mm
Data collection top
Bruker APEXII CCD
diffractometer
3900 independent reflections
Radiation source: fine-focus sealed tube2582 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.077
Detector resolution: 9 pixels mm-1θmax = 26.4°, θmin = 2.7°
φ scans and ω scans with κ offseth = 1214
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.894, Tmax = 0.943l = 2525
15990 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0313P)2 + 1.5846P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3900 reflectionsΔρmax = 0.33 e Å3
286 parametersΔρmin = 0.25 e Å3
2 restraintsExtinction correction: SHELXL2014 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0087 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N30.95181 (17)0.9756 (2)0.12926 (9)0.0289 (5)
C10.8227 (2)0.9508 (3)0.31028 (11)0.0267 (6)
C20.9203 (2)1.0455 (3)0.30272 (11)0.0267 (6)
H2A0.95821.10330.33840.032*
C30.9622 (2)1.0554 (3)0.24346 (11)0.0250 (5)
H3A1.02741.12070.23990.030*
C40.9085 (2)0.9688 (3)0.18799 (11)0.0242 (5)
C50.8084 (2)0.8765 (3)0.19602 (12)0.0287 (6)
H5A0.76910.81960.16060.034*
C60.7677 (2)0.8689 (3)0.25534 (12)0.0299 (6)
H6A0.70100.80690.25890.036*
C70.8953 (2)0.8891 (3)0.07152 (11)0.0301 (6)
H7A0.86130.78670.08490.036*
H7B0.95370.86030.04380.036*
C80.8010 (2)0.9924 (3)0.03270 (11)0.0334 (6)
H8A0.76650.93050.00470.050*
H8B0.74221.01930.05960.050*
H8C0.83451.09290.01850.050*
C91.0547 (2)1.0715 (3)0.12163 (11)0.0289 (6)
H9A1.05371.17340.14660.035*
H9B1.05261.10150.07600.035*
C101.1672 (2)0.9792 (3)0.14382 (12)0.0342 (6)
H10A1.23251.04850.13770.051*
H10B1.17080.95130.18920.051*
H10C1.16970.87940.11860.051*
O10.61126 (18)0.7817 (3)0.42135 (9)0.0284 (6)0.773 (3)
H10.64860.80560.39160.034*0.773 (3)
N10.5791 (6)0.9127 (8)0.6414 (3)0.0271 (15)0.773 (3)
N20.7705 (3)0.9226 (4)0.36617 (15)0.0236 (8)0.773 (3)
C110.8123 (3)0.9873 (3)0.42118 (16)0.0208 (7)0.773 (3)
H110.88031.05020.42420.025*0.773 (3)
C120.75428 (19)0.9631 (3)0.47925 (8)0.0209 (7)0.773 (3)
C130.65542 (19)0.8636 (2)0.47575 (8)0.0190 (8)0.773 (3)
C140.59674 (17)0.8471 (3)0.52987 (10)0.0229 (7)0.773 (3)
C150.6369 (2)0.9301 (3)0.58749 (8)0.0236 (10)0.773 (3)
C160.7358 (2)1.0296 (3)0.59099 (7)0.0225 (7)0.773 (3)
C170.79445 (17)1.0461 (2)0.53687 (9)0.0245 (7)0.773 (3)
H17A0.86061.11270.53920.029*0.773 (3)
C180.4822 (3)0.8028 (4)0.64386 (18)0.0275 (8)0.773 (3)
H18A0.41000.86420.63330.033*0.773 (3)
H18B0.48450.75950.68780.033*0.773 (3)
C190.4846 (3)0.6604 (4)0.59677 (19)0.0279 (8)0.773 (3)
H19A0.41410.59460.59580.033*0.773 (3)
H19B0.55110.58940.61060.033*0.773 (3)
C200.4932 (3)0.7308 (4)0.52849 (15)0.0260 (7)0.773 (3)
H20A0.50140.64010.49850.031*0.773 (3)
H20B0.42210.79040.51280.031*0.773 (3)
C210.5959 (5)1.0430 (7)0.6951 (2)0.0239 (11)0.773 (3)
H21A0.51961.08100.70340.029*0.773 (3)
H21B0.63330.99080.73480.029*0.773 (3)
C220.6643 (5)1.1862 (8)0.6814 (3)0.0324 (13)0.773 (3)
H22A0.68631.24930.72120.039*0.773 (3)
H22B0.61861.25770.65000.039*0.773 (3)
C230.7737 (3)1.1264 (5)0.65402 (19)0.0279 (9)0.773 (3)
H23A0.82121.22080.64510.034*0.773 (3)
H23B0.81971.05560.68560.034*0.773 (3)
O1A0.8436 (7)1.0727 (9)0.5042 (4)0.034 (2)*0.227 (3)
H1AA0.85211.05520.46600.051*0.227 (3)
N1A0.5787 (18)0.935 (3)0.6525 (10)0.009 (4)*0.227 (3)
N2A0.8007 (11)0.9666 (15)0.3807 (6)0.023 (3)*0.227 (3)
C11A0.7106 (9)0.8852 (13)0.4005 (5)0.025 (2)*0.227 (3)
H11A0.66180.82140.37090.030*0.227 (3)
C12A0.6880 (9)0.8961 (12)0.4695 (3)0.028 (4)*0.227 (3)
C13A0.7477 (7)0.9960 (11)0.5177 (5)0.025 (3)*0.227 (3)
C14A0.7114 (9)1.0041 (14)0.5791 (4)0.046 (5)*0.227 (3)
C15A0.6155 (9)0.9122 (15)0.5923 (3)0.022 (3)*0.227 (3)
C16A0.5559 (7)0.8122 (11)0.5440 (4)0.017 (3)*0.227 (3)
C17A0.5922 (8)0.8041 (10)0.4826 (3)0.031 (3)*0.227 (3)
H17B0.55230.73720.45040.038*0.227 (3)
C18A0.4874 (14)0.8190 (19)0.6734 (7)0.038 (4)*0.227 (3)
H18C0.50760.79400.71950.046*0.227 (3)
H18D0.41260.87530.66800.046*0.227 (3)
C19A0.4757 (11)0.6612 (15)0.6364 (6)0.031 (3)*0.227 (3)
H19C0.41140.59690.64900.038*0.227 (3)
H19D0.54650.59630.64600.038*0.227 (3)
C20A0.4527 (11)0.7013 (15)0.5615 (7)0.027 (3)*0.227 (3)
H20C0.37930.75990.55130.033*0.227 (3)
H20D0.44860.59920.53640.033*0.227 (3)
C21A0.607 (4)1.042 (6)0.694 (2)0.131 (15)*0.227 (3)
H21C0.65120.98970.73230.157*0.227 (3)
H21D0.53691.08920.70810.157*0.227 (3)
C22A0.6852 (19)1.190 (3)0.6675 (9)0.024 (5)*0.227 (3)
H22C0.63621.26470.63880.028*0.227 (3)
H22D0.72511.25400.70360.028*0.227 (3)
C23A0.7747 (14)1.100 (2)0.6295 (7)0.029 (4)*0.227 (3)
H23C0.82291.18150.61090.035*0.227 (3)
H23D0.82511.02930.65880.035*0.227 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0334 (12)0.0315 (11)0.0207 (10)0.0089 (10)0.0000 (9)0.0024 (9)
C10.0270 (13)0.0232 (12)0.0307 (13)0.0075 (11)0.0067 (11)0.0096 (11)
C20.0303 (13)0.0252 (12)0.0235 (12)0.0024 (11)0.0000 (10)0.0006 (10)
C30.0260 (13)0.0222 (12)0.0262 (12)0.0031 (10)0.0006 (10)0.0023 (10)
C40.0264 (13)0.0191 (11)0.0253 (12)0.0018 (10)0.0027 (10)0.0034 (10)
C50.0286 (13)0.0250 (13)0.0306 (13)0.0022 (11)0.0031 (11)0.0027 (11)
C60.0250 (13)0.0229 (12)0.0412 (15)0.0017 (11)0.0018 (11)0.0097 (11)
C70.0414 (15)0.0241 (12)0.0241 (12)0.0074 (11)0.0023 (11)0.0038 (11)
C80.0442 (16)0.0270 (13)0.0267 (13)0.0092 (12)0.0038 (11)0.0001 (11)
C90.0368 (14)0.0293 (13)0.0207 (12)0.0080 (11)0.0039 (10)0.0007 (10)
C100.0367 (15)0.0369 (15)0.0291 (13)0.0058 (12)0.0041 (11)0.0023 (12)
O10.0353 (13)0.0284 (12)0.0212 (11)0.0021 (10)0.0027 (9)0.0041 (9)
N10.038 (2)0.021 (3)0.021 (3)0.0025 (16)0.0033 (19)0.0086 (18)
N20.0244 (17)0.0194 (16)0.0268 (17)0.0040 (14)0.0029 (14)0.0021 (13)
C110.0210 (15)0.0143 (14)0.0269 (18)0.0029 (12)0.0022 (13)0.0026 (13)
C120.0241 (17)0.0124 (14)0.0252 (17)0.0024 (13)0.0008 (13)0.0028 (13)
C130.0208 (19)0.0129 (15)0.0221 (16)0.0025 (16)0.0012 (13)0.0030 (12)
C140.0276 (18)0.0196 (16)0.0222 (17)0.0055 (14)0.0054 (14)0.0048 (13)
C150.033 (2)0.0161 (17)0.0201 (17)0.0108 (16)0.0008 (14)0.0040 (13)
C160.0298 (18)0.0170 (16)0.0192 (16)0.0081 (15)0.0022 (15)0.0061 (14)
C170.0245 (17)0.0188 (15)0.0278 (17)0.0010 (14)0.0060 (15)0.0006 (14)
C180.0267 (18)0.034 (2)0.0224 (19)0.0030 (15)0.0054 (15)0.0011 (17)
C190.0286 (18)0.0233 (17)0.032 (2)0.0009 (14)0.0030 (16)0.0018 (16)
C200.0325 (18)0.0235 (16)0.0219 (16)0.0062 (15)0.0036 (14)0.0007 (14)
C210.035 (2)0.0291 (19)0.0078 (14)0.0111 (15)0.0027 (12)0.0008 (13)
C220.047 (3)0.031 (2)0.018 (2)0.003 (2)0.000 (2)0.005 (2)
C230.035 (2)0.0259 (19)0.021 (2)0.0021 (15)0.0018 (17)0.0045 (17)
Geometric parameters (Å, º) top
N3—C41.375 (3)C19—C201.536 (4)
N3—C91.445 (3)C19—H19A0.9700
N3—C71.458 (3)C19—H19B0.9700
C1—C21.388 (3)C20—H20A0.9700
C1—C61.391 (3)C20—H20B0.9700
C1—N21.392 (4)C21—C221.447 (9)
C1—N2A1.516 (12)C21—H21A0.9700
C2—C31.378 (3)C21—H21B0.9700
C2—H2A0.9300C22—C231.532 (7)
C3—C41.412 (3)C22—H22A0.9700
C3—H3A0.9300C22—H22B0.9700
C4—C51.404 (3)C23—H23A0.9700
C5—C61.372 (3)C23—H23B0.9700
C5—H5A0.9300O1A—C13A1.331 (11)
C6—H6A0.9300O1A—H1AA0.8200
C7—C81.514 (3)N1A—C21A1.23 (4)
C7—H7A0.9700N1A—C15A1.38 (2)
C7—H7B0.9700N1A—C18A1.51 (3)
C8—H8A0.9600N2A—C11A1.341 (16)
C8—H8B0.9600C11A—C12A1.485 (12)
C8—H8C0.9600C11A—H11A0.9300
C9—C101.515 (3)C12A—C13A1.3900
C9—H9A0.9700C12A—C17A1.3900
C9—H9B0.9700C13A—C14A1.3900
C10—H10A0.9600C14A—C15A1.3900
C10—H10B0.9600C14A—C23A1.421 (16)
C10—H10C0.9600C15A—C16A1.3900
O1—C131.344 (2)C16A—C17A1.3900
O1—H10.8200C16A—C20A1.571 (14)
N1—C151.381 (6)C17A—H17B0.9300
N1—C181.434 (8)C18A—C19A1.479 (18)
N1—C211.521 (7)C18A—H18C0.9700
N2—C111.285 (5)C18A—H18D0.9700
C11—C121.464 (3)C19A—C20A1.568 (17)
C11—H110.9300C19A—H19C0.9700
C12—C131.3900C19A—H19D0.9700
C12—C171.3900C20A—H20C0.9700
C13—C141.3900C20A—H20D0.9700
C14—C151.3900C21A—C22A1.64 (5)
C14—C201.517 (4)C21A—H21C0.9700
C15—C161.3900C21A—H21D0.9700
C16—C171.3900C22A—C23A1.56 (2)
C16—C231.531 (4)C22A—H22C0.9700
C17—H17A0.9300C22A—H22D0.9700
C18—C191.506 (5)C23A—H23C0.9700
C18—H18A0.9700C23A—H23D0.9700
C18—H18B0.9700
C4—N3—C9121.33 (19)C14—C20—H20A109.4
C4—N3—C7121.8 (2)C19—C20—H20A109.4
C9—N3—C7116.83 (19)C14—C20—H20B109.4
C2—C1—C6117.3 (2)C19—C20—H20B109.4
C2—C1—N2129.3 (3)H20A—C20—H20B108.0
C6—C1—N2113.4 (2)C22—C21—N1115.2 (5)
C2—C1—N2A107.8 (5)C22—C21—H21A108.5
C6—C1—N2A134.9 (5)N1—C21—H21A108.5
C3—C2—C1121.3 (2)C22—C21—H21B108.5
C3—C2—H2A119.3N1—C21—H21B108.5
C1—C2—H2A119.3H21A—C21—H21B107.5
C2—C3—C4121.6 (2)C21—C22—C23108.8 (5)
C2—C3—H3A119.2C21—C22—H22A109.9
C4—C3—H3A119.2C23—C22—H22A109.9
N3—C4—C5121.9 (2)C21—C22—H22B109.9
N3—C4—C3121.6 (2)C23—C22—H22B109.9
C5—C4—C3116.5 (2)H22A—C22—H22B108.3
C6—C5—C4121.1 (2)C16—C23—C22108.5 (3)
C6—C5—H5A119.5C16—C23—H23A110.0
C4—C5—H5A119.5C22—C23—H23A110.0
C5—C6—C1122.2 (2)C16—C23—H23B110.0
C5—C6—H6A118.9C22—C23—H23B110.0
C1—C6—H6A118.9H23A—C23—H23B108.4
N3—C7—C8112.5 (2)C13A—O1A—H1AA109.5
N3—C7—H7A109.1C21A—N1A—C15A130 (3)
C8—C7—H7A109.1C21A—N1A—C18A111 (3)
N3—C7—H7B109.1C15A—N1A—C18A119.1 (16)
C8—C7—H7B109.1C11A—N2A—C1119.3 (10)
H7A—C7—H7B107.8N2A—C11A—C12A120.5 (10)
C7—C8—H8A109.5N2A—C11A—H11A119.7
C7—C8—H8B109.5C12A—C11A—H11A119.7
H8A—C8—H8B109.5C13A—C12A—C17A120.0
C7—C8—H8C109.5C13A—C12A—C11A126.0 (8)
H8A—C8—H8C109.5C17A—C12A—C11A113.8 (8)
H8B—C8—H8C109.5O1A—C13A—C12A117.8 (8)
N3—C9—C10113.1 (2)O1A—C13A—C14A122.1 (8)
N3—C9—H9A109.0C12A—C13A—C14A120.0
C10—C9—H9A109.0C15A—C14A—C13A120.0
N3—C9—H9B109.0C15A—C14A—C23A119.5 (9)
C10—C9—H9B109.0C13A—C14A—C23A120.4 (9)
H9A—C9—H9B107.8N1A—C15A—C14A117.2 (11)
C9—C10—H10A109.5N1A—C15A—C16A122.6 (11)
C9—C10—H10B109.5C14A—C15A—C16A120.0
H10A—C10—H10B109.5C17A—C16A—C15A120.0
C9—C10—H10C109.5C17A—C16A—C20A121.0 (7)
H10A—C10—H10C109.5C15A—C16A—C20A118.9 (7)
H10B—C10—H10C109.5C16A—C17A—C12A120.0
C13—O1—H1109.5C16A—C17A—H17B120.0
C15—N1—C18123.8 (4)C12A—C17A—H17B120.0
C15—N1—C21119.4 (5)C19A—C18A—N1A113.6 (13)
C18—N1—C21115.1 (5)C19A—C18A—H18C108.8
C11—N2—C1120.9 (3)N1A—C18A—H18C108.8
N2—C11—C12120.8 (3)C19A—C18A—H18D108.8
N2—C11—H11119.6N1A—C18A—H18D108.8
C12—C11—H11119.6H18C—C18A—H18D107.7
C13—C12—C17120.0C18A—C19A—C20A109.0 (11)
C13—C12—C11119.86 (18)C18A—C19A—H19C109.9
C17—C12—C11120.06 (18)C20A—C19A—H19C109.9
O1—C13—C14117.02 (18)C18A—C19A—H19D109.9
O1—C13—C12122.97 (18)C20A—C19A—H19D109.9
C14—C13—C12120.0H19C—C19A—H19D108.3
C13—C14—C15120.0C19A—C20A—C16A108.1 (9)
C13—C14—C20120.86 (18)C19A—C20A—H20C110.1
C15—C14—C20119.03 (18)C16A—C20A—H20C110.1
N1—C15—C14120.0 (3)C19A—C20A—H20D110.1
N1—C15—C16120.0 (3)C16A—C20A—H20D110.1
C14—C15—C16120.0H20C—C20A—H20D108.4
C17—C16—C15120.0N1A—C21A—C22A112 (3)
C17—C16—C23121.4 (2)N1A—C21A—H21C109.2
C15—C16—C23118.6 (2)C22A—C21A—H21C109.2
C16—C17—C12120.0N1A—C21A—H21D109.2
C16—C17—H17A120.0C22A—C21A—H21D109.2
C12—C17—H17A120.0H21C—C21A—H21D107.9
N1—C18—C19111.4 (3)C23A—C22A—C21A105 (2)
N1—C18—H18A109.3C23A—C22A—H22C110.6
C19—C18—H18A109.3C21A—C22A—H22C110.6
N1—C18—H18B109.3C23A—C22A—H22D110.6
C19—C18—H18B109.3C21A—C22A—H22D110.6
H18A—C18—H18B108.0H22C—C22A—H22D108.8
C18—C19—C20108.8 (3)C14A—C23A—C22A108.1 (14)
C18—C19—H19A109.9C14A—C23A—H23C110.1
C20—C19—H19A109.9C22A—C23A—H23C110.1
C18—C19—H19B109.9C14A—C23A—H23D110.1
C20—C19—H19B109.9C22A—C23A—H23D110.1
H19A—C19—H19B108.3H23C—C23A—H23D108.4
C14—C20—C19111.0 (2)
C6—C1—C2—C31.2 (3)N1—C18—C19—C2053.5 (4)
N2—C1—C2—C3178.0 (3)C13—C14—C20—C19149.3 (2)
N2A—C1—C2—C3179.9 (5)C15—C14—C20—C1926.9 (3)
C1—C2—C3—C40.6 (4)C18—C19—C20—C1454.4 (3)
C9—N3—C4—C5179.8 (2)C15—N1—C21—C225.9 (8)
C7—N3—C4—C50.9 (3)C18—N1—C21—C22159.6 (5)
C9—N3—C4—C30.2 (3)N1—C21—C22—C2346.1 (6)
C7—N3—C4—C3178.7 (2)C17—C16—C23—C22139.8 (3)
C2—C3—C4—N3178.5 (2)C15—C16—C23—C2236.9 (4)
C2—C3—C4—C51.9 (3)C21—C22—C23—C1660.4 (5)
N3—C4—C5—C6178.9 (2)C2—C1—N2A—C11A179.7 (9)
C3—C4—C5—C61.5 (3)C6—C1—N2A—C11A1.6 (15)
C4—C5—C6—C10.2 (4)C1—N2A—C11A—C12A179.0 (8)
C2—C1—C6—C51.5 (3)N2A—C11A—C12A—C13A5.3 (14)
N2—C1—C6—C5177.8 (2)N2A—C11A—C12A—C17A179.6 (9)
N2A—C1—C6—C5179.9 (7)C17A—C12A—C13A—O1A175.5 (8)
C4—N3—C7—C887.5 (3)C11A—C12A—C13A—O1A9.7 (10)
C9—N3—C7—C891.5 (3)C17A—C12A—C13A—C14A0.0
C4—N3—C9—C1083.4 (3)C11A—C12A—C13A—C14A174.9 (10)
C7—N3—C9—C1097.6 (2)O1A—C13A—C14A—C15A175.3 (9)
C2—C1—N2—C110.4 (4)C12A—C13A—C14A—C15A0.0
C6—C1—N2—C11178.8 (2)O1A—C13A—C14A—C23A2.1 (12)
C1—N2—C11—C12177.4 (2)C12A—C13A—C14A—C23A177.3 (12)
N2—C11—C12—C132.7 (3)C21A—N1A—C15A—C14A11 (4)
N2—C11—C12—C17174.1 (2)C18A—N1A—C15A—C14A170.4 (12)
C17—C12—C13—O1179.2 (2)C21A—N1A—C15A—C16A164 (3)
C11—C12—C13—O12.4 (2)C18A—N1A—C15A—C16A14 (2)
C17—C12—C13—C140.0C13A—C14A—C15A—N1A175.3 (14)
C11—C12—C13—C14176.8 (2)C23A—C14A—C15A—N1A7.3 (13)
O1—C13—C14—C15179.2 (2)C13A—C14A—C15A—C16A0.0
C12—C13—C14—C150.0C23A—C14A—C15A—C16A177.4 (12)
O1—C13—C14—C204.6 (2)N1A—C15A—C16A—C17A175.1 (15)
C12—C13—C14—C20176.1 (2)C14A—C15A—C16A—C17A0.0
C18—N1—C15—C144.7 (7)N1A—C15A—C16A—C20A8.7 (15)
C21—N1—C15—C14159.5 (4)C14A—C15A—C16A—C20A176.3 (9)
C18—N1—C15—C16174.9 (4)C15A—C16A—C17A—C12A0.0
C21—N1—C15—C1620.9 (7)C20A—C16A—C17A—C12A176.2 (9)
C13—C14—C15—N1179.6 (4)C13A—C12A—C17A—C16A0.0
C20—C14—C15—N13.3 (4)C11A—C12A—C17A—C16A175.4 (9)
C13—C14—C15—C160.0C21A—N1A—C18A—C19A162 (3)
C20—C14—C15—C16176.2 (2)C15A—N1A—C18A—C19A19 (2)
N1—C15—C16—C17179.6 (4)N1A—C18A—C19A—C20A54.2 (16)
C14—C15—C16—C170.0C18A—C19A—C20A—C16A57.0 (13)
N1—C15—C16—C233.7 (4)C17A—C16A—C20A—C19A149.1 (8)
C14—C15—C16—C23176.8 (3)C15A—C16A—C20A—C19A27.1 (11)
C15—C16—C17—C120.0C15A—N1A—C21A—C22A10 (5)
C23—C16—C17—C12176.7 (3)C18A—N1A—C21A—C22A169 (2)
C13—C12—C17—C160.0N1A—C21A—C22A—C23A44 (4)
C11—C12—C17—C16176.8 (2)C15A—C14A—C23A—C22A42.8 (15)
C15—N1—C18—C1925.3 (7)C13A—C14A—C23A—C22A139.8 (12)
C21—N1—C18—C19169.9 (4)C21A—C22A—C23A—C14A58 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.832.557 (4)147
C7—H7A···Cg1i0.972.793.574 (3)138
C20—H20B···Cg1ii0.972.623.521 (3)154
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+2, z+1.
 

Acknowledgements

The authors are grateful to the National Taras Shevchenko University, Kyiv, Ukraine, for financial support, and to Dr Igor Fritsky and Dr Graham Smith for valuable discussions.

References

First citationBarbero, N., Barolo, C., Marabello, D., Buscaino, R., Gervasio, G. & Viscardi, G. (2012). Dyes Pigments, 92, 1177–1183.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, Y. W., Lee, J. J., You, G. R., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 86463–86472.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016b). Acta Cryst. E72, 1366–1369.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016a). Sens. Actuators B Chem. 222, 15–20.  CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Iskenderov, T. S. & Sharkina, N. O. (2015). Acta Cryst. E71, 28–30.  CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H. & Sen, P. (2014). Acta Cryst. E70, m206–m207.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJo, T. G., Na, Y. J., Lee, J. J., Lee, M. M., Lee, S. Y. & Kim, C. (2015). New J. Chem. 39, 2580–2587.  Web of Science CrossRef CAS Google Scholar
First citationKantar, E. N., Köysal, Y., Akdemir, N., Ağar, A. A. & Soylu, M. S. (2013). Acta Cryst. E69, o883.  CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y. S., Lee, J. J., Choi, Y. W., You, G. R., Nguyen, L., Noh, I. & Kim, C. (2016). Dyes Pigments, 129, 43–53.  CrossRef CAS Google Scholar
First citationKim, Y. S., Park, G. J., Lee, J. J., Lee, S. Y., Lee, S. Y. & Kim, C. (2015). RSC Adv. 5, 11229–11239.  Web of Science CrossRef CAS Google Scholar
First citationLee, S. A., You, G. R., Choi, Y. W., Jo, H. Y., Kim, A. R., Noh, I., Kim, S.-J., Kim, Y. & Kim, C. (2014). Dalton Trans. 43, 6650–6659.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaity, D., Manna, A. K., Karthigeyan, D., Kundu, T. K., Pati, S. K. & Govindaraju, T. (2011). Chem. Eur. J. 17, 11152–11161.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNa, Y. J., Hwang, I. H., Jo, H. Y., Lee, S. A., Park, G. J. & Kim, C. (2013). Inorg. Chem. Commun. 35, 342–345.  Web of Science CSD CrossRef CAS Google Scholar
First citationNano, A., Gullo, M. P., Ventura, B., Armaroli, N., Barbieri, A. & Ziessel, R. (2015). Chem. Commun. 51, 3351–3354.  Web of Science CrossRef CAS Google Scholar
First citationNarayanaswamy, N. & Govindaraju, T. (2012). Sens. Actuators B Chem. 161, 304–310.  Web of Science CrossRef CAS Google Scholar
First citationNoh, J. Y., Kim, S., Hwang, I. H., Lee, G. Y., Kang, J., Kim, S. H., Min, J., Park, S., Kim, C. & Kim, J. (2013). Dyes Pigments, 99, 1016–1021.  Web of Science CrossRef CAS Google Scholar
First citationPark, G. J., Park, D. Y., Park, K.-M., Kim, Y., Kim, S.-J., Chang, P.-S. & Kim, C. (2014). Tetrahedron, 70, 7429–7438.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Li, H. & Cao, D. (2013a). Sens. Actuators B Chem. 181, 749–755.  Web of Science CrossRef CAS Google Scholar
First citationWang, M., Wang, J., Xue, W. & Wu, A. (2013b). Dyes Pigments, 97, 475–480.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds