research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of dirubidium hydrogen citrate from laboratory X-ray powder diffraction data and DFT comparison

CROSSMARK_Color_square_no_text.svg

aAtlantic International University, Honolulu, HI, USA, and bIllinois Institute of Technology, Chicago, IL, USA
*Correspondence e-mail: kaduk@polycrystallography.com

Edited by A. Van der Lee, Université de Montpellier II, France (Received 4 December 2016; accepted 19 December 2016; online 1 January 2017)

The crystal structure of dirubidium hydrogen citrate, 2Rb+·HC6H5O72−, has been solved and refined using laboratory X-ray powder diffraction data, and optimized using density functional techniques. The un-ionized carb­oxy­lic acid group forms helical chains of very strong hydrogen bonds (O⋯O ∼ 2.42 Å) along the b axis. The hy­droxy group participates in a chain of intra- and inter­molecular hydrogen bonds along the c axis. These hydrogen bonds result in corrugated hydrogen-bonded layers in the bc plane. The Rb+ cations are six-coordinate, and share edges and corners to form layers in the ab plane. The inter­layer contacts are composed of the hydro­phobic methyl­ene groups.

1. Chemical context

In the course of a systematic study of the crystal structures of Group 1 (alkali metal) citrate salts to understand the conformational flexibility, ionization, coordination tendencies, and hydrogen bonding of the anion, we have determined several new crystal structures. Most of the new structures were solved using powder diffraction data (laboratory and/or synchrotron), but single crystals were used where available. The general trends and conclusions about the 16 new compounds and 12 previously characterized structures are being reported separately (Rammohan & Kaduk, 2017[Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943-946.][Rammohan, A. & Kaduk, J. A. (2017). Submitted to Acta Cryst. B72 [hw5042].]). Six of the new structures, i.e. NaKHC6H5O7, NaK2C6H5O7, Na3C6H5O7, NaH2C6H5O7, Na2HC6H5O7, and K3C6H5O7, have been published recently (Rammohan & Kaduk, 2016[Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943-946.]a[Rammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170-173.],b[Rammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403-406.],c[Rammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793-796.],d[Rammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854-857.],e[Rammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159-1162.]; Rammohan et al., 2016[Rammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943-946.]), and two additional structures, i.e. KH2C6H5O7 and KH2C6H5O7(H2O)2, have been communicated (Kaduk & Stern, 2016a[Kaduk, J. A. & Stern, C. (2016a). CSD Communication 1446457-1446458. CCDC, Cambridge, England.],b[Kaduk, J. A. & Stern, C. (2016b). CSD Communication 1446460-1446461. CCDC, Cambridge, England.]) to the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound is shown in Fig. 1[link]. The r.m.s. deviation of the non-H atoms in the Rietveld refined and DFT-optimized structures is 0.052 Å (Fig. 2[link]), and the maximum deviation is 0.083 Å, at atom C1. The good agreement between the two structures is strong evidence that the experimental structure is correct (van de Streek & Neumann, 2014[Streek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020-1032.]). This discussion uses the DFT-optimized structure. Most of the bond lengths, bond angles, and torsion angles fall within the normal ranges indicated by a Mercury Mogul Geometry Check (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]). The C1—C2—C3 angle of 111.1° is flagged as unusual [Z-score = 2.7; average = 114.3 (11)°]. The Z-score is the result of the low standard uncertainty on the average; the absolute difference of 3.2° is well within the expected range of such angles. The citrate anion occurs in the trans,trans-conformation, which is one of the two low-energy conformations of an isolated citrate. The central carboxyl­ate group and the hy­droxy group lie on the mirror plane. The central carboxyl­ate O15 atom and the terminal carb­oxy­lic acid O11 atom chelate to Rb19, and the central carboxyl­ate O16 atom and the terminal carb­oxy­lic acid O11 atom chelate to another Rb19. The Mulliken overlap populations and atomic charges indicate that the metal–oxygen bonding is ionic.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, showing the atom numbering. The atoms are represented by 50% probability spheroids.
[Figure 2]
Figure 2
Comparison of the refined and optimized structures of dirubidium hydrogen citrate. The refined structure is in red and the DFT-optimized structure is in blue.

The Bravais–Friedel–Donnay–Harker (Bravais, 1866[Bravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.]; Friedel, 1907[Friedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326-455.]; Donnay & Harker, 1937[Donnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446-467.]) morphology suggests that we might expect a platy morphology for dirubidium hydrogen citrate, with {020} as the principal faces. A 4th order spherical harmonic texture model was included in the refinement. The texture index was 1.078, indicating that preferred orientation was significant for this rotated flat plate specimen.

3. Supra­molecular features

The Rb cation is six-coordinate (bond-valence sum = 0.96). The coordination polyhedra share corners and edges to form layers in the ab plane (Fig. 3[link]). The un-ionized terminal carb­oxy­lic acid forms a very strong symmetric hydrogen bond (Table 1[link]). The Mulliken overlap population in the hydrogen-acceptor bond is 0.161 e. By the correlation in Rammohan & Kaduk (2017[Rammohan, A. & Kaduk, J. A. (2017). Submitted to Acta Cryst. B72 [hw5042].]), this hydrogen bond accounts for 21.9 kcal mol−1 of crystal energy. The hy­droxy group participates in two hydrogen bonds to ionized central carboxyl­ate groups; one is intra­molecular with graph-set motif S(5), and the other is inter­molecular. These hydrogen bonds contribute 9.3 and 8.6 kcal mol−1 to the crystal energy.

Table 1
Hydrogen-bond geometry (Å, °) for the DFT-optimized structure of dirubidium hydrogen citrate[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O11—H21⋯O11 1.209 1.209 2.418 180.0
O17—H18⋯O15 0.979 1.992 2.611 119.0
O17—H18⋯O16 0.979 1.992 3.216 148.6
[Figure 3]
Figure 3
The crystal structure of dirubidium hydrogen citrate, viewed down the a axis.

4. Database survey

Details of the comprehensive literature search for citrate structures are presented in Rammohan & Kaduk (2017[Rammohan, A. & Kaduk, J. A. (2017). Submitted to Acta Cryst. B72 [hw5042].]). A reduced cell search of the cell of dirubidium hydrogen citrate in the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) (increasing the default tolerance from 1.5 to 2.0%) yielded 12 hits, but limiting the chemistry to C, H, Rb, and O only resulted in no hits. The powder pattern is now contained in the the Powder Diffraction File (ICDD, 2016[ICDD (2016). PDF-4+ 2015 and PDF-4 Organics 2016 (Databases), edited by S. Kabekkodu. International Centre for Diffraction Data, Newtown Square PA, USA.]) as entry 00-063-1541.

5. Synthesis and crystallization

H3C6H5O7(H2O) (2.0768 g, 10.0 mmol) was dissolved in 10 ml deionized water. Rb2CO3 (10.0 mmol, 2.3170 g, Sigma–Aldrich) was added to the citric acid solution slowly with stirring. The resulting clear colorless solution was evaporated to dryness in an oven at 333 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Entering 22 peaks (after manually applying a constant 2θ shift to approximate specimen displacement effects) into ITO/CRYSFIRE (Visser, 1969[Visser, J. W. (1969). J. Appl. Cryst. 2, 89-95.]; Shirley, 2002[Shirley, R. (2002). The Crysfire 2002 system for automatic powder indexing. Guildford, Surrey, England.]) yielded a primitive monoclinic cell having a = 5.978, b = 15.096, c = 5.320 Å, β = 93.93°, V = 478.33 Å3, and Z = 2. Processing the pattern in DASH3.2 (David et al., 2006[David, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910-915.]) suggested that the most probable space group was P21, but no acceptable solution was found. A peak list was created from the results of a Le Bail fit using the REFLIST option in GSAS, and imported into Endeavour1.7b (Putz et al., 1999[Putz, H., Schön, J. C. & Jansen, M. (1999). J. Appl. Cryst. 32, 864-870.]). Using a citrate, two Rb atoms, and the O atom of a water mol­ecule as fragments yielded a successful structure solution. In the initial refinements, the water mol­ecule moved very close to one of the Rb atoms, and so was removed from the refinement.

Table 2
Experimental details

  Rietveld refinement DFT optimization
Crystal data
Chemical formula 2Rb+·HC6H5O72− 2Rb+·HC6H5O72−
Mr 361.04 361.04
Crystal system, space group Monoclinic, P21/m Monoclinic, P21/m
Temperature (K) 300 300
a, b, c (Å) 5.97796 (17), 15.0960 (4), 5.32067 (19) 5.9780, 15.0961, 5.3207
β (°) 93.9341 (13) 93.9354
V3) 479.02 (4) 478.99
Z 2 2
Radiation type Kα1, Kα2, λ = 1.540629, 1.544451 Å
Specimen shape, size (mm) Flat sheet, 24 × 24
 
Data collection
Diffractometer Bruker D2 Phaser
Specimen mounting Normal sample holder
Data collection mode Reflection
Data collection method Step
θ values (°) 2θmin = 5.042 2θmax = 70.050 2θstep = 0.020
 
Refinement
R factors and goodness of fit Rp = 0.021, Rwp = 0.028, Rexp = 0.015, R(F2) = 0.0520, χ2 = 3.312
No. of parameters 49
No. of restraints 15
H-atom treatment Only H-atom displacement parameters refined
Computer programs: DIFFRAC.Measurement (Bruker, 2009[Bruker (2009). DIFFRAC.Measurement. Bruker AXS Inc., Madison, Wisconsin, USA.]), Endeavour (Putz et al., 1999[Putz, H., Schön, J. C. & Jansen, M. (1999). J. Appl. Cryst. 32, 864-870.]), GSAS (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR 86-784 Los Alamos National Laboratory, New Mexico, USA.]), DIAMOND (Crystal Impact, 2015[Crystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.com/diamond.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Pseudo-Voigt profile coefficients were as parameterized in Thompson et al. (1987[Thompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79-83.]) with profile coefficients for Simpson's rule integration of the pseudo-Voigt function according to Howard (1982[Howard, C. J. (1982). J. Appl. Cryst. 15, 615-620.]). The asymmetry correction of Finger et al. (1994[Finger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892-900.]) was applied, and microstrain broadening by Stephens (1999[Stephens, P. W. (1999). J. Appl. Cryst. 32, 281-289.]). The structure was refined by the Rietveld (Fig. 4[link]) method using GSAS/EXPGUI (Larson & Von Dreele, 2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR 86-784 Los Alamos National Laboratory, New Mexico, USA.]; Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]). All C—C and C—O bond lengths were restrained, as were all bond angles. The H atoms were included at fixed positions, which were recalculated during the course of the refinement using Materials Studio (Dassault Systemes, 2014[Dassault Systemes (2014). Materials Studio. BIOVIA, San Diego, California, USA.]). The Uiso of the atoms in the central and outer portions of the citrate were constrained to be equal, and the Uiso of the H atoms were constrained to be 1.3 times those of the atoms to which they are attached.

[Figure 4]
Figure 4
Rietveld plot for the refinement of dirubidium hydrogen citrate. The vertical scale is not the raw counts but the counts multiplied by the least-squares weights. This plot emphasizes the fit of the weaker peaks. The red crosses represent the observed data points and the green line is the calculated pattern. The magenta curve is the difference pattern, plotted at the same scale as the other patterns. The row of black tick marks indicates the reflection positions.

The structure was solved and initially refined in the space group P21. The ADDSYM module of PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) suggested the presence of an additional centre of symmetry, and that the space group was P21/m. Refinement in this space group yielded slightly better residuals (Rwp = 0.0277 and reduced χ2 = 3.3236, compared to Rwp = 0.0282 and χ2 = 3.454 for P21), and we believe that P21/m is the correct space group.

Stoichiometry requires one carb­oxy­lic acid proton per citrate. The space group P21 is consistent with ordered asymmetric hydrogen bonds, while P21/m is consistent with both disordered asymmetric hydrogen bonds or symmetric hydrogen bonds. Crystallographically, it would be difficult to distinguish these two possibilities, especially using X-ray powder diffraction data. DFT calculations on the asymmetric (P21) and symmetric (P21/m) hydrogen-bond models indicate that the symmetric model is 0.2 kcal mol−1 lower in energy. This difference is within the expected error range of such calculations. Since the crystallography strongly indicates the higher symmetry, we believe that the P21/m model with symmetric hydrogen bonds is the best model for this structure.

7. DFT calculations

After the Rietveld refinement, a density functional geometry optimization (fixed experimental unit cell) was carried out using CRYSTAL14 (Dovesi et al., 2014[Dovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noel, Y., Causa, M., Rerat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287-1317.]). The basis sets for the C, H, and O atoms were those of Peintinger et al. (2012[Peintinger, M. F., Vilela Oliveira, D. & Bredow, T. (2012). J. Comput. Chem. 34, 451-459.]), and the basis set for Rb was that of Schoenes et al. (2008[Schoenes, J., Racu, A.-M., Doll, K., Bukowski, Z. & Karpinski, J. (2008). Phys. Rev. B, 77, 134515.]). The calculation was run on eight 2.1 GHz Xeon cores (each with 6 Gb RAM) of a 304-core Dell Linux cluster at IIT, used 8 k-points and the B3LYP functional, and took about 5 h. The Uiso from the Rietveld refinement were assigned to the optimized fractional coordinates.

Supporting information


Computing details top

Data collection: DIFFRAC.Measurement (Bruker, 2009) for RAMM020C_publ. Program(s) used to solve structure: Endeavour (Putz et al., 1999) for RAMM020C_publ. Program(s) used to refine structure: GSAS for RAMM020C_publ. Molecular graphics: DIAMOND (Crystal Impact, 2015) for RAMM020C_publ. Software used to prepare material for publication: publCIF (Westrip, 2010) for RAMM020C_publ.

(RAMM020C_publ) Dirubidium hydrogen citrate top
Crystal data top
2Rb+·HC6H5O72V = 479.02 (4) Å3
Mr = 361.04Z = 2
Monoclinic, P21/mDx = 2.503 Mg m3
Hall symbol: -P 2ybKα1, Kα2 radiation, λ = 1.540629, 1.544451 Å
a = 5.97796 (17) ÅT = 300 K
b = 15.0960 (4) Åwhite
c = 5.32067 (19) Åflat_sheet, 24 × 24 mm
β = 93.9341 (13)°Specimen preparation: Prepared at 333 K
Data collection top
Bruker D2 Phaser
diffractometer
Scan method: step
Specimen mounting: Normal sample holder2θmin = 5.042°, 2θmax = 70.050°, 2θstep = 0.020°
Data collection mode: reflection
Refinement top
Least-squares matrix: full49 parameters
Rp = 0.02115 restraints
Rwp = 0.028Only H-atom displacement parameters refined
Rexp = 0.015Weighting scheme based on measured s.u.'s
R(F2) = 0.0520(Δ/σ)max = 0.08
3217 data pointsBackground function: GSAS Background function number 1 with 4 terms. Shifted Chebyshev function of 1st kind 1: 3185.87 2: -310.317 3: -87.5319 4: 63.9418
Profile function: CW Profile function number 4 with 21 terms Pseudovoigt profile coefficients as parameterized in P. Thompson, D.E. Cox & J.B. Hastings (1987). J. Appl. Cryst.,20,79-83. Asymmetry correction of L.W. Finger, D.E. Cox & A. P. Jephcoat (1994). J. Appl. Cryst.,27,892-900. Microstrain broadening by P.W. Stephens, (1999). J. Appl. Cryst.,32,281-289. #1(GU) = 142.783 #2(GV) = 0.000 #3(GW) = 4.751 #4(GP) = 0.000 #5(LX) = 5.874 #6(ptec) = -0.71 #7(trns) = 1.83 #8(shft) = -25.7226 #9(sfec) = 0.00 #10(S/L) = 0.0441 #11(H/L) = 0.0005 #12(eta) = 0.0000 #13(S400 ) = 3.9E-02 #14(S040 ) = 8.9E-05 #15(S004 ) = 3.1E-01 #16(S220 ) = 9.7E-03 #17(S202 ) = -6.4E-02 #18(S022 ) = 5.7E-04 #19(S301 ) = -8.2E-03 #20(S103 ) = 2.5E-02 #21(S121 ) = -8.8E-03 Peak tails are ignored where the intensity is below 0.0100 times the peak Aniso. broadening axis 0.0 1.0 0.0
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2727 (12)0.4151 (4)0.5145 (14)0.0556 (15)*
C20.3859 (11)0.33308 (16)0.4236 (14)0.026 (4)*
C30.2821 (12)0.250.5368 (15)0.026 (4)*
C60.0268 (13)0.250.463 (2)0.0556 (15)*
H70.563950.331360.475410.018 (5)*
H80.357950.331690.218410.018 (5)*
O110.1036 (11)0.4467 (5)0.3841 (15)0.0556 (15)*
O120.3502 (12)0.4512 (5)0.7178 (14)0.0556 (15)*
O150.0968 (16)0.250.650 (2)0.0556 (15)*
O160.0415 (16)0.250.232 (2)0.0556 (15)*
O170.3416 (14)0.250.7999 (15)0.0556 (15)*
H180.171270.250.870910.068 (2)*
Rb190.2264 (3)0.10523 (10)0.0313 (3)0.0590 (9)*
H210.00.00.50.07*
Geometric parameters (Å, º) top
C1—C21.5070 (17)O12—Rb19iv2.907 (7)
C1—O111.278 (5)O15—C61.281 (5)
C1—O121.270 (5)O15—Rb19v2.903 (7)
C2—C11.5070 (17)O15—Rb19vi2.903 (7)
C2—C31.5400 (17)O16—C61.267 (5)
C2—H71.081 (7)O16—Rb192.784 (7)
C2—H81.093 (7)O16—Rb19i2.784 (7)
C3—C21.5400 (17)O17—C31.420 (5)
C3—C2i1.5400 (17)O17—H181.110 (8)
C3—C61.5499 (18)O17—Rb19vii3.454 (7)
C3—O171.420 (5)O17—Rb19iv3.455 (7)
C6—C31.5499 (18)H18—O171.110 (8)
C6—O151.281 (5)Rb19—O11viii3.159 (7)
C6—O161.267 (5)Rb19—O11i2.965 (7)
H7—C21.081 (7)Rb19—O12ix2.984 (6)
H8—C21.093 (8)Rb19—O12x2.907 (7)
O11—C11.278 (5)Rb19—O15xi2.903 (7)
O11—Rb19ii3.159 (7)Rb19—O162.784 (7)
O11—Rb19i2.965 (7)Rb19—O17xii3.454 (7)
O11—H21iii1.209 (6)H21—O11ix1.209 (6)
O12—C11.270 (5)H21—O11i1.209 (6)
O12—Rb19iii2.984 (6)
C2—C1—O11119.2 (4)C6—O15—Rb19v130.21 (19)
C2—C1—O12118.7 (4)C6—O15—Rb19xv130.21 (19)
O11—C1—O12122.1 (4)Rb19v—O15—Rb19xv97.7 (3)
C1—C2—C3110.0 (4)C6—O16—Rb19125.3 (2)
C1—C2—H7113.2 (4)C6—O16—Rb19xiii125.3 (2)
C1—C2—H817.29 (4)Rb19—O16—Rb19xiii103.5 (4)
C3—C2—H7107.3 (5)C3—O17—H1899.3 (7)
C3—C2—H8109.7 (5)O11viii—Rb19—O11xiii94.2 (2)
H7—C2—H8109.5 (5)O11viii—Rb19—O12ix79.54 (16)
C2—C3—C2xiii109.1 (4)O11viii—Rb19—O12xvi74.7 (2)
C2—C3—C6108.5 (4)O11viii—Rb19—O15xi98.11 (18)
C2—C3—O17107.8 (4)O11viii—Rb19—O16142.5 (2)
C2xiii—C3—C6108.5 (4)O11xiii—Rb19—O12ix63.59 (19)
C2xiii—C3—O17107.8 (4)O11xiii—Rb19—O12xvi141.13 (14)
C6—C3—O17115.2 (7)O11xiii—Rb19—O15xi116.3 (2)
C3—C6—O15114.4 (9)O11xiii—Rb19—O1667.2 (2)
C3—C6—O16119.5 (9)O12ix—Rb19—O12xvi77.7 (2)
O15—C6—O16126.1 (9)O12ix—Rb19—O15xi177.6 (2)
C1—O11—Rb19ii113.5 (7)O12ix—Rb19—O16115.8 (3)
C1—O11—Rb19xiii140.0 (4)O12xvi—Rb19—O15xi102.2 (2)
Rb19ii—O11—Rb19xiii85.8 (2)O12xvi—Rb19—O16139.9 (2)
C1—O12—Rb19iii136.0 (4)O15xi—Rb19—O1665.8 (2)
C1—O12—Rb19xiv121.4 (4)O11ix—H21—O11xiii180.0
Rb19iii—O12—Rb19xiv102.3 (2)
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+1/2, z; (iii) x, y+1/2, z+1; (iv) x+1, y+1/2, z+1; (v) x, y, z+1; (vi) x, y+1/2, z+1; (vii) x+1, y, z+1; (viii) x, y1/2, z; (ix) x, y1/2, z+1; (x) x1, y+1/2, z1; (xi) x, y, z1; (xii) x1, y, z1; (xiii) x, y+3/2, z; (xiv) x+1, y+3/2, z+1; (xv) x, y+3/2, z+1; (xvi) x1, y+3/2, z1.
(ramm020c_DFT) top
Crystal data top
C6H6O7Rb2c = 5.3207 Å
Mr = 361.04β = 93.9354°
Monoclinic, P21/mV = 478.99 Å3
Hall symbol: -P 2ybZ = 2
a = 5.9780 ÅT = 300 K
b = 15.0961 Å
Data collection top
h = l =
k =
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.281870.417040.521430.05270*
C20.385080.333630.422430.01400*
C30.277970.250000.531160.01400*
C60.022760.250000.457970.05270*
H70.563950.331360.475410.01820*
H80.357950.331690.218410.01820*
O110.106130.446710.387340.05270*
O120.353790.452830.720150.05270*
O150.104300.250000.638010.05270*
O160.036800.250000.227720.05270*
O170.318060.250000.799990.05270*
H180.171270.250000.870910.06840*
Rb190.224140.103190.038360.05980*
H210.000000.000000.500000.07000*
Bond lengths (Å) top
C1—C21.513Rb19—O11ii2.997
C1—O111.308Rb19—O162.820
C1—O121.238Rb19—O12viii2.966
C2—C31.546C3—C2ii1.546
C2—H71.087C3—C61.548
C2—H81.087C3—O171.434
O11—Rb19i3.115C6—O151.263
O11—Rb19ii2.997C6—O161.252
O11—H21iii1.209O15—Rb19ix2.926
O12—Rb19iv2.879O15—Rb19x2.926
O12—Rb19iii2.966O16—Rb19ii2.820
Rb19—O12v2.879O17—H180.979
Rb19—O15vi2.926H21—O11ii1.209
Rb19—O11vii3.115H21—O11viii1.209
Symmetry codes: (i) x, y+1/2, z; (ii) x, y+1/2, z; (iii) x, y+1/2, z+1; (iv) x+1, y+1/2, z+1; (v) x1, y+1/2, z1; (vi) x, y, z1; (vii) x, y1/2, z; (viii) x, y1/2, z+1; (ix) x, y, z+1; (x) x, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O11—H21···O111.2091.2092.418180.0
O17—H18···O150.9791.9922.611119.0
O17—H18···O160.9791.9923.216148.6
 

Acknowledgements

We thank Andrey Rogachev for the use of computing resources at IIT.

References

First citationBravais, A. (1866). In Etudes Cristallographiques. Paris: Gauthier Villars.  Google Scholar
First citationBruker (2009). DIFFRAC.Measurement. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrystal Impact (2015). DIAMOND. Crystal Impact GbR, Bonn, Germany. https://www.crystalimpact.com/diamondGoogle Scholar
First citationDassault Systemes (2014). Materials Studio. BIOVIA, San Diego, California, USA.  Google Scholar
First citationDavid, W. I. F., Shankland, K., van de Streek, J., Pidcock, E., Motherwell, W. D. S. & Cole, J. C. (2006). J. Appl. Cryst. 39, 910–915.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDonnay, J. D. H. & Harker, D. (1937). Am. Mineral. 22, 446–467.  CAS Google Scholar
First citationDovesi, R., Orlando, R., Erba, A., Zicovich-Wilson, C. M., Civalleri, B., Casassa, S., Maschio, L., Ferrabone, M., De La Pierre, M., D'Arco, P., Noel, Y., Causa, M., Rerat, M. & Kirtman, B. (2014). Int. J. Quantum Chem. 114, 1287–1317.  CrossRef CAS Google Scholar
First citationFinger, L. W., Cox, D. E. & Jephcoat, A. P. (1994). J. Appl. Cryst. 27, 892–900.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriedel, G. (1907). Bull. Soc. Fr. Mineral. 30, 326–455.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoward, C. J. (1982). J. Appl. Cryst. 15, 615–620.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationICDD (2016). PDF-4+ 2015 and PDF-4 Organics 2016 (Databases), edited by S. Kabekkodu. International Centre for Diffraction Data, Newtown Square PA, USA.  Google Scholar
First citationKaduk, J. A. & Stern, C. (2016a). CSD Communication 1446457-1446458. CCDC, Cambridge, England.  Google Scholar
First citationKaduk, J. A. & Stern, C. (2016b). CSD Communication 1446460-1446461. CCDC, Cambridge, England.  Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR 86-784 Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPeintinger, M. F., Vilela Oliveira, D. & Bredow, T. (2012). J. Comput. Chem. 34, 451–459.  CrossRef Google Scholar
First citationPutz, H., Schön, J. C. & Jansen, M. (1999). J. Appl. Cryst. 32, 864–870.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2017). Submitted to Acta Cryst. B72 [hw5042].  CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016a). Acta Cryst. E72, 170–173.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016b). Acta Cryst. E72, 403–406.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016c). Acta Cryst. E72, 793–796.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016d). Acta Cryst. E72, 854–857.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A. & Kaduk, J. A. (2016e). Acta Cryst. E72, 1159–1162.  CrossRef IUCr Journals Google Scholar
First citationRammohan, A., Sarjeant, A. A. & Kaduk, J. A. (2016). Acta Cryst. E72, 943–946.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchoenes, J., Racu, A.-M., Doll, K., Bukowski, Z. & Karpinski, J. (2008). Phys. Rev. B, 77, 134515.  Web of Science CrossRef Google Scholar
First citationShirley, R. (2002). The Crysfire 2002 system for automatic powder indexing. Guildford, Surrey, England.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephens, P. W. (1999). J. Appl. Cryst. 32, 281–289.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStreek, J. van de & Neumann, M. A. (2014). Acta Cryst. B70, 1020–1032.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThompson, P., Cox, D. E. & Hastings, J. B. (1987). J. Appl. Cryst. 20, 79–83.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVisser, J. W. (1969). J. Appl. Cryst. 2, 89–95.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds