research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of chlorido­[1-(4-nitro­phen­yl)thio­urea-κS]bis­­(tri­phenyl­phosphane-κP)copper(I)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Boston University, Boston, Massachusetts 02215, USA, and bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: yupa.t@psu.ac.th

Edited by M. Weil, Vienna University of Technology, Austria (Received 23 November 2016; accepted 3 December 2016; online 1 January 2017)

The mononuclear mixed-ligand title complex, [CuCl(C7H7N3O2S)(C18H15P)2], displays a distorted tetra­hedral coordination sphere around the CuI atom, with two P atoms from two tri­phenyl­phosphane mol­ecules, one terminal S atom from a 1-(4-nitro­phen­yl)thio­urea mol­ecule and a chloride ion as ligands. An intra­molecular N—H⋯Cl hydrogen bond stabilizes the mol­ecular conformation [graph-set motif R22(6)]. In the crystal, further N—H⋯Cl hydrogen bonds connect individual mol­ecules into zigzag chains parallel to [001]. The chains are linked by weak C—H⋯O hydrogen-bonding inter­actions into a three-dimensional network.

1. Chemical context

Thio­urea and thio­urea derivatives constitute an inter­esting class of ligands, bearing a soft sulfur and a hard nitro­gen donor atom in the sense of the HSAB (hard and soft acids and bases) concept. Such ligands are of relevance in biological systems because they exhibit a moderate inhibitory potency on the diphenolase activity of tyrosinase (Liu et al., 2016[Liu, P., Shu, C., Liu, L., Huang, Q. & Peng, Y. (2016). Bioorg. Med. Chem. 24, 866-1871.]), anti­microbial and cytotoxic activity (Bielenica et al., 2015[Bielenica, A., Stefańska, J., Stępień, K., Napiórkowska, A., Augustynowicz-Kopeć, E., Sanna, G., Madeddu, S., Boi, S., Giliberti, G., Wrzosek, M. & Struga, M. (2015). Eur. J. Med. Chem. 101, 111-125.]) and are developed for anti-hepatitis C virus (HCV) activity (Khatri et al., 2015[Khatri, N., Lather, V. & Madan, A. K. (2015). Chemom. Intell. Lab. Syst. 140, 13-21.]). Copper(I) complexes with thio­urea derivatives have received significant attention for several decades due to their anti­bacterial activity (Chetana et al., 2016[Chetana, P. R., Srinatha, B. S., Somashekar, M. N. & Policegoudra, M. N. (2016). J. Mol. Struct. 1106, 352-365.]), cytotoxic activity (Rauf et al., 2009[Rauf, M. K., Imtiaz-ud-Din, Badshah, A., Gielen, M., Ebihara, M., de Vos, D. & Ahmed, S. (2009). J. Inorg. Biochem. 103, 1135-1144.]), catalytic and oxidation properties (Gunasekaran et al., 2017[Gunasekaran, N., Bhuvanesh, N. S. P. & KarvembuIn, R. (2017). Polyhedron, In the press.]). In this context, we report here on synthesis and crystal structure of the title compound, [CuCl(C7H7N3O2S)(C18H15P)2], (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] comprises of one CuI atom, one chloride ligand, two tri­phenyl­phosphane (PPh3) ligands, and one 1-(4-nitro­phen­yl)thio­urea (NPTU) ligand. The distorted tetra­hedral coordination of the CuI atom results from binding to the chloride ligand, the P atoms of the two PPh3 ligands and the terminal S atom of the 1-(4-nitro­phen­yl)thio­urea ligand (Fig. 1[link]). The distortion is evident from the angular range around the CuI atom [99.870 (15)–129.119 (16)°] and the disparate bond lengths (Table 1[link]). The Cu—S distance in (I)[link] is somewhat smaller than the values of 2.4148 (16) and 2.3942 (15) Å reported in mol­ecules A and B, respectively, of [CuI(PPh3)2(ptu)] (ptu is phenyl thio­urea) (Nimthong et al., 2008[Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.]). The formation of an intra­molecular N—H⋯Cl hydrogen bond involving the primary amine functionality (N2—H2B; Table 2[link]) creates a six-membered ring system with graph set motif R22(6).

Table 1
Selected geometric parameters (Å, °)

Cu1—P2 2.2602 (4) Cu1—S1 2.3782 (4)
Cu1—P1 2.2671 (4) Cu1—Cl1 2.4023 (4)
       
P2—Cu1—P1 129.119 (16) P2—Cu1—Cl1 99.870 (15)
P2—Cu1—S1 101.267 (15) P1—Cu1—Cl1 109.823 (16)
P1—Cu1—S1 110.861 (15) S1—Cu1—Cl1 102.637 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1i 0.88 (2) 2.35 (2) 3.1974 (14) 160 (2)
N2—H2B⋯Cl1 0.88 (1) 2.42 (2) 3.2504 (15) 158 (2)
N3—H3A⋯Cl1i 0.87 (1) 2.49 (2) 3.3199 (14) 158 (2)
C9—H9⋯O1ii 0.95 2.57 3.303 (2) 135
C30—H30⋯O2iii 0.95 2.70 3.386 (2) 130
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y, -z+1; (iii) x+1, y, z.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity.

3. Supra­molecular features

In the crystal, neighbouring mol­ecules are linked by further N—H⋯Cl hydrogen bonds between the NPTU NH2 (N2—H2A) and NHPh (N1—H3A) moieties and the chloride ligands into zigzag chains extending parallel to [001] (Fig. 2[link], Table 2[link]). The chains are connected via weak C9—H9⋯O1 and C30—H30⋯O2 hydrogen bonds (Fig. 3[link], Table 2[link]), leading to the formation of a three-dimensional network (Fig. 3[link]).

[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing inter­molecular N—H⋯Cl hydrogen bonds as dashed lines, forming a zigzag chain parallel to [001].
[Figure 3]
Figure 3
Part of the crystal structure of (I)[link], showing the three-dimensional network formed by inter­molecular C—H⋯O hydrogen bonds (shown as dashed lines).

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no complexes with the 1-(4-nitro­phen­yl)thio­urea ligand, and only the crystal structure of the ligand itself has been reported (LONSEN; Xian et al., 2008[Xian, L., Wang, Y. & Zhang, B. (2008). Z. Kristallogr. New Cryst. Struct. 223, 411-412.]). A search for phenyl­thio­urea ligands with substitutions on the phenyl ring yielded 34 hits. Of these, four hits were CuI complexes, namely IYUXOP01 (Li et al., 2006[Li, D., Sun, Y., Liu, S. & Hua, Z. (2006). J. Coord. Chem. 59, 403-408.]), TULXIJ, TULXUV (Grifasi et al., 2015[Grifasi, F., Chierotti, M. R., Garino, C., Gobetto, R., Priola, E., Diana, E. & Turci, F. (2015). Cryst. Growth Des. 15, 2929-2939.]) and TULXUV (Nimthong et al., 2008[Nimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.]).

5. Synthesis and crystallization

Tri­phenyl­phosphane (0.26 g, 0.99 mmol) was dissolved in 30 ml of aceto­nitrile at 338 K and then copper(I) chloride (0.1 g, 1.01 mmol) was added. The mixture was stirred for 3 h and then 1-(4-nitro­phen­yl)thio­urea, (0.2 g, 1.01 mmol) was added. The resulting reaction mixture was heated under reflux for 3 h during which the precipitate gradually disappeared. The resulting clear solution was filtered and left to evaporate at room temperature. The crystalline complex, which deposited upon standing for a couple of days, was filtered off and dried in vacuo (0.38 g, 45% yield). M.p. 483–485 K. IR bands (KBr, cm−1): 3066 (m), 3049 (m), 3017 (m), 2345 (w), 1961 (w), 1890 (w), 1814 (w), 1582 (w), 1474 (s), 1433 (s), 1307 (w), 1268 (w), 1176 (m), 1153 (m), 1088 (s), 1065 (m), 1024 (s), 994 (m), 916 (w), 852 (m), 741 (s), 692 (s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to carbon atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 Å. Nitro­gen-bound H atoms were located in difference density maps and were refined with an N—H distance restraint of 0.88 (2) Å. Uiso(H) values were set to 1.2Ueq(C/N).

Table 3
Experimental details

Crystal data
Chemical formula [CuCl(C7H7N3O2S)(C18H15P)2]
Mr 820.74
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 11.6986 (1), 28.7847 (4), 11.8471 (1)
β (°) 106.3394 (9)
V3) 3828.28 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.45 × 0.32 × 0.20
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.746, 0.853
No. of measured, independent and observed [I > 2σ(I)] reflections 37561, 10435, 8243
Rint 0.034
(sin θ/λ)max−1) 0.720
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.10
No. of reflections 10435
No. of parameters 488
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.53, −0.70
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius, Delft, The Netherlands.]), HKL-3000 (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL-3000 (Otwinowski & Minor, 1997); data reduction: HKL-3000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Chlorido[1-(4-nitrophenyl)thiourea-κS]bis(triphenylphosphane-κP)copper(I) top
Crystal data top
[CuCl(C7H7N3O2S)(C18H15P)2]F(000) = 1696
Mr = 820.74Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.6986 (1) ÅCell parameters from 37561 reflections
b = 28.7847 (4) Åθ = 1.9–30.8°
c = 11.8471 (1) ŵ = 0.82 mm1
β = 106.3394 (9)°T = 100 K
V = 3828.28 (7) Å3Plate, yellow
Z = 40.45 × 0.32 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
10435 independent reflections
Radiation source: fine focus X-ray tube8243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω and φ scansθmax = 30.8°, θmin = 1.9°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1516
Tmin = 0.746, Tmax = 0.853k = 3138
37561 measured reflectionsl = 1512
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.4104P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
10435 reflectionsΔρmax = 0.53 e Å3
488 parametersΔρmin = 0.70 e Å3
3 restraintsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0016 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.28282 (2)0.15638 (2)0.54942 (2)0.01735 (6)
O10.17866 (13)0.01265 (5)0.98751 (12)0.0385 (3)
N10.18661 (13)0.05452 (6)1.00307 (13)0.0286 (3)
S10.14096 (4)0.14121 (2)0.65448 (3)0.01970 (9)
Cl10.27367 (4)0.23943 (2)0.52868 (3)0.02252 (9)
P10.46802 (4)0.13469 (2)0.65603 (3)0.01731 (9)
C10.58276 (14)0.13035 (6)0.57889 (14)0.0193 (3)
P20.17975 (4)0.13535 (2)0.36507 (3)0.01688 (9)
N20.26531 (13)0.20750 (5)0.78940 (12)0.0226 (3)
H2A0.2850 (17)0.2247 (6)0.8536 (14)0.027*
H2B0.2894 (17)0.2142 (7)0.7271 (15)0.027*
O20.25332 (12)0.07159 (5)1.05564 (12)0.0357 (3)
C20.70247 (15)0.14023 (6)0.63207 (15)0.0242 (3)
H20.72690.15150.71060.029*
C30.78635 (16)0.13360 (6)0.57006 (17)0.0284 (4)
H30.86780.14060.60620.034*
N30.12426 (13)0.17546 (5)0.86177 (12)0.0205 (3)
H3A0.1444 (17)0.1990 (6)0.9099 (15)0.025*
C40.63253 (17)0.10666 (7)0.40297 (16)0.0305 (4)
H40.60860.09490.32490.037*
C60.75117 (17)0.11684 (6)0.45616 (16)0.0298 (4)
H60.80860.11230.41420.036*
C70.25157 (14)0.13084 (5)0.24718 (13)0.0185 (3)
C80.22295 (15)0.09615 (6)0.16151 (14)0.0220 (3)
H80.16260.07410.16200.026*
C90.28264 (15)0.09374 (6)0.07539 (15)0.0256 (4)
H90.26390.06970.01810.031*
C100.36928 (15)0.12618 (6)0.07284 (14)0.0244 (3)
H100.40960.12450.01370.029*
C110.39707 (15)0.16098 (6)0.15629 (15)0.0244 (4)
H110.45550.18350.15360.029*
C120.33950 (15)0.16309 (6)0.24439 (14)0.0216 (3)
H120.36030.18660.30280.026*
C130.05888 (14)0.17673 (5)0.30754 (13)0.0190 (3)
C140.02848 (15)0.18109 (6)0.36695 (14)0.0252 (4)
H140.02660.16120.43150.030*
C150.11740 (16)0.21401 (7)0.33257 (16)0.0301 (4)
H150.17750.21610.37210.036*
C160.11927 (16)0.24407 (6)0.24056 (15)0.0292 (4)
H160.18030.26680.21730.035*
C170.03195 (16)0.24083 (6)0.18273 (15)0.0272 (4)
H170.03240.26160.12030.033*
C180.05679 (15)0.20707 (6)0.21616 (14)0.0221 (3)
H180.11630.20490.17590.027*
C190.10921 (15)0.07869 (6)0.36250 (14)0.0219 (3)
C200.18067 (18)0.04382 (6)0.42833 (16)0.0298 (4)
H200.25980.05080.47300.036*
C210.1372 (2)0.00109 (7)0.42928 (18)0.0397 (5)
H210.18690.02480.47270.048*
C220.0206 (2)0.01094 (7)0.36626 (17)0.0409 (5)
H220.00990.04150.36770.049*
C230.05114 (19)0.02317 (7)0.30175 (16)0.0366 (5)
H230.13090.01610.25910.044*
C240.00719 (16)0.06825 (7)0.29855 (15)0.0273 (4)
H240.05660.09160.25290.033*
C250.53685 (14)0.17298 (6)0.78059 (13)0.0189 (3)
C260.54102 (14)0.22062 (6)0.75712 (15)0.0228 (3)
H260.51350.23160.67850.027*
C270.58508 (15)0.25178 (6)0.84823 (16)0.0272 (4)
H270.58840.28400.83170.033*
C280.62437 (15)0.23607 (7)0.96356 (16)0.0291 (4)
H280.65320.25751.02610.035*
C290.62144 (16)0.18898 (7)0.98716 (15)0.0283 (4)
H290.64890.17821.06600.034*
C300.57845 (15)0.15744 (6)0.89593 (14)0.0229 (3)
H300.57760.12520.91260.027*
C310.47481 (14)0.07718 (6)0.72334 (13)0.0202 (3)
C320.39244 (15)0.06663 (6)0.78530 (14)0.0236 (3)
H320.33460.08910.79060.028*
C330.39449 (16)0.02369 (6)0.83911 (14)0.0264 (4)
H330.33900.01710.88210.032*
C340.47685 (18)0.00944 (7)0.83038 (16)0.0333 (4)
H340.47790.03890.86690.040*
C350.5581 (2)0.00040 (7)0.76808 (19)0.0397 (5)
H350.61450.02240.76160.048*
C360.55731 (18)0.04345 (7)0.71507 (17)0.0316 (4)
H360.61350.04990.67280.038*
C380.17955 (14)0.17619 (6)0.77521 (13)0.0191 (3)
C400.04170 (14)0.14409 (6)0.88460 (13)0.0195 (3)
C410.03251 (15)0.16167 (6)0.94837 (14)0.0225 (3)
H410.03130.19390.96540.027*
C420.10781 (15)0.13253 (6)0.98702 (14)0.0244 (4)
H420.15690.14431.03210.029*
C430.11000 (15)0.08595 (6)0.95871 (14)0.0237 (3)
C440.03983 (16)0.06778 (6)0.89303 (15)0.0257 (4)
H440.04380.03570.87360.031*
C450.03635 (16)0.09711 (6)0.85594 (14)0.0245 (3)
H450.08510.08510.81080.029*
C50.54875 (15)0.11370 (6)0.46403 (15)0.0261 (4)
H50.46720.10710.42700.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01643 (11)0.01770 (11)0.01733 (10)0.00078 (7)0.00379 (7)0.00070 (7)
O10.0449 (9)0.0264 (8)0.0473 (8)0.0121 (6)0.0183 (7)0.0012 (6)
N10.0257 (8)0.0294 (9)0.0295 (8)0.0044 (6)0.0058 (6)0.0061 (6)
S10.0188 (2)0.0219 (2)0.01894 (18)0.00284 (15)0.00621 (14)0.00332 (14)
Cl10.0282 (2)0.01691 (19)0.02100 (18)0.00003 (15)0.00450 (15)0.00155 (14)
P10.0162 (2)0.0165 (2)0.01874 (19)0.00010 (15)0.00413 (15)0.00061 (14)
C10.0185 (8)0.0165 (8)0.0230 (8)0.0021 (6)0.0059 (6)0.0031 (6)
P20.0168 (2)0.0162 (2)0.01734 (19)0.00007 (15)0.00429 (14)0.00065 (14)
N20.0227 (7)0.0255 (8)0.0204 (7)0.0064 (6)0.0075 (6)0.0053 (6)
O20.0300 (7)0.0390 (8)0.0435 (8)0.0004 (6)0.0192 (6)0.0092 (6)
C20.0221 (9)0.0226 (9)0.0285 (8)0.0008 (7)0.0082 (7)0.0006 (7)
C30.0198 (9)0.0265 (10)0.0406 (10)0.0020 (7)0.0114 (7)0.0005 (7)
N30.0241 (7)0.0187 (7)0.0205 (6)0.0042 (6)0.0092 (5)0.0037 (5)
C40.0322 (10)0.0332 (10)0.0278 (9)0.0032 (8)0.0110 (7)0.0021 (7)
C60.0296 (10)0.0261 (9)0.0395 (10)0.0042 (8)0.0191 (8)0.0035 (8)
C70.0177 (8)0.0185 (8)0.0189 (7)0.0037 (6)0.0044 (6)0.0020 (6)
C80.0216 (8)0.0207 (8)0.0236 (8)0.0011 (6)0.0062 (6)0.0013 (6)
C90.0275 (9)0.0255 (9)0.0245 (8)0.0007 (7)0.0086 (7)0.0041 (7)
C100.0257 (9)0.0262 (9)0.0238 (8)0.0059 (7)0.0113 (7)0.0031 (6)
C110.0245 (9)0.0200 (9)0.0310 (9)0.0005 (7)0.0119 (7)0.0026 (6)
C120.0219 (8)0.0184 (8)0.0248 (8)0.0002 (6)0.0069 (6)0.0016 (6)
C130.0173 (8)0.0170 (8)0.0202 (7)0.0005 (6)0.0010 (6)0.0032 (6)
C140.0198 (8)0.0304 (10)0.0257 (8)0.0027 (7)0.0066 (6)0.0010 (7)
C150.0203 (9)0.0369 (11)0.0318 (9)0.0054 (8)0.0051 (7)0.0041 (8)
C160.0235 (9)0.0243 (9)0.0334 (9)0.0075 (7)0.0026 (7)0.0058 (7)
C170.0297 (10)0.0202 (9)0.0276 (8)0.0015 (7)0.0011 (7)0.0010 (7)
C180.0232 (9)0.0193 (8)0.0226 (8)0.0003 (6)0.0045 (6)0.0008 (6)
C190.0281 (9)0.0194 (8)0.0198 (7)0.0040 (7)0.0093 (6)0.0022 (6)
C200.0374 (11)0.0218 (9)0.0308 (9)0.0020 (8)0.0109 (8)0.0008 (7)
C210.0648 (15)0.0209 (9)0.0367 (10)0.0006 (9)0.0198 (10)0.0030 (8)
C220.0719 (16)0.0245 (10)0.0339 (10)0.0199 (10)0.0271 (10)0.0073 (8)
C230.0464 (12)0.0380 (11)0.0286 (9)0.0224 (9)0.0159 (8)0.0115 (8)
C240.0295 (9)0.0308 (10)0.0231 (8)0.0096 (8)0.0099 (7)0.0050 (7)
C250.0141 (7)0.0198 (8)0.0218 (7)0.0000 (6)0.0035 (6)0.0002 (6)
C260.0177 (8)0.0210 (9)0.0286 (8)0.0005 (6)0.0047 (6)0.0003 (6)
C270.0177 (8)0.0219 (9)0.0395 (10)0.0013 (7)0.0039 (7)0.0043 (7)
C280.0202 (9)0.0338 (10)0.0327 (9)0.0024 (7)0.0061 (7)0.0119 (8)
C290.0237 (9)0.0380 (11)0.0227 (8)0.0008 (8)0.0054 (7)0.0041 (7)
C300.0181 (8)0.0256 (9)0.0248 (8)0.0005 (7)0.0058 (6)0.0001 (6)
C310.0199 (8)0.0171 (8)0.0216 (7)0.0008 (6)0.0024 (6)0.0002 (6)
C320.0221 (8)0.0217 (9)0.0274 (8)0.0007 (7)0.0077 (7)0.0034 (6)
C330.0302 (9)0.0241 (9)0.0243 (8)0.0057 (7)0.0066 (7)0.0022 (7)
C340.0477 (12)0.0200 (9)0.0321 (9)0.0004 (8)0.0112 (8)0.0052 (7)
C350.0518 (13)0.0247 (10)0.0483 (12)0.0136 (9)0.0232 (10)0.0101 (8)
C360.0371 (11)0.0241 (9)0.0385 (10)0.0062 (8)0.0188 (8)0.0055 (7)
C380.0186 (8)0.0187 (8)0.0199 (7)0.0017 (6)0.0053 (6)0.0015 (6)
C400.0203 (8)0.0198 (8)0.0180 (7)0.0016 (6)0.0046 (6)0.0018 (6)
C410.0247 (9)0.0197 (8)0.0240 (8)0.0015 (7)0.0085 (6)0.0006 (6)
C420.0235 (9)0.0267 (9)0.0250 (8)0.0026 (7)0.0099 (7)0.0027 (6)
C430.0226 (9)0.0243 (9)0.0237 (8)0.0029 (7)0.0058 (6)0.0039 (6)
C440.0305 (9)0.0202 (9)0.0266 (8)0.0048 (7)0.0083 (7)0.0017 (6)
C450.0303 (9)0.0214 (9)0.0236 (8)0.0009 (7)0.0104 (7)0.0030 (6)
C50.0212 (9)0.0312 (10)0.0255 (8)0.0024 (7)0.0059 (6)0.0008 (7)
Geometric parameters (Å, º) top
Cu1—P22.2602 (4)C16—H160.9500
Cu1—P12.2671 (4)C17—C181.395 (2)
Cu1—S12.3782 (4)C17—H170.9500
Cu1—Cl12.4023 (4)C18—H180.9500
O1—N11.227 (2)C19—C241.392 (2)
N1—O21.230 (2)C19—C201.396 (3)
N1—C431.471 (2)C20—C211.391 (3)
S1—C381.7031 (16)C20—H200.9500
P1—C11.8283 (16)C21—C221.387 (3)
P1—C311.8296 (16)C21—H210.9500
P1—C251.8362 (16)C22—C231.375 (3)
C1—C51.391 (2)C22—H220.9500
C1—C21.394 (2)C23—C241.400 (3)
P2—C191.8241 (17)C23—H230.9500
P2—C71.8258 (15)C24—H240.9500
P2—C131.8278 (16)C25—C301.389 (2)
N2—C381.324 (2)C25—C261.403 (2)
N2—H2A0.882 (15)C26—C271.387 (2)
N2—H2B0.882 (14)C26—H260.9500
C2—C31.394 (2)C27—C281.389 (3)
C2—H20.9500C27—H270.9500
C3—C61.382 (3)C28—C291.386 (3)
C3—H30.9500C28—H280.9500
N3—C381.3578 (19)C29—C301.393 (2)
N3—C401.403 (2)C29—H290.9500
N3—H3A0.874 (14)C30—H300.9500
C4—C61.385 (3)C31—C361.392 (2)
C4—C51.387 (2)C31—C321.399 (2)
C4—H40.9500C32—C331.388 (2)
C6—H60.9500C32—H320.9500
C7—C121.393 (2)C33—C341.380 (3)
C7—C81.396 (2)C33—H330.9500
C8—C91.391 (2)C34—C351.387 (3)
C8—H80.9500C34—H340.9500
C9—C101.385 (2)C35—C361.388 (3)
C9—H90.9500C35—H350.9500
C10—C111.381 (2)C36—H360.9500
C10—H100.9500C40—C451.391 (2)
C11—C121.394 (2)C40—C411.396 (2)
C11—H110.9500C41—C421.384 (2)
C12—H120.9500C41—H410.9500
C13—C181.386 (2)C42—C431.380 (2)
C13—C141.400 (2)C42—H420.9500
C14—C151.381 (3)C43—C441.383 (2)
C14—H140.9500C44—C451.386 (2)
C15—C161.387 (3)C44—H440.9500
C15—H150.9500C45—H450.9500
C16—C171.384 (3)C5—H50.9500
P2—Cu1—P1129.119 (16)C24—C19—C20119.30 (16)
P2—Cu1—S1101.267 (15)C24—C19—P2124.80 (14)
P1—Cu1—S1110.861 (15)C20—C19—P2115.88 (13)
P2—Cu1—Cl199.870 (15)C21—C20—C19120.67 (19)
P1—Cu1—Cl1109.823 (16)C21—C20—H20119.7
S1—Cu1—Cl1102.637 (15)C19—C20—H20119.7
O1—N1—O2123.66 (15)C22—C21—C20119.5 (2)
O1—N1—C43118.11 (15)C22—C21—H21120.3
O2—N1—C43118.21 (15)C20—C21—H21120.3
C38—S1—Cu1105.77 (6)C23—C22—C21120.47 (18)
C1—P1—C31102.01 (7)C23—C22—H22119.8
C1—P1—C25103.01 (7)C21—C22—H22119.8
C31—P1—C25103.74 (7)C22—C23—C24120.35 (19)
C1—P1—Cu1117.47 (5)C22—C23—H23119.8
C31—P1—Cu1114.17 (5)C24—C23—H23119.8
C25—P1—Cu1114.62 (5)C19—C24—C23119.72 (18)
C5—C1—C2119.14 (15)C19—C24—H24120.1
C5—C1—P1117.67 (12)C23—C24—H24120.1
C2—C1—P1123.07 (12)C30—C25—C26119.18 (15)
C19—P2—C7103.12 (7)C30—C25—P1123.38 (13)
C19—P2—C13106.11 (8)C26—C25—P1117.34 (12)
C7—P2—C13103.61 (7)C27—C26—C25120.28 (16)
C19—P2—Cu1111.81 (5)C27—C26—H26119.9
C7—P2—Cu1121.54 (5)C25—C26—H26119.9
C13—P2—Cu1109.40 (5)C26—C27—C28120.18 (17)
C38—N2—H2A119.8 (13)C26—C27—H27119.9
C38—N2—H2B116.9 (13)C28—C27—H27119.9
H2A—N2—H2B122.0 (18)C29—C28—C27119.78 (16)
C1—C2—C3120.03 (16)C29—C28—H28120.1
C1—C2—H2120.0C27—C28—H28120.1
C3—C2—H2120.0C28—C29—C30120.32 (17)
C6—C3—C2120.11 (17)C28—C29—H29119.8
C6—C3—H3119.9C30—C29—H29119.8
C2—C3—H3119.9C25—C30—C29120.23 (16)
C38—N3—C40130.96 (14)C25—C30—H30119.9
C38—N3—H3A112.4 (13)C29—C30—H30119.9
C40—N3—H3A116.6 (13)C36—C31—C32118.63 (15)
C6—C4—C5119.77 (17)C36—C31—P1123.13 (13)
C6—C4—H4120.1C32—C31—P1118.24 (12)
C5—C4—H4120.1C33—C32—C31120.59 (16)
C3—C6—C4120.21 (16)C33—C32—H32119.7
C3—C6—H6119.9C31—C32—H32119.7
C4—C6—H6119.9C34—C33—C32120.21 (16)
C12—C7—C8119.15 (14)C34—C33—H33119.9
C12—C7—P2118.20 (12)C32—C33—H33119.9
C8—C7—P2122.64 (12)C33—C34—C35119.76 (17)
C9—C8—C7120.13 (16)C33—C34—H34120.1
C9—C8—H8119.9C35—C34—H34120.1
C7—C8—H8119.9C34—C35—C36120.32 (18)
C10—C9—C8120.27 (16)C34—C35—H35119.8
C10—C9—H9119.9C36—C35—H35119.8
C8—C9—H9119.9C35—C36—C31120.48 (17)
C11—C10—C9120.01 (15)C35—C36—H36119.8
C11—C10—H10120.0C31—C36—H36119.8
C9—C10—H10120.0N2—C38—N3114.81 (14)
C10—C11—C12120.12 (16)N2—C38—S1121.44 (12)
C10—C11—H11119.9N3—C38—S1123.72 (12)
C12—C11—H11119.9C45—C40—C41119.48 (15)
C7—C12—C11120.30 (15)C45—C40—N3124.38 (15)
C7—C12—H12119.9C41—C40—N3115.95 (15)
C11—C12—H12119.9C42—C41—C40120.65 (16)
C18—C13—C14118.77 (15)C42—C41—H41119.7
C18—C13—P2122.95 (12)C40—C41—H41119.7
C14—C13—P2117.94 (12)C43—C42—C41118.56 (15)
C15—C14—C13120.59 (16)C43—C42—H42120.7
C15—C14—H14119.7C41—C42—H42120.7
C13—C14—H14119.7C42—C43—C44122.06 (16)
C14—C15—C16120.25 (16)C42—C43—N1118.82 (15)
C14—C15—H15119.9C44—C43—N1119.09 (16)
C16—C15—H15119.9C43—C44—C45118.96 (16)
C17—C16—C15119.76 (16)C43—C44—H44120.5
C17—C16—H16120.1C45—C44—H44120.5
C15—C16—H16120.1C44—C45—C40120.24 (15)
C16—C17—C18120.02 (16)C44—C45—H45119.9
C16—C17—H17120.0C40—C45—H45119.9
C18—C17—H17120.0C4—C5—C1120.72 (16)
C13—C18—C17120.58 (16)C4—C5—H5119.6
C13—C18—H18119.7C1—C5—H5119.6
C17—C18—H18119.7
C31—P1—C1—C588.90 (14)C22—C23—C24—C191.0 (3)
C25—P1—C1—C5163.75 (13)C1—P1—C25—C30107.34 (14)
Cu1—P1—C1—C536.73 (15)C31—P1—C25—C301.30 (16)
C31—P1—C1—C287.15 (15)Cu1—P1—C25—C30123.85 (13)
C25—P1—C1—C220.21 (16)C1—P1—C25—C2676.16 (13)
Cu1—P1—C1—C2147.23 (12)C31—P1—C25—C26177.80 (12)
C5—C1—C2—C30.3 (3)Cu1—P1—C25—C2652.65 (13)
P1—C1—C2—C3176.27 (13)C30—C25—C26—C270.6 (2)
C1—C2—C3—C60.6 (3)P1—C25—C26—C27176.02 (13)
C2—C3—C6—C40.1 (3)C25—C26—C27—C280.6 (2)
C5—C4—C6—C30.6 (3)C26—C27—C28—C291.2 (3)
C19—P2—C7—C12163.25 (13)C27—C28—C29—C300.5 (3)
C13—P2—C7—C1286.29 (14)C26—C25—C30—C291.3 (2)
Cu1—P2—C7—C1237.05 (15)P1—C25—C30—C29175.13 (13)
C19—P2—C7—C815.84 (15)C28—C29—C30—C250.8 (3)
C13—P2—C7—C894.63 (14)C1—P1—C31—C363.32 (17)
Cu1—P2—C7—C8142.04 (12)C25—P1—C31—C36103.47 (15)
C12—C7—C8—C90.6 (2)Cu1—P1—C31—C36131.09 (14)
P2—C7—C8—C9178.45 (13)C1—P1—C31—C32176.22 (13)
C7—C8—C9—C101.1 (3)C25—P1—C31—C3276.99 (14)
C8—C9—C10—C110.3 (3)Cu1—P1—C31—C3248.45 (14)
C9—C10—C11—C121.1 (3)C36—C31—C32—C331.1 (3)
C8—C7—C12—C110.7 (2)P1—C31—C32—C33179.30 (13)
P2—C7—C12—C11179.84 (13)C31—C32—C33—C341.1 (3)
C10—C11—C12—C71.6 (3)C32—C33—C34—C350.3 (3)
C19—P2—C13—C18127.51 (14)C33—C34—C35—C360.3 (3)
C7—P2—C13—C1819.27 (15)C34—C35—C36—C310.3 (3)
Cu1—P2—C13—C18111.71 (13)C32—C31—C36—C350.5 (3)
C19—P2—C13—C1459.38 (14)P1—C31—C36—C35179.99 (16)
C7—P2—C13—C14167.63 (13)C40—N3—C38—N2170.95 (16)
Cu1—P2—C13—C1461.39 (14)C40—N3—C38—S110.9 (3)
C18—C13—C14—C152.1 (3)Cu1—S1—C38—N26.43 (15)
P2—C13—C14—C15175.53 (14)Cu1—S1—C38—N3175.53 (12)
C13—C14—C15—C161.8 (3)C38—N3—C40—C4529.7 (3)
C14—C15—C16—C170.3 (3)C38—N3—C40—C41155.33 (17)
C15—C16—C17—C180.7 (3)C45—C40—C41—C422.5 (3)
C14—C13—C18—C171.1 (2)N3—C40—C41—C42172.74 (15)
P2—C13—C18—C17174.11 (13)C40—C41—C42—C431.6 (3)
C16—C17—C18—C130.3 (3)C41—C42—C43—C440.2 (3)
C7—P2—C19—C2492.07 (15)C41—C42—C43—N1177.84 (15)
C13—P2—C19—C2416.52 (16)O1—N1—C43—C42172.69 (16)
Cu1—P2—C19—C24135.72 (13)O2—N1—C43—C425.9 (2)
C7—P2—C19—C2086.40 (13)O1—N1—C43—C445.4 (2)
C13—P2—C19—C20165.01 (12)O2—N1—C43—C44176.00 (16)
Cu1—P2—C19—C2045.80 (14)C42—C43—C44—C451.0 (3)
C24—C19—C20—C210.8 (3)N1—C43—C44—C45177.05 (15)
P2—C19—C20—C21177.76 (14)C43—C44—C45—C400.0 (3)
C19—C20—C21—C221.5 (3)C41—C40—C45—C441.7 (3)
C20—C21—C22—C231.0 (3)N3—C40—C45—C44173.11 (16)
C21—C22—C23—C240.2 (3)C6—C4—C5—C10.8 (3)
C20—C19—C24—C230.4 (2)C2—C1—C5—C40.4 (3)
P2—C19—C24—C23178.87 (13)P1—C1—C5—C4175.79 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl1i0.88 (2)2.35 (2)3.1974 (14)160 (2)
N2—H2B···Cl10.88 (1)2.42 (2)3.2504 (15)158 (2)
N3—H3A···Cl1i0.87 (1)2.49 (2)3.3199 (14)158 (2)
C9—H9···O1ii0.952.573.303 (2)135
C30—H30···O2iii0.952.703.386 (2)130
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z+1; (iii) x+1, y, z.
 

Acknowledgements

Financial support from the Department of Chemistry, Prince of Songkla University, is gratefully acknowledged. We would like to thank Dr Matthias Zeller for valuable suggestions and assistance with the X-ray structure determination and use of structure refinement programs.

References

First citationBielenica, A., Stefańska, J., Stępień, K., Napiórkowska, A., Augustynowicz-Kopeć, E., Sanna, G., Madeddu, S., Boi, S., Giliberti, G., Wrzosek, M. & Struga, M. (2015). Eur. J. Med. Chem. 101, 111–125.  CrossRef CAS Google Scholar
First citationChetana, P. R., Srinatha, B. S., Somashekar, M. N. & Policegoudra, M. N. (2016). J. Mol. Struct. 1106, 352–365.  CrossRef CAS Google Scholar
First citationGrifasi, F., Chierotti, M. R., Garino, C., Gobetto, R., Priola, E., Diana, E. & Turci, F. (2015). Cryst. Growth Des. 15, 2929–2939.  CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGunasekaran, N., Bhuvanesh, N. S. P. & KarvembuIn, R. (2017). Polyhedron, In the press.  Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKhatri, N., Lather, V. & Madan, A. K. (2015). Chemom. Intell. Lab. Syst. 140, 13–21.  CrossRef CAS Google Scholar
First citationLi, D., Sun, Y., Liu, S. & Hua, Z. (2006). J. Coord. Chem. 59, 403–408.  CrossRef CAS Google Scholar
First citationLiu, P., Shu, C., Liu, L., Huang, Q. & Peng, Y. (2016). Bioorg. Med. Chem. 24, 866–1871.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNimthong, R., Pakawatchai, C., Saithong, S. & Charmant, J. P. H. (2008). Acta Cryst. E64, m977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRauf, M. K., Imtiaz-ud-Din, Badshah, A., Gielen, M., Ebihara, M., de Vos, D. & Ahmed, S. (2009). J. Inorg. Biochem. 103, 1135–1144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXian, L., Wang, Y. & Zhang, B. (2008). Z. Kristallogr. New Cryst. Struct. 223, 411–412.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds