research communications
N-(7-dibromomethyl-5-methyl-1,8-naphthyridin-2-yl)benzamide–pyrrolidine-2,5-dione (1/1)
ofaCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
*Correspondence e-mail: chishaoming@gmail.com
The title compound, C17H13Br2N3O·C4H5NO2, is a of N-(7-dibromomethyl-5-methyl-1,8-naphthyridin-2-yl)benzamide and pyrrolidine-2,5-dione (succinimide). The benzamide molecule exhibits pseudo-mirror symmetry, with an r.m.s. deviation of the non-H atoms of 0.09 Å (except for the two Br atoms). The angle between the least-squares planes of the two molecules is 26.2 (2)°. In the crystal, the two molecules are mutually linked by N—H⋯O and N—H⋯N hydrogen bonds. The packing is consolidated by C—H⋯(O,N) hydrogen bonds and π–π stacking interactions.
Keywords: crystal structure; 1,8-naphthyridine; hydrogen bonding; π–π interaction.
CCDC reference: 1519551
1. Chemical context
1,8-Naphthyridine derivatives are important π-electronic structures and are widely used as ligands in the synthesis of metal complexes (Tang et al., 2015; Matveeva et al., 2012, 2013), functional materials (Kuo et al., 2011; Katz et al., 2007; Hu & Chen, 2010) or as catalysts (Fuentes et al., 2011; Yamazaki et al., 2011). In a number of studies, the fluorescent properties of naphthyridines have been investigated (Yu et al., 2013; Li et al., 2012), in particular as selective fluorescent chemosensors for small biological molecules through hydrogen bonding (Nakatani et al., 2013; Liang et al., 2012). 1,8-Naphthyridin–BF2 complexes are known to be fluorescent dyes with high chemical stability (Li et al., 2014), high fluorescence quantum yields (Quan et al., 2012), high extinction coefficients (Wu et al., 2013) and sharp fluorescence peaks (Du et al., 2014). Some antiviral medications are also based on 1,8-naphthyridines (Elansary et al., 2014). In this context we aimed to synthesize the title 1,8-naphthyridine derivative and report here on the of the obtained with pyrrolidine-2,5-dione (succinimide).
that exhibit excellent biochemical and pharmacological properties. Moreover, these compounds benefit from conjugate2. Structural commentary
The molecular structure of the title 1,8-naphthyridine derivative is shown in Fig. 1. The N-(7-(dibromomethyl)-5-methyl-1,8-naphthyridin-2-yl)benzamide moiety (except the two Br atoms) is essentially planar (r.m.s deviation = 0.09 Å), with the maximum deviation from the mean plane being 0.315 (5) Å for atom O1. The naphthyridine ring system makes a dihedral angle of 2.2 (2)° with the benzene ring and is oriented at an angle of 26.2 (2)° relative to the succinimide. The conformation of the C=O and the N—H bonds of the amide segment are anti to one another, similar to that reported for benzamide moiety in N-{4-[(6-chloropyridin-3-yl)-methoxy]phenyl}-2,6-difluorobenzamide (Liang et al., 2016).
3. Supramolecular features
The two molecules are mutually linked into pairs by N—H⋯O and N—H⋯N hydrogen bonds with the (imide)N—H⋯N bond bifurcated (Table 1, Fig. 2). In the 1,8-naphthyridine derivative, an intramolecular C—H⋯O hydrogen bond between a phenyl H atom and the carbonyl function is also present. Apart from the classical hydrogen-bonding interactions, the two molecules are additionally linked by weaker C—H⋯O and C—H⋯N hydrogen bonds. These pairs are linked by weak C—Br⋯O interactions [3.094 (5) Å]. The supramolecular aggregation is completed by π–π stacking interactions between two neighbouring succinimide molecules with a centroid-to-centroid distance of Cg⋯Cgi = 3.854 (4) Å [interplanar distance = 3.172 (3) Å; symmetry code: −x + 1, −y + 1, −z + 1], forming a three-dimensional supramolecular network (Fig. 3).
4. Database survey
In the Cambridge Structural Database (Version 5.37; Groom et al., 2016), the structural data for a very similar 1,8-naphthyridine derivative have been deposited (CSD refcode LESBOC; Gou et al., 2013). Instead of a benzamide, the latter is an acetamide where the dihedral angle between the naphthyridine moiety and the succinimide co-molecule is 14.1°.
5. Synthesis and crystallization
N-(5,7-dimethyl-1,8-naphthyridin-2-yl)benzamide (Wu et al., 2012) (0.277 g,1 mmol) and N-bromosuccinimide (0.356 g, 2 mmol) were added to an dry acetonitrile (30 ml) solution under nitrogen atmosphere. The mixture was refluxed at room temperature in the presence of light with a 250 W infrared lamp for 4 h. Excess solvent was removed and the crude product was purified by using dichloromethane/methanol (120:1) as the mobile phase to give a light-yellow powder (yield: 0.1 g; 19%). Crystals suitable for X-ray analysis were obtained by slow diffusion of a dichloromethane solution at ambient temperature. Several cycles of purification by were used to reduce the amount of succinimide.
6. Refinement
Crystal data, data collection and structure . H atoms were constrained to an ideal geometry with C—H distances in the range 0.93–0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for all other H atoms, and with N—H = 0.86 Å, Uiso(H) = 1.2Ueq(N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1519551
https://doi.org/10.1107/S2056989016019034/wm5334sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016019034/wm5334Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016019034/wm5334Isup3.cml
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C17H13Br2N3O·C4H5NO2 | F(000) = 1064 |
Mr = 534.21 | Dx = 1.687 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.6931 (19) Å | Cell parameters from 4129 reflections |
b = 15.699 (3) Å | θ = 3.1–26.0° |
c = 14.614 (3) Å | µ = 3.89 mm−1 |
β = 108.99 (3)° | T = 293 K |
V = 2103.0 (7) Å3 | Block, white |
Z = 4 | 0.30 × 0.28 × 0.26 mm |
Rigaku R-AXIS RAPID diffractometer | 4129 independent reflections |
Radiation source: fine-focus sealed tube | 2010 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.125 |
ω scans | θmax = 26.0°, θmin = 3.0° |
Absorption correction: multi-scan (ABSCOR ; Higashi, 1995) | h = −11→11 |
Tmin = 0.389, Tmax = 0.432 | k = −19→19 |
16558 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.062 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0633P)2] where P = (Fo2 + 2Fc2)/3 |
4129 reflections | (Δ/σ)max < 0.001 |
271 parameters | Δρmax = 1.35 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.58390 (8) | 0.09771 (5) | 0.60551 (6) | 0.0662 (3) | |
Br2 | 0.59853 (8) | 0.16358 (6) | 0.40343 (6) | 0.0707 (3) | |
O2 | 0.2878 (5) | 0.5578 (3) | 0.5158 (3) | 0.0569 (13) | |
N2 | 0.1482 (5) | 0.3823 (3) | 0.4170 (4) | 0.0384 (13) | |
N3 | 0.3233 (5) | 0.2797 (3) | 0.4629 (4) | 0.0412 (13) | |
C10 | −0.0753 (6) | 0.2634 (4) | 0.3453 (5) | 0.0472 (17) | |
H10A | −0.1506 | 0.2244 | 0.3211 | 0.057* | |
C16 | 0.1779 (6) | 0.2982 (4) | 0.4218 (4) | 0.0372 (15) | |
O3 | 0.6209 (5) | 0.3572 (3) | 0.6728 (4) | 0.0670 (14) | |
C11 | 0.0696 (6) | 0.2340 (4) | 0.3875 (4) | 0.0386 (15) | |
O1 | −0.2418 (5) | 0.5110 (3) | 0.2818 (4) | 0.0572 (13) | |
C8 | 0.0100 (6) | 0.4067 (4) | 0.3782 (5) | 0.0408 (15) | |
N1 | −0.0060 (5) | 0.4946 (3) | 0.3799 (4) | 0.0431 (14) | |
H1A | 0.0691 | 0.5224 | 0.4148 | 0.052* | |
C18 | 0.3969 (7) | 0.5289 (4) | 0.5745 (5) | 0.0466 (17) | |
C6 | −0.1117 (7) | 0.6382 (4) | 0.3444 (4) | 0.0403 (16) | |
N4 | 0.4396 (5) | 0.4441 (3) | 0.5798 (4) | 0.0440 (13) | |
H4A | 0.3908 | 0.4057 | 0.5406 | 0.053* | |
C5 | −0.2391 (7) | 0.6855 (4) | 0.3129 (5) | 0.0472 (17) | |
H5A | −0.3286 | 0.6584 | 0.2872 | 0.057* | |
C12 | 0.1146 (6) | 0.1482 (4) | 0.3980 (5) | 0.0438 (17) | |
C3 | −0.1020 (9) | 0.8141 (5) | 0.3572 (6) | 0.065 (2) | |
H3B | −0.1000 | 0.8733 | 0.3614 | 0.078* | |
C7 | −0.1274 (7) | 0.5432 (4) | 0.3325 (5) | 0.0443 (17) | |
C21 | 0.5664 (7) | 0.4271 (5) | 0.6533 (5) | 0.0477 (17) | |
C15 | 0.3601 (6) | 0.1989 (4) | 0.4687 (4) | 0.0397 (15) | |
C1 | 0.0213 (7) | 0.6805 (4) | 0.3830 (5) | 0.0543 (19) | |
H1B | 0.1075 | 0.6494 | 0.4053 | 0.065* | |
C4 | −0.2326 (8) | 0.7719 (5) | 0.3199 (5) | 0.063 (2) | |
H4B | −0.3187 | 0.8031 | 0.2989 | 0.075* | |
C19 | 0.5070 (6) | 0.5760 (4) | 0.6530 (5) | 0.0468 (17) | |
H19A | 0.4625 | 0.6011 | 0.6971 | 0.056* | |
H19B | 0.5513 | 0.6209 | 0.6264 | 0.056* | |
C14 | 0.2609 (7) | 0.1317 (4) | 0.4380 (5) | 0.0463 (17) | |
H14A | 0.2943 | 0.0758 | 0.4447 | 0.056* | |
C2 | 0.0253 (8) | 0.7682 (5) | 0.3881 (6) | 0.071 (2) | |
H2B | 0.1143 | 0.7963 | 0.4125 | 0.085* | |
C17 | 0.5246 (6) | 0.1862 (4) | 0.5102 (5) | 0.0476 (18) | |
H17A | 0.5680 | 0.2398 | 0.5408 | 0.057* | |
C9 | −0.1054 (7) | 0.3486 (4) | 0.3399 (5) | 0.0470 (17) | |
H9A | −0.2005 | 0.3680 | 0.3116 | 0.056* | |
C20 | 0.6209 (7) | 0.5095 (4) | 0.7050 (5) | 0.0555 (19) | |
H20A | 0.7159 | 0.5240 | 0.7006 | 0.067* | |
H20B | 0.6286 | 0.5056 | 0.7727 | 0.067* | |
C13 | 0.0061 (7) | 0.0758 (5) | 0.3690 (6) | 0.070 (2) | |
H13A | 0.0573 | 0.0224 | 0.3811 | 0.105* | |
H13B | −0.0487 | 0.0803 | 0.3014 | 0.105* | |
H13C | −0.0592 | 0.0786 | 0.4062 | 0.105* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0729 (5) | 0.0613 (5) | 0.0558 (5) | 0.0189 (4) | 0.0090 (4) | 0.0111 (4) |
Br2 | 0.0474 (4) | 0.1006 (7) | 0.0659 (6) | 0.0050 (4) | 0.0208 (4) | 0.0021 (5) |
O2 | 0.051 (3) | 0.054 (3) | 0.055 (3) | 0.000 (2) | 0.002 (3) | −0.002 (2) |
N2 | 0.037 (3) | 0.030 (3) | 0.046 (3) | 0.000 (2) | 0.010 (3) | −0.001 (2) |
N3 | 0.035 (3) | 0.036 (3) | 0.048 (4) | 0.000 (3) | 0.008 (3) | −0.001 (3) |
C10 | 0.039 (4) | 0.046 (4) | 0.053 (5) | −0.010 (3) | 0.009 (3) | −0.004 (3) |
C16 | 0.035 (3) | 0.038 (4) | 0.040 (4) | 0.001 (3) | 0.014 (3) | −0.002 (3) |
O3 | 0.068 (3) | 0.054 (3) | 0.069 (4) | 0.009 (3) | 0.009 (3) | 0.006 (3) |
C11 | 0.037 (3) | 0.034 (4) | 0.041 (4) | −0.001 (3) | 0.008 (3) | −0.005 (3) |
O1 | 0.042 (3) | 0.053 (3) | 0.063 (3) | 0.009 (2) | −0.001 (3) | 0.003 (3) |
C8 | 0.039 (4) | 0.039 (4) | 0.043 (4) | 0.006 (3) | 0.011 (3) | 0.004 (3) |
N1 | 0.032 (3) | 0.038 (3) | 0.052 (4) | 0.003 (2) | 0.004 (3) | 0.000 (3) |
C18 | 0.041 (4) | 0.050 (5) | 0.051 (5) | −0.004 (4) | 0.017 (4) | −0.003 (4) |
C6 | 0.044 (4) | 0.041 (4) | 0.037 (4) | 0.009 (3) | 0.014 (3) | 0.002 (3) |
N4 | 0.047 (3) | 0.038 (3) | 0.045 (4) | −0.008 (3) | 0.013 (3) | −0.006 (3) |
C5 | 0.041 (4) | 0.041 (4) | 0.057 (5) | 0.005 (3) | 0.012 (3) | 0.017 (3) |
C12 | 0.044 (4) | 0.042 (4) | 0.050 (4) | −0.006 (3) | 0.022 (3) | −0.007 (3) |
C3 | 0.077 (5) | 0.042 (5) | 0.064 (5) | 0.006 (4) | 0.007 (4) | 0.004 (4) |
C7 | 0.037 (4) | 0.049 (4) | 0.044 (5) | 0.005 (3) | 0.008 (3) | 0.008 (3) |
C21 | 0.047 (4) | 0.052 (5) | 0.042 (4) | 0.003 (4) | 0.012 (4) | 0.002 (4) |
C15 | 0.042 (3) | 0.041 (4) | 0.035 (4) | 0.004 (3) | 0.009 (3) | −0.001 (3) |
C1 | 0.046 (4) | 0.044 (4) | 0.063 (5) | 0.006 (4) | 0.004 (4) | 0.007 (4) |
C4 | 0.054 (5) | 0.066 (6) | 0.062 (6) | 0.027 (4) | 0.011 (4) | 0.018 (4) |
C19 | 0.042 (4) | 0.046 (4) | 0.051 (5) | −0.004 (3) | 0.015 (3) | −0.005 (3) |
C14 | 0.050 (4) | 0.029 (4) | 0.063 (5) | −0.002 (3) | 0.023 (4) | −0.006 (3) |
C2 | 0.062 (5) | 0.050 (5) | 0.078 (6) | 0.001 (4) | −0.006 (4) | 0.000 (4) |
C17 | 0.043 (3) | 0.036 (4) | 0.052 (5) | 0.006 (3) | 0.001 (3) | 0.000 (3) |
C9 | 0.037 (3) | 0.046 (5) | 0.056 (5) | −0.002 (3) | 0.012 (3) | −0.001 (4) |
C20 | 0.046 (4) | 0.062 (5) | 0.051 (5) | −0.005 (4) | 0.006 (4) | −0.007 (4) |
C13 | 0.056 (5) | 0.059 (5) | 0.093 (7) | −0.009 (4) | 0.023 (5) | −0.013 (4) |
Br1—C17 | 1.918 (6) | C5—C4 | 1.359 (9) |
Br2—C17 | 1.950 (7) | C5—H5A | 0.9300 |
O2—C18 | 1.213 (7) | C12—C14 | 1.372 (8) |
N2—C8 | 1.330 (7) | C12—C13 | 1.513 (9) |
N2—C16 | 1.348 (7) | C3—C2 | 1.373 (10) |
N3—C15 | 1.312 (7) | C3—C4 | 1.375 (10) |
N3—C16 | 1.372 (7) | C3—H3B | 0.9300 |
C10—C9 | 1.366 (8) | C21—C20 | 1.505 (9) |
C10—C11 | 1.415 (8) | C15—C14 | 1.399 (8) |
C10—H10A | 0.9300 | C15—C17 | 1.524 (8) |
C16—C11 | 1.424 (8) | C1—C2 | 1.379 (9) |
O3—C21 | 1.211 (7) | C1—H1B | 0.9300 |
C11—C12 | 1.408 (8) | C4—H4B | 0.9300 |
O1—C7 | 1.225 (7) | C19—C20 | 1.529 (8) |
C8—N1 | 1.390 (7) | C19—H19A | 0.9700 |
C8—C9 | 1.410 (8) | C19—H19B | 0.9700 |
N1—C7 | 1.383 (7) | C14—H14A | 0.9300 |
N1—H1A | 0.8600 | C2—H2B | 0.9300 |
C18—N4 | 1.389 (8) | C17—H17A | 0.9800 |
C18—C19 | 1.485 (9) | C9—H9A | 0.9300 |
C6—C5 | 1.385 (8) | C20—H20A | 0.9700 |
C6—C1 | 1.396 (9) | C20—H20B | 0.9700 |
C6—C7 | 1.505 (8) | C13—H13A | 0.9600 |
N4—C21 | 1.370 (8) | C13—H13B | 0.9600 |
N4—H4A | 0.8600 | C13—H13C | 0.9600 |
C8—N2—C16 | 118.2 (5) | N3—C15—C17 | 112.3 (5) |
C15—N3—C16 | 116.9 (5) | C14—C15—C17 | 123.4 (6) |
C9—C10—C11 | 120.5 (6) | C2—C1—C6 | 120.1 (6) |
C9—C10—H10A | 119.8 | C2—C1—H1B | 119.9 |
C11—C10—H10A | 119.8 | C6—C1—H1B | 119.9 |
N2—C16—N3 | 113.7 (5) | C5—C4—C3 | 121.7 (7) |
N2—C16—C11 | 123.7 (5) | C5—C4—H4B | 119.2 |
N3—C16—C11 | 122.6 (5) | C3—C4—H4B | 119.2 |
C12—C11—C10 | 125.9 (6) | C18—C19—C20 | 105.4 (5) |
C12—C11—C16 | 118.2 (5) | C18—C19—H19A | 110.7 |
C10—C11—C16 | 115.9 (5) | C20—C19—H19A | 110.7 |
N2—C8—N1 | 112.4 (5) | C18—C19—H19B | 110.7 |
N2—C8—C9 | 122.8 (6) | C20—C19—H19B | 110.7 |
N1—C8—C9 | 124.8 (5) | H19A—C19—H19B | 108.8 |
C7—N1—C8 | 128.3 (5) | C12—C14—C15 | 120.1 (6) |
C7—N1—H1A | 115.8 | C12—C14—H14A | 119.9 |
C8—N1—H1A | 115.8 | C15—C14—H14A | 119.9 |
O2—C18—N4 | 125.0 (6) | C3—C2—C1 | 120.1 (7) |
O2—C18—C19 | 127.0 (6) | C3—C2—H2B | 120.0 |
N4—C18—C19 | 107.9 (6) | C1—C2—H2B | 120.0 |
C5—C6—C1 | 119.1 (6) | C15—C17—Br1 | 114.3 (5) |
C5—C6—C7 | 116.6 (6) | C15—C17—Br2 | 108.3 (4) |
C1—C6—C7 | 124.3 (6) | Br1—C17—Br2 | 110.3 (3) |
C21—N4—C18 | 113.9 (6) | C15—C17—H17A | 107.9 |
C21—N4—H4A | 123.0 | Br1—C17—H17A | 107.9 |
C18—N4—H4A | 123.0 | Br2—C17—H17A | 107.9 |
C4—C5—C6 | 119.7 (6) | C10—C9—C8 | 118.9 (6) |
C4—C5—H5A | 120.1 | C10—C9—H9A | 120.5 |
C6—C5—H5A | 120.1 | C8—C9—H9A | 120.5 |
C14—C12—C11 | 117.9 (6) | C21—C20—C19 | 105.0 (5) |
C14—C12—C13 | 120.4 (6) | C21—C20—H20A | 110.8 |
C11—C12—C13 | 121.7 (6) | C19—C20—H20A | 110.8 |
C2—C3—C4 | 119.3 (7) | C21—C20—H20B | 110.8 |
C2—C3—H3B | 120.3 | C19—C20—H20B | 110.8 |
C4—C3—H3B | 120.3 | H20A—C20—H20B | 108.8 |
O1—C7—N1 | 122.0 (6) | C12—C13—H13A | 109.5 |
O1—C7—C6 | 121.1 (6) | C12—C13—H13B | 109.5 |
N1—C7—C6 | 116.8 (6) | H13A—C13—H13B | 109.5 |
O3—C21—N4 | 124.9 (6) | C12—C13—H13C | 109.5 |
O3—C21—C20 | 127.3 (7) | H13A—C13—H13C | 109.5 |
N4—C21—C20 | 107.8 (6) | H13B—C13—H13C | 109.5 |
N3—C15—C14 | 124.4 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 0.86 | 2.22 | 3.060 (7) | 164 |
N4—H4A···N2 | 0.86 | 2.48 | 3.195 (7) | 141 |
N4—H4A···N3 | 0.86 | 2.27 | 3.098 (7) | 162 |
C1—H1B···O2 | 0.93 | 2.43 | 3.299 (8) | 156 |
C9—H9A···O1 | 0.93 | 2.30 | 2.870 (8) | 119 |
C17—H17A···O3 | 0.98 | 2.60 | 3.504 (8) | 154 |
C19—H19B···N3i | 0.97 | 2.58 | 3.538 (8) | 170 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
Support from the `Spring Sunshine' Plan of the Ministry of Education of China (grant No. Z2011125) and the National Natural Science Foundation of China (grant No. 21262049) is acknowledged.
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Du, M. L., Hu, C. Y., Wang, L. F., Li, C., Han, Y. Y., Gan, X., Chen, Y., Mu, W. H., Huang, M. L. & Fu, W. F. (2014). Dalton Trans. 43, 13924–13931. Web of Science CSD CrossRef CAS PubMed Google Scholar
Elansary, A. K., Moneer, A. A., Kadry, H. H. & Gedawy, E. M. (2014). J. Chem. Res. (S), 38, 147–153. Web of Science CrossRef CAS Google Scholar
Fuentes, J. A., Lebl, T., Slawin, A. M. Z. & Clarke, M. L. (2011). Chem. Sci. 2, 1997–2005. Web of Science CSD CrossRef CAS Google Scholar
Gou, G.-Z., Kou, J.-F., Zhou, Q.-D. & Chi, S.-M. (2013). Acta Cryst. E69, o153–o154. CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hu, S. Z. & Chen, C. F. (2010). Chem. Commun. 46, 4199–4201. Web of Science CSD CrossRef CAS Google Scholar
Katz, J. L., Geller, B. J. & Foster, P. D. (2007). Chem. Commun. pp. 1026–1028. Web of Science CSD CrossRef Google Scholar
Kuo, J. H., Tsao, T. B., Lee, G. H., Lee, H. W., Yeh, C. Y. & Peng, S. M. (2011). Eur. J. Inorg. Chem. pp. 2025–2028. Web of Science CSD CrossRef Google Scholar
Li, Z. S., Lv, X. J., Chen, Y. & Fu, W. F. (2014). Dyes Pigments, 105, 157–162. Web of Science CSD CrossRef CAS Google Scholar
Liang, F., Lindsay, S. & Zhang, P. (2012). Org. Biomol. Chem. 10, 8654–8659. Web of Science CrossRef CAS PubMed Google Scholar
Liang, Y., Shi, L.-Q. & Yang, Z.-W. (2016). Acta Cryst. E72, 60–62. Web of Science CSD CrossRef IUCr Journals Google Scholar
Matveeva, A. G., Baulina, T., Starikova, Z. A., Grigor'ev, M. S., Klemenkova, Z. S., Matveev, S. V., Leites, L. A., Aysin, R. R. & Nifant'ev, E. E. (2012). Inorg. Chim. Acta, 384, 266–274. Web of Science CSD CrossRef CAS Google Scholar
Matveeva, A. G., Starikova, Z. A., Aysin, R. R., Skazov, R. S., Matveev, S. V., Timofeeva, G. I., Passechnik, M. P. & Nifant'ev, E. E. (2013). Polyhedron, 61, 172–180. Web of Science CSD CrossRef CAS Google Scholar
Nakatani, K., Toda, M. & He, H. (2013). Bioorg. Med. Chem. Lett. 23, 558–561. Web of Science CrossRef CAS Google Scholar
Quan, L., Chen, Y., Lv, X. J. & Fu, W. F. (2012). Chem. Eur. J. 18, 14599–14604. Web of Science CSD CrossRef CAS PubMed Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tang, W. H., Liu, Y. H., Peng, S. M. & Liu, S. T. (2015). J. Organomet. Chem. 775, 94–100. Web of Science CSD CrossRef CAS Google Scholar
Wu, Y. Y., Chen, Y., Gou, G. Z., Mu, W. H., Lv, X. J., Du, M. L. & Fu, W.-F. (2012). Org. Lett. 14, 5226–5229. Web of Science CSD CrossRef CAS Google Scholar
Wu, Y. Y., Chen, Y., Mu, W. H., Lv, X. J. & Fu, W. F. (2013). J. Photochem. Photobiol. Chem. 272, 73–79. Web of Science CSD CrossRef CAS Google Scholar
Yamazaki, H., Hakamata, T., Komi, M. & Yagi, M. (2011). J. Am. Chem. Soc. 133, 8846–8849. Web of Science CSD CrossRef CAS Google Scholar
Yu, M. M., Yuan, R. L., Shi, C. X., Zhou, W., Wei, L.-H. & Li, Z. X. (2013). Dyes Pigments, 99, 887–894. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.