research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-(7-di­bromo­methyl-5-methyl-1,8-naphthyridin-2-yl)benzamide–pyrrolidine-2,5-dione (1/1)

CROSSMARK_Color_square_no_text.svg

aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, People's Republic of China
*Correspondence e-mail: chishaoming@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 18 October 2016; accepted 28 November 2016; online 1 January 2017)

The title compound, C17H13Br2N3O·C4H5NO2, is a co-crystal of N-(7-di­bromo­methyl-5-methyl-1,8-naphthyridin-2-yl)benzamide and pyrrolidine-2,5-dione (succinimide). The benzamide mol­ecule exhibits pseudo-mirror symmetry, with an r.m.s. deviation of the non-H atoms of 0.09 Å (except for the two Br atoms). The angle between the least-squares planes of the two mol­ecules is 26.2 (2)°. In the crystal, the two mol­ecules are mutually linked by N—H⋯O and N—H⋯N hydrogen bonds. The packing is consolidated by C—H⋯(O,N) hydrogen bonds and ππ stacking inter­actions.

1. Chemical context

1,8-Naphthyridine derivatives are important heterocyclic compounds that exhibit excellent biochemical and pharmacological properties. Moreover, these compounds benefit from conjugate π-electronic structures and are widely used as ligands in the synthesis of metal complexes (Tang et al., 2015[Tang, W. H., Liu, Y. H., Peng, S. M. & Liu, S. T. (2015). J. Organomet. Chem. 775, 94-100.]; Matveeva et al., 2012[Matveeva, A. G., Baulina, T., Starikova, Z. A., Grigor'ev, M. S., Klemenkova, Z. S., Matveev, S. V., Leites, L. A., Aysin, R. R. & Nifant'ev, E. E. (2012). Inorg. Chim. Acta, 384, 266-274.], 2013[Matveeva, A. G., Starikova, Z. A., Aysin, R. R., Skazov, R. S., Matveev, S. V., Timofeeva, G. I., Passechnik, M. P. & Nifant'ev, E. E. (2013). Polyhedron, 61, 172-180.]), functional materials (Kuo et al., 2011[Kuo, J. H., Tsao, T. B., Lee, G. H., Lee, H. W., Yeh, C. Y. & Peng, S. M. (2011). Eur. J. Inorg. Chem. pp. 2025-2028.]; Katz et al., 2007[Katz, J. L., Geller, B. J. & Foster, P. D. (2007). Chem. Commun. pp. 1026-1028.]; Hu & Chen, 2010[Hu, S. Z. & Chen, C. F. (2010). Chem. Commun. 46, 4199-4201.]) or as catalysts (Fuentes et al., 2011[Fuentes, J. A., Lebl, T., Slawin, A. M. Z. & Clarke, M. L. (2011). Chem. Sci. 2, 1997-2005.]; Yamazaki et al., 2011[Yamazaki, H., Hakamata, T., Komi, M. & Yagi, M. (2011). J. Am. Chem. Soc. 133, 8846-8849.]). In a number of studies, the fluorescent properties of naphthyridines have been investigated (Yu et al., 2013[Yu, M. M., Yuan, R. L., Shi, C. X., Zhou, W., Wei, L.-H. & Li, Z. X. (2013). Dyes Pigments, 99, 887-894.]; Li et al., 2012), in particular as selective fluorescent chemosensors for small biological mol­ecules through hydrogen bonding (Nakatani et al., 2013[Nakatani, K., Toda, M. & He, H. (2013). Bioorg. Med. Chem. Lett. 23, 558-561.]; Liang et al., 2012[Liang, F., Lindsay, S. & Zhang, P. (2012). Org. Biomol. Chem. 10, 8654-8659.]). 1,8-Naphthyridin–BF2 complexes are known to be fluorescent dyes with high chemical stability (Li et al., 2014[Li, Z. S., Lv, X. J., Chen, Y. & Fu, W. F. (2014). Dyes Pigments, 105, 157-162.]), high fluorescence quantum yields (Quan et al., 2012[Quan, L., Chen, Y., Lv, X. J. & Fu, W. F. (2012). Chem. Eur. J. 18, 14599-14604.]), high extinction coefficients (Wu et al., 2013[Wu, Y. Y., Chen, Y., Mu, W. H., Lv, X. J. & Fu, W. F. (2013). J. Photochem. Photobiol. Chem. 272, 73-79.]) and sharp fluorescence peaks (Du et al., 2014[Du, M. L., Hu, C. Y., Wang, L. F., Li, C., Han, Y. Y., Gan, X., Chen, Y., Mu, W. H., Huang, M. L. & Fu, W. F. (2014). Dalton Trans. 43, 13924-13931.]). Some anti­viral medications are also based on 1,8-naphthyridines (Elansary et al., 2014[Elansary, A. K., Moneer, A. A., Kadry, H. H. & Gedawy, E. M. (2014). J. Chem. Res. (S), 38, 147-153.]). In this context we aimed to synthesize the title 1,8-naphthyridine derivative and report here on the crystal structure of the obtained co-crystal with pyrrolidine-2,5-dione (succinimide).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title 1,8-naphthyridine deriv­ative is shown in Fig. 1[link]. The N-(7-(di­bromo­meth­yl)-5-methyl-1,8-naphthyridin-2-yl)benzamide moiety (except the two Br atoms) is essentially planar (r.m.s deviation = 0.09 Å), with the maximum deviation from the mean plane being 0.315 (5) Å for atom O1. The naphthyridine ring system makes a dihedral angle of 2.2 (2)° with the benzene ring and is oriented at an angle of 26.2 (2)° relative to the succinimide. The conformation of the C=O and the N—H bonds of the amide segment are anti to one another, similar to that reported for benzamide moiety in N-{4-[(6-chloro­pyridin-3-yl)-meth­oxy]phen­yl}-2,6-di­fluoro­benzamide (Liang et al., 2016[Liang, Y., Shi, L.-Q. & Yang, Z.-W. (2016). Acta Cryst. E72, 60-62.]).

[Figure 1]
Figure 1
The mol­ecular components in the title co-crystal, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The two mol­ecules are mutually linked into pairs by N—H⋯O and N—H⋯N hydrogen bonds with the (imide)N—H⋯N bond bifurcated (Table 1[link], Fig. 2[link]). In the 1,8-naphthyridine derivative, an intra­molecular C—H⋯O hydrogen bond between a phenyl H atom and the carbonyl function is also present. Apart from the classical hydrogen-bonding inter­actions, the two mol­ecules are additionally linked by weaker C—H⋯O and C—H⋯N hydrogen bonds. These pairs are linked by weak C—Br⋯O inter­actions [3.094 (5) Å]. The supra­molecular aggregation is completed by ππ stacking inter­actions between two neighbouring succinimide mol­ecules with a centroid-to-centroid distance of CgCgi = 3.854 (4) Å [inter­planar distance = 3.172 (3) Å; symmetry code: −x + 1, −y + 1, −z + 1], forming a three-dimensional supra­molecular network (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 2.22 3.060 (7) 164
N4—H4A⋯N2 0.86 2.48 3.195 (7) 141
N4—H4A⋯N3 0.86 2.27 3.098 (7) 162
C1—H1B⋯O2 0.93 2.43 3.299 (8) 156
C9—H9A⋯O1 0.93 2.30 2.870 (8) 119
C17—H17A⋯O3 0.98 2.60 3.504 (8) 154
C19—H19B⋯N3i 0.97 2.58 3.538 (8) 170
Symmetry code: (i) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
The different types of hydrogen bonds between the two mol­ecules and pairs of mol­ecules; intra­molecular hydrogen bonds are shown as blue dashed lines and inter­molecular hydrogen bonds are shown as turquoise dashed lines.
[Figure 3]
Figure 3
A view along the c axis, showing the crystal packing of the title compound.

4. Database survey

In the Cambridge Structural Database (Version 5.37; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), the structural data for a very similar 1,8-naphthyridine deriv­ative have been deposited (CSD refcode LESBOC; Gou et al., 2013[Gou, G.-Z., Kou, J.-F., Zhou, Q.-D. & Chi, S.-M. (2013). Acta Cryst. E69, o153-o154.]). Instead of a benzamide, the latter is an acetamide where the dihedral angle between the naphthyridine moiety and the succinimide co-mol­ecule is 14.1°.

5. Synthesis and crystallization

N-(5,7-dimethyl-1,8-naphthyridin-2-yl)benzamide (Wu et al., 2012[Wu, Y. Y., Chen, Y., Gou, G. Z., Mu, W. H., Lv, X. J., Du, M. L. & Fu, W.-F. (2012). Org. Lett. 14, 5226-5229.]) (0.277 g,1 mmol) and N-bromo­succinimide (0.356 g, 2 mmol) were added to an dry aceto­nitrile (30 ml) solution under nitro­gen atmosphere. The mixture was refluxed at room temperature in the presence of light with a 250 W infrared lamp for 4 h. Excess solvent was removed and the crude product was purified by column chromatography using di­chloro­methane/methanol (120:1) as the mobile phase to give a light-yellow powder (yield: 0.1 g; 19%). Crystals suitable for X-ray analysis were obtained by slow diffusion of a di­chloro­methane solution at ambient temperature. Several cycles of purification by chromatography were used to reduce the amount of succinimide.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were constrained to an ideal geometry with C—H distances in the range 0.93–0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for all other H atoms, and with N—H = 0.86 Å, Uiso(H) = 1.2Ueq(N).

Table 2
Experimental details

Crystal data
Chemical formula C17H13Br2N3O·C4H5NO2
Mr 534.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.6931 (19), 15.699 (3), 14.614 (3)
β (°) 108.99 (3)
V3) 2103.0 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.89
Crystal size (mm) 0.30 × 0.28 × 0.26
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR ; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.389, 0.432
No. of measured, independent and observed [I > 2σ(I)] reflections 16558, 4129, 2010
Rint 0.125
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.148, 0.98
No. of reflections 4129
No. of parameters 271
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.35, −0.43
Computer programs: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]), CrystalStructure (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

N-(7-Dibromomethyl-5-methyl-1,8-naphthyridin-2-yl)benzamide–pyrrolidine-2,5-dione (1/1) top
Crystal data top
C17H13Br2N3O·C4H5NO2F(000) = 1064
Mr = 534.21Dx = 1.687 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6931 (19) ÅCell parameters from 4129 reflections
b = 15.699 (3) Åθ = 3.1–26.0°
c = 14.614 (3) ŵ = 3.89 mm1
β = 108.99 (3)°T = 293 K
V = 2103.0 (7) Å3Block, white
Z = 40.30 × 0.28 × 0.26 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4129 independent reflections
Radiation source: fine-focus sealed tube2010 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR ; Higashi, 1995)
h = 1111
Tmin = 0.389, Tmax = 0.432k = 1919
16558 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0633P)2]
where P = (Fo2 + 2Fc2)/3
4129 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = 0.43 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.58390 (8)0.09771 (5)0.60551 (6)0.0662 (3)
Br20.59853 (8)0.16358 (6)0.40343 (6)0.0707 (3)
O20.2878 (5)0.5578 (3)0.5158 (3)0.0569 (13)
N20.1482 (5)0.3823 (3)0.4170 (4)0.0384 (13)
N30.3233 (5)0.2797 (3)0.4629 (4)0.0412 (13)
C100.0753 (6)0.2634 (4)0.3453 (5)0.0472 (17)
H10A0.15060.22440.32110.057*
C160.1779 (6)0.2982 (4)0.4218 (4)0.0372 (15)
O30.6209 (5)0.3572 (3)0.6728 (4)0.0670 (14)
C110.0696 (6)0.2340 (4)0.3875 (4)0.0386 (15)
O10.2418 (5)0.5110 (3)0.2818 (4)0.0572 (13)
C80.0100 (6)0.4067 (4)0.3782 (5)0.0408 (15)
N10.0060 (5)0.4946 (3)0.3799 (4)0.0431 (14)
H1A0.06910.52240.41480.052*
C180.3969 (7)0.5289 (4)0.5745 (5)0.0466 (17)
C60.1117 (7)0.6382 (4)0.3444 (4)0.0403 (16)
N40.4396 (5)0.4441 (3)0.5798 (4)0.0440 (13)
H4A0.39080.40570.54060.053*
C50.2391 (7)0.6855 (4)0.3129 (5)0.0472 (17)
H5A0.32860.65840.28720.057*
C120.1146 (6)0.1482 (4)0.3980 (5)0.0438 (17)
C30.1020 (9)0.8141 (5)0.3572 (6)0.065 (2)
H3B0.10000.87330.36140.078*
C70.1274 (7)0.5432 (4)0.3325 (5)0.0443 (17)
C210.5664 (7)0.4271 (5)0.6533 (5)0.0477 (17)
C150.3601 (6)0.1989 (4)0.4687 (4)0.0397 (15)
C10.0213 (7)0.6805 (4)0.3830 (5)0.0543 (19)
H1B0.10750.64940.40530.065*
C40.2326 (8)0.7719 (5)0.3199 (5)0.063 (2)
H4B0.31870.80310.29890.075*
C190.5070 (6)0.5760 (4)0.6530 (5)0.0468 (17)
H19A0.46250.60110.69710.056*
H19B0.55130.62090.62640.056*
C140.2609 (7)0.1317 (4)0.4380 (5)0.0463 (17)
H14A0.29430.07580.44470.056*
C20.0253 (8)0.7682 (5)0.3881 (6)0.071 (2)
H2B0.11430.79630.41250.085*
C170.5246 (6)0.1862 (4)0.5102 (5)0.0476 (18)
H17A0.56800.23980.54080.057*
C90.1054 (7)0.3486 (4)0.3399 (5)0.0470 (17)
H9A0.20050.36800.31160.056*
C200.6209 (7)0.5095 (4)0.7050 (5)0.0555 (19)
H20A0.71590.52400.70060.067*
H20B0.62860.50560.77270.067*
C130.0061 (7)0.0758 (5)0.3690 (6)0.070 (2)
H13A0.05730.02240.38110.105*
H13B0.04870.08030.30140.105*
H13C0.05920.07860.40620.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0729 (5)0.0613 (5)0.0558 (5)0.0189 (4)0.0090 (4)0.0111 (4)
Br20.0474 (4)0.1006 (7)0.0659 (6)0.0050 (4)0.0208 (4)0.0021 (5)
O20.051 (3)0.054 (3)0.055 (3)0.000 (2)0.002 (3)0.002 (2)
N20.037 (3)0.030 (3)0.046 (3)0.000 (2)0.010 (3)0.001 (2)
N30.035 (3)0.036 (3)0.048 (4)0.000 (3)0.008 (3)0.001 (3)
C100.039 (4)0.046 (4)0.053 (5)0.010 (3)0.009 (3)0.004 (3)
C160.035 (3)0.038 (4)0.040 (4)0.001 (3)0.014 (3)0.002 (3)
O30.068 (3)0.054 (3)0.069 (4)0.009 (3)0.009 (3)0.006 (3)
C110.037 (3)0.034 (4)0.041 (4)0.001 (3)0.008 (3)0.005 (3)
O10.042 (3)0.053 (3)0.063 (3)0.009 (2)0.001 (3)0.003 (3)
C80.039 (4)0.039 (4)0.043 (4)0.006 (3)0.011 (3)0.004 (3)
N10.032 (3)0.038 (3)0.052 (4)0.003 (2)0.004 (3)0.000 (3)
C180.041 (4)0.050 (5)0.051 (5)0.004 (4)0.017 (4)0.003 (4)
C60.044 (4)0.041 (4)0.037 (4)0.009 (3)0.014 (3)0.002 (3)
N40.047 (3)0.038 (3)0.045 (4)0.008 (3)0.013 (3)0.006 (3)
C50.041 (4)0.041 (4)0.057 (5)0.005 (3)0.012 (3)0.017 (3)
C120.044 (4)0.042 (4)0.050 (4)0.006 (3)0.022 (3)0.007 (3)
C30.077 (5)0.042 (5)0.064 (5)0.006 (4)0.007 (4)0.004 (4)
C70.037 (4)0.049 (4)0.044 (5)0.005 (3)0.008 (3)0.008 (3)
C210.047 (4)0.052 (5)0.042 (4)0.003 (4)0.012 (4)0.002 (4)
C150.042 (3)0.041 (4)0.035 (4)0.004 (3)0.009 (3)0.001 (3)
C10.046 (4)0.044 (4)0.063 (5)0.006 (4)0.004 (4)0.007 (4)
C40.054 (5)0.066 (6)0.062 (6)0.027 (4)0.011 (4)0.018 (4)
C190.042 (4)0.046 (4)0.051 (5)0.004 (3)0.015 (3)0.005 (3)
C140.050 (4)0.029 (4)0.063 (5)0.002 (3)0.023 (4)0.006 (3)
C20.062 (5)0.050 (5)0.078 (6)0.001 (4)0.006 (4)0.000 (4)
C170.043 (3)0.036 (4)0.052 (5)0.006 (3)0.001 (3)0.000 (3)
C90.037 (3)0.046 (5)0.056 (5)0.002 (3)0.012 (3)0.001 (4)
C200.046 (4)0.062 (5)0.051 (5)0.005 (4)0.006 (4)0.007 (4)
C130.056 (5)0.059 (5)0.093 (7)0.009 (4)0.023 (5)0.013 (4)
Geometric parameters (Å, º) top
Br1—C171.918 (6)C5—C41.359 (9)
Br2—C171.950 (7)C5—H5A0.9300
O2—C181.213 (7)C12—C141.372 (8)
N2—C81.330 (7)C12—C131.513 (9)
N2—C161.348 (7)C3—C21.373 (10)
N3—C151.312 (7)C3—C41.375 (10)
N3—C161.372 (7)C3—H3B0.9300
C10—C91.366 (8)C21—C201.505 (9)
C10—C111.415 (8)C15—C141.399 (8)
C10—H10A0.9300C15—C171.524 (8)
C16—C111.424 (8)C1—C21.379 (9)
O3—C211.211 (7)C1—H1B0.9300
C11—C121.408 (8)C4—H4B0.9300
O1—C71.225 (7)C19—C201.529 (8)
C8—N11.390 (7)C19—H19A0.9700
C8—C91.410 (8)C19—H19B0.9700
N1—C71.383 (7)C14—H14A0.9300
N1—H1A0.8600C2—H2B0.9300
C18—N41.389 (8)C17—H17A0.9800
C18—C191.485 (9)C9—H9A0.9300
C6—C51.385 (8)C20—H20A0.9700
C6—C11.396 (9)C20—H20B0.9700
C6—C71.505 (8)C13—H13A0.9600
N4—C211.370 (8)C13—H13B0.9600
N4—H4A0.8600C13—H13C0.9600
C8—N2—C16118.2 (5)N3—C15—C17112.3 (5)
C15—N3—C16116.9 (5)C14—C15—C17123.4 (6)
C9—C10—C11120.5 (6)C2—C1—C6120.1 (6)
C9—C10—H10A119.8C2—C1—H1B119.9
C11—C10—H10A119.8C6—C1—H1B119.9
N2—C16—N3113.7 (5)C5—C4—C3121.7 (7)
N2—C16—C11123.7 (5)C5—C4—H4B119.2
N3—C16—C11122.6 (5)C3—C4—H4B119.2
C12—C11—C10125.9 (6)C18—C19—C20105.4 (5)
C12—C11—C16118.2 (5)C18—C19—H19A110.7
C10—C11—C16115.9 (5)C20—C19—H19A110.7
N2—C8—N1112.4 (5)C18—C19—H19B110.7
N2—C8—C9122.8 (6)C20—C19—H19B110.7
N1—C8—C9124.8 (5)H19A—C19—H19B108.8
C7—N1—C8128.3 (5)C12—C14—C15120.1 (6)
C7—N1—H1A115.8C12—C14—H14A119.9
C8—N1—H1A115.8C15—C14—H14A119.9
O2—C18—N4125.0 (6)C3—C2—C1120.1 (7)
O2—C18—C19127.0 (6)C3—C2—H2B120.0
N4—C18—C19107.9 (6)C1—C2—H2B120.0
C5—C6—C1119.1 (6)C15—C17—Br1114.3 (5)
C5—C6—C7116.6 (6)C15—C17—Br2108.3 (4)
C1—C6—C7124.3 (6)Br1—C17—Br2110.3 (3)
C21—N4—C18113.9 (6)C15—C17—H17A107.9
C21—N4—H4A123.0Br1—C17—H17A107.9
C18—N4—H4A123.0Br2—C17—H17A107.9
C4—C5—C6119.7 (6)C10—C9—C8118.9 (6)
C4—C5—H5A120.1C10—C9—H9A120.5
C6—C5—H5A120.1C8—C9—H9A120.5
C14—C12—C11117.9 (6)C21—C20—C19105.0 (5)
C14—C12—C13120.4 (6)C21—C20—H20A110.8
C11—C12—C13121.7 (6)C19—C20—H20A110.8
C2—C3—C4119.3 (7)C21—C20—H20B110.8
C2—C3—H3B120.3C19—C20—H20B110.8
C4—C3—H3B120.3H20A—C20—H20B108.8
O1—C7—N1122.0 (6)C12—C13—H13A109.5
O1—C7—C6121.1 (6)C12—C13—H13B109.5
N1—C7—C6116.8 (6)H13A—C13—H13B109.5
O3—C21—N4124.9 (6)C12—C13—H13C109.5
O3—C21—C20127.3 (7)H13A—C13—H13C109.5
N4—C21—C20107.8 (6)H13B—C13—H13C109.5
N3—C15—C14124.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.862.223.060 (7)164
N4—H4A···N20.862.483.195 (7)141
N4—H4A···N30.862.273.098 (7)162
C1—H1B···O20.932.433.299 (8)156
C9—H9A···O10.932.302.870 (8)119
C17—H17A···O30.982.603.504 (8)154
C19—H19B···N3i0.972.583.538 (8)170
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Support from the `Spring Sunshine' Plan of the Ministry of Education of China (grant No. Z2011125) and the National Natural Science Foundation of China (grant No. 21262049) is acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDu, M. L., Hu, C. Y., Wang, L. F., Li, C., Han, Y. Y., Gan, X., Chen, Y., Mu, W. H., Huang, M. L. & Fu, W. F. (2014). Dalton Trans. 43, 13924–13931.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationElansary, A. K., Moneer, A. A., Kadry, H. H. & Gedawy, E. M. (2014). J. Chem. Res. (S), 38, 147–153.  Web of Science CrossRef CAS Google Scholar
First citationFuentes, J. A., Lebl, T., Slawin, A. M. Z. & Clarke, M. L. (2011). Chem. Sci. 2, 1997–2005.  Web of Science CSD CrossRef CAS Google Scholar
First citationGou, G.-Z., Kou, J.-F., Zhou, Q.-D. & Chi, S.-M. (2013). Acta Cryst. E69, o153–o154.  CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHu, S. Z. & Chen, C. F. (2010). Chem. Commun. 46, 4199–4201.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatz, J. L., Geller, B. J. & Foster, P. D. (2007). Chem. Commun. pp. 1026–1028.  Web of Science CSD CrossRef Google Scholar
First citationKuo, J. H., Tsao, T. B., Lee, G. H., Lee, H. W., Yeh, C. Y. & Peng, S. M. (2011). Eur. J. Inorg. Chem. pp. 2025–2028.  Web of Science CSD CrossRef Google Scholar
First citationLi, Z. S., Lv, X. J., Chen, Y. & Fu, W. F. (2014). Dyes Pigments, 105, 157–162.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiang, F., Lindsay, S. & Zhang, P. (2012). Org. Biomol. Chem. 10, 8654–8659.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiang, Y., Shi, L.-Q. & Yang, Z.-W. (2016). Acta Cryst. E72, 60–62.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatveeva, A. G., Baulina, T., Starikova, Z. A., Grigor'ev, M. S., Klemenkova, Z. S., Matveev, S. V., Leites, L. A., Aysin, R. R. & Nifant'ev, E. E. (2012). Inorg. Chim. Acta, 384, 266–274.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatveeva, A. G., Starikova, Z. A., Aysin, R. R., Skazov, R. S., Matveev, S. V., Timofeeva, G. I., Passechnik, M. P. & Nifant'ev, E. E. (2013). Polyhedron, 61, 172–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakatani, K., Toda, M. & He, H. (2013). Bioorg. Med. Chem. Lett. 23, 558–561.  Web of Science CrossRef CAS Google Scholar
First citationQuan, L., Chen, Y., Lv, X. J. & Fu, W. F. (2012). Chem. Eur. J. 18, 14599–14604.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, W. H., Liu, Y. H., Peng, S. M. & Liu, S. T. (2015). J. Organomet. Chem. 775, 94–100.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, Y. Y., Chen, Y., Gou, G. Z., Mu, W. H., Lv, X. J., Du, M. L. & Fu, W.-F. (2012). Org. Lett. 14, 5226–5229.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, Y. Y., Chen, Y., Mu, W. H., Lv, X. J. & Fu, W. F. (2013). J. Photochem. Photobiol. Chem. 272, 73–79.  Web of Science CSD CrossRef CAS Google Scholar
First citationYamazaki, H., Hakamata, T., Komi, M. & Yagi, M. (2011). J. Am. Chem. Soc. 133, 8846–8849.  Web of Science CSD CrossRef CAS Google Scholar
First citationYu, M. M., Yuan, R. L., Shi, C. X., Zhou, W., Wei, L.-H. & Li, Z. X. (2013). Dyes Pigments, 99, 887–894.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds