research communications
catena-poly[[bis(N-acethylthiomorpholine-κS)copper(I)]-μ-iodido]
ofaDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr
The reaction of copper(I) iodide with N-acetylthiomorpholine (L, C6H11NOS) in acetonitrile results in a coordination polymer with composition [CuI(L)2]n. The CuI atom is coordinated by two S atoms and two I atoms, adopting a distorted tetrahedral environment. The μ2-bridging mode of the I atoms gives rise to chains extending parallel to [010]. C—H⋯O hydrogen-bonding interactions between the chains lead to a three-dimensional network.
CCDC reference: 1522053
1. Chemical context
Synthesis, structures and luminescence properties of copper(I) complexes involving CuI and thioethers as co-ligands have been studied extensively (Harvey & Knorr, 2010; Knorr et al., 2010; Henline et al., 2014). The tendency of copper(I) iodide to form aggregates often leads to short Cu—Cu bonds and intriguing diversities in the respective crystal structures (Peng et al., 2010), comprising of [CuI]n chains with split stair motifs (Moreno et al., 1995; Blake et al., 1999; Cariati et al., 2002; Näther et al., 2003; Thébault et al., 2006), zigzag chains (Munakata et al., 1997) or helical chains (Munakata et al., 1997; Kang & Anson, 1995). Most of these structures include aromatic nitrogen donor co-ligands. In this context we have studied the interaction of N-acetylthiomorpholine with CuI to investigate the coordination behaviour of the copper(I) atom with the S donor atom of the N-acetylthiomorpholine co-ligand, because both are soft atoms in the sense of the HSAB concept. Although a number of copper(I) complexes with thioether ligands are known (Knorr et al., 2010; Henline et al., 2014), to the best of our knowledge, a [CuI]n chain structure has not been reported until now. Herein, we report a copper(I) coordination polymer with a zigzag chain [CuI]n, resulting from the reaction of CuI with N-acetylthiomorpholine (L).
2. Structural commentary
The L)2]n, comprises of a copper(I) iodide moiety and two N-acetylthiomorpholine co-ligands (LA and LB) and is shown in Fig. 1. The CuI atom has a slightly distorted tetrahedral environment (Table 1). The two thiomorpholine rings have the stable chair conformation (Kang et al., 2015). The dihedral angles between acetyl CCO and thiomorpholine CNC planes are 3.9 (4) and 6.6 (2)° for LA and LB, respectively. The I atoms link neighboring CuI atoms in a μ2-bridging mode into polymeric zigzag chains extending parallel to [010] (Fig. 2).
of the title compound, [CuI(3. Supramolecular features
As shown in Fig. 3, C10—H10A⋯ O1 hydrogen bonds (yellow dashed lines) between the thiomorpholine ring of LB and the carbonyl oxygen atoms of LA result in a layered network parallel to (101). Additional C12—H12B⋯O2 hydrogen bonds between methyl groups of LB ligands and carbonyl oxygen atoms of neighbouring LB ligands (red dashed lines) form cyclic centrosymmetric dimers of N-acetylthiomorpholines. The combination of the [CuI]n chains and the two types of hydrogen-bonding interactions with additional C—H⋯O interactions (Table 2) leads to a three-dimensional network.
4. Synthesis and crystallization
Preparation of N-acetylthiomorpholine (L)
Thiomorpholine (1.03 g, 0.010 mol) and triethylamine (1.03 g, 0.010 mol) in chloroform (20 mL) were placed in a one-neck round-bottomed flask and kept at 273 K. Then, acetic anhydride (1.02 g, 0.010 mol) was added dropwise. The reactant mixture was stirred for approximately one day. The orange liquid product was purified by using short n-hexane and 10% ethyl acetate, Rf = 0.28; yield 1.08 g, 74.5%). 1H NMR (300 MHz, CDCl3) / ppm: 3.860 (triplet, 2H, CH2-N), 3.719 (triplet, 2H, CH2-N), 2.614 (triplet, 2H, CH2-S), 2.597 (triplet, 2H, CH2-S), 2.086 (singlet, 3H, CH3); 13C NMR (300MHz, CDCl3) / ppm: 168.919 (C=O); 48.993, 43.972 (N—C); 27.248, 27.740 (S—C), 21.527(CH3)
(silica gel, 90%Preparation of [CuI(L)2]n
An acetonitrile (2 mL) solution of L (0.08 g, 0.55 mmol) was allowed to mix with an acetonitrile (3 mL) solution of CuI (0.052 g, 0.27 mmol). The colorless precipitate was filtered and washed with diethyl ether/acetonitrile (3/1 v/v) solution (yield 0.116 g, 88.5%). Single crystals suitable for X-ray analysis were obtained by slow evaporation.
5. Refinement
Crystal data, data collection and structure . All C-bound H atoms were positioned geometrically, with d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for methylene, and d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl groups.
details are summarized in Table 3Supporting information
CCDC reference: 1522053
https://doi.org/10.1107/S2056989016019794/wm5347sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016019794/wm5347Isup2.hkl
Data collection: APEX2 (Bruker, 2014); cell
SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).[CuI(C6H11NOS)2] | F(000) = 952 |
Mr = 480.87 | Dx = 1.902 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 14.1513 (4) Å | Cell parameters from 8258 reflections |
b = 7.6557 (2) Å | θ = 2.4–27.4° |
c = 16.9423 (4) Å | µ = 3.39 mm−1 |
β = 113.805 (1)° | T = 173 K |
V = 1679.34 (8) Å3 | Plate, colourless |
Z = 4 | 0.40 × 0.10 × 0.02 mm |
Bruker APEXII CCD diffractometer | 3020 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.023 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | θmax = 26.0°, θmin = 1.6° |
Tmin = 0.518, Tmax = 0.746 | h = −13→17 |
12664 measured reflections | k = −9→9 |
3306 independent reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.018 | H-atom parameters constrained |
wR(F2) = 0.045 | w = 1/[σ2(Fo2) + (0.0221P)2 + 0.5521P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.003 |
3306 reflections | Δρmax = 0.51 e Å−3 |
183 parameters | Δρmin = −0.37 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.18899 (2) | 1.02851 (3) | 0.16379 (2) | 0.02035 (7) | |
I1 | 0.22857 (2) | 1.36381 (2) | 0.18629 (2) | 0.02246 (6) | |
S1 | 0.01447 (4) | 0.97167 (7) | 0.10384 (3) | 0.01843 (11) | |
S2 | 0.27317 (4) | 0.95551 (7) | 0.07682 (3) | 0.01754 (11) | |
O1 | −0.12671 (13) | 0.4134 (2) | 0.18413 (10) | 0.0306 (4) | |
O2 | 0.55531 (13) | 0.4901 (2) | 0.13221 (10) | 0.0326 (4) | |
N1 | −0.12119 (14) | 0.6992 (2) | 0.15212 (11) | 0.0222 (4) | |
N2 | 0.41457 (14) | 0.6547 (2) | 0.05909 (11) | 0.0211 (4) | |
C1 | −0.09223 (18) | 0.6587 (3) | 0.08061 (14) | 0.0261 (5) | |
H1A | −0.1457 | 0.7049 | 0.0264 | 0.031* | |
H1B | −0.0897 | 0.5303 | 0.0747 | 0.031* | |
C2 | 0.01160 (17) | 0.7356 (3) | 0.09339 (15) | 0.0237 (5) | |
H2A | 0.0279 | 0.7034 | 0.0437 | 0.028* | |
H2B | 0.0656 | 0.6845 | 0.1459 | 0.028* | |
C3 | −0.03090 (17) | 0.9830 (3) | 0.18944 (13) | 0.0204 (5) | |
H3A | 0.0220 | 0.9323 | 0.2427 | 0.024* | |
H3B | −0.0408 | 1.1068 | 0.2011 | 0.024* | |
C4 | −0.13193 (17) | 0.8852 (3) | 0.16610 (14) | 0.0226 (5) | |
H4A | −0.1559 | 0.8994 | 0.2131 | 0.027* | |
H4B | −0.1849 | 0.9365 | 0.1130 | 0.027* | |
C5 | −0.13845 (16) | 0.5668 (3) | 0.19871 (13) | 0.0227 (5) | |
C6 | −0.1756 (2) | 0.6151 (3) | 0.26767 (15) | 0.0301 (5) | |
H6A | −0.2461 | 0.6610 | 0.2406 | 0.045* | |
H6B | −0.1300 | 0.7045 | 0.3054 | 0.045* | |
H6C | −0.1748 | 0.5114 | 0.3018 | 0.045* | |
C7 | 0.46423 (17) | 0.8128 (3) | 0.10528 (14) | 0.0241 (5) | |
H7A | 0.4710 | 0.8983 | 0.0640 | 0.029* | |
H7B | 0.5345 | 0.7841 | 0.1480 | 0.029* | |
C8 | 0.40226 (17) | 0.8939 (3) | 0.15130 (14) | 0.0244 (5) | |
H8A | 0.4389 | 0.9987 | 0.1833 | 0.029* | |
H8B | 0.3973 | 0.8093 | 0.1937 | 0.029* | |
C9 | 0.23472 (16) | 0.7451 (3) | 0.02483 (13) | 0.0195 (4) | |
H9A | 0.2295 | 0.6596 | 0.0668 | 0.023* | |
H9B | 0.1658 | 0.7552 | −0.0233 | 0.023* | |
C10 | 0.31244 (17) | 0.6798 (3) | −0.00969 (14) | 0.0229 (5) | |
H10A | 0.2879 | 0.5677 | −0.0403 | 0.027* | |
H10B | 0.3172 | 0.7653 | −0.0518 | 0.027* | |
C11 | 0.46543 (18) | 0.4999 (3) | 0.07934 (14) | 0.0234 (5) | |
C12 | 0.4073 (2) | 0.3374 (3) | 0.03610 (18) | 0.0339 (6) | |
H12A | 0.4529 | 0.2358 | 0.0560 | 0.051* | |
H12B | 0.3837 | 0.3489 | −0.0266 | 0.051* | |
H12C | 0.3475 | 0.3221 | 0.0508 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02182 (15) | 0.01848 (14) | 0.02120 (14) | −0.00092 (11) | 0.00916 (12) | −0.00102 (10) |
I1 | 0.03471 (10) | 0.01382 (8) | 0.01707 (8) | −0.00131 (6) | 0.00859 (7) | −0.00134 (5) |
S1 | 0.0196 (3) | 0.0185 (3) | 0.0176 (2) | 0.0000 (2) | 0.0080 (2) | 0.00071 (19) |
S2 | 0.0196 (3) | 0.0148 (2) | 0.0179 (2) | −0.0001 (2) | 0.0073 (2) | −0.00149 (19) |
O1 | 0.0306 (9) | 0.0224 (9) | 0.0302 (9) | −0.0033 (7) | 0.0034 (7) | 0.0003 (7) |
O2 | 0.0305 (10) | 0.0403 (10) | 0.0256 (9) | 0.0143 (8) | 0.0099 (8) | 0.0080 (7) |
N1 | 0.0240 (10) | 0.0211 (10) | 0.0236 (9) | −0.0025 (8) | 0.0119 (8) | −0.0020 (7) |
N2 | 0.0179 (9) | 0.0209 (10) | 0.0220 (9) | 0.0008 (7) | 0.0055 (8) | −0.0049 (7) |
C1 | 0.0296 (13) | 0.0257 (12) | 0.0245 (12) | −0.0081 (10) | 0.0123 (10) | −0.0085 (9) |
C2 | 0.0280 (12) | 0.0194 (11) | 0.0266 (11) | 0.0000 (10) | 0.0141 (10) | −0.0055 (9) |
C3 | 0.0245 (12) | 0.0203 (11) | 0.0184 (10) | 0.0004 (9) | 0.0108 (9) | −0.0017 (8) |
C4 | 0.0224 (12) | 0.0221 (12) | 0.0257 (11) | 0.0038 (9) | 0.0122 (10) | 0.0023 (9) |
C5 | 0.0128 (11) | 0.0265 (12) | 0.0199 (11) | −0.0047 (9) | −0.0025 (9) | 0.0005 (9) |
C6 | 0.0292 (13) | 0.0332 (14) | 0.0290 (12) | −0.0054 (11) | 0.0129 (11) | 0.0064 (10) |
C7 | 0.0185 (11) | 0.0270 (12) | 0.0246 (11) | −0.0017 (10) | 0.0065 (9) | −0.0059 (9) |
C8 | 0.0189 (12) | 0.0299 (12) | 0.0203 (11) | 0.0004 (10) | 0.0036 (9) | −0.0079 (9) |
C9 | 0.0179 (11) | 0.0171 (10) | 0.0197 (10) | −0.0012 (9) | 0.0036 (9) | −0.0021 (8) |
C10 | 0.0206 (11) | 0.0246 (11) | 0.0197 (11) | 0.0009 (9) | 0.0042 (9) | −0.0065 (9) |
C11 | 0.0311 (13) | 0.0254 (12) | 0.0234 (11) | 0.0058 (10) | 0.0211 (11) | 0.0055 (9) |
C12 | 0.0403 (15) | 0.0210 (12) | 0.0523 (16) | 0.0006 (11) | 0.0308 (13) | 0.0014 (11) |
Cu1—S1 | 2.3012 (6) | C3—H3A | 0.9900 |
Cu1—S2 | 2.3064 (6) | C3—H3B | 0.9900 |
Cu1—I1 | 2.6221 (3) | C4—H4A | 0.9900 |
Cu1—I1i | 2.6476 (3) | C4—H4B | 0.9900 |
I1—Cu1ii | 2.6476 (3) | C5—C6 | 1.508 (3) |
S1—C3 | 1.810 (2) | C6—H6A | 0.9800 |
S1—C2 | 1.815 (2) | C6—H6B | 0.9800 |
S2—C9 | 1.811 (2) | C6—H6C | 0.9800 |
S2—C8 | 1.814 (2) | C7—C8 | 1.521 (3) |
O1—C5 | 1.225 (3) | C7—H7A | 0.9900 |
O2—C11 | 1.227 (3) | C7—H7B | 0.9900 |
N1—C5 | 1.366 (3) | C8—H8A | 0.9900 |
N1—C1 | 1.460 (3) | C8—H8B | 0.9900 |
N1—C4 | 1.462 (3) | C9—C10 | 1.523 (3) |
N2—C11 | 1.357 (3) | C9—H9A | 0.9900 |
N2—C10 | 1.457 (3) | C9—H9B | 0.9900 |
N2—C7 | 1.459 (3) | C10—H10A | 0.9900 |
C1—C2 | 1.515 (3) | C10—H10B | 0.9900 |
C1—H1A | 0.9900 | C11—C12 | 1.508 (3) |
C1—H1B | 0.9900 | C12—H12A | 0.9800 |
C2—H2A | 0.9900 | C12—H12B | 0.9800 |
C2—H2B | 0.9900 | C12—H12C | 0.9800 |
C3—C4 | 1.518 (3) | ||
S1—Cu1—S2 | 114.28 (2) | O1—C5—N1 | 121.6 (2) |
S1—Cu1—I1 | 112.179 (17) | O1—C5—C6 | 120.6 (2) |
S2—Cu1—I1 | 101.246 (16) | N1—C5—C6 | 117.7 (2) |
S1—Cu1—I1i | 108.190 (16) | C5—C6—H6A | 109.5 |
S2—Cu1—I1i | 110.870 (16) | C5—C6—H6B | 109.5 |
I1—Cu1—I1i | 109.949 (9) | H6A—C6—H6B | 109.5 |
Cu1—I1—Cu1ii | 126.245 (8) | C5—C6—H6C | 109.5 |
C3—S1—C2 | 97.16 (10) | H6A—C6—H6C | 109.5 |
C3—S1—Cu1 | 107.58 (7) | H6B—C6—H6C | 109.5 |
C2—S1—Cu1 | 102.08 (7) | N2—C7—C8 | 111.16 (18) |
C9—S2—C8 | 97.32 (10) | N2—C7—H7A | 109.4 |
C9—S2—Cu1 | 113.27 (7) | C8—C7—H7A | 109.4 |
C8—S2—Cu1 | 104.68 (7) | N2—C7—H7B | 109.4 |
C5—N1—C1 | 119.82 (18) | C8—C7—H7B | 109.4 |
C5—N1—C4 | 125.09 (18) | H7A—C7—H7B | 108.0 |
C1—N1—C4 | 115.07 (17) | C7—C8—S2 | 112.12 (15) |
C11—N2—C10 | 124.83 (18) | C7—C8—H8A | 109.2 |
C11—N2—C7 | 119.84 (18) | S2—C8—H8A | 109.2 |
C10—N2—C7 | 115.28 (17) | C7—C8—H8B | 109.2 |
N1—C1—C2 | 112.30 (18) | S2—C8—H8B | 109.2 |
N1—C1—H1A | 109.1 | H8A—C8—H8B | 107.9 |
C2—C1—H1A | 109.1 | C10—C9—S2 | 110.89 (15) |
N1—C1—H1B | 109.1 | C10—C9—H9A | 109.5 |
C2—C1—H1B | 109.1 | S2—C9—H9A | 109.5 |
H1A—C1—H1B | 107.9 | C10—C9—H9B | 109.5 |
C1—C2—S1 | 112.54 (16) | S2—C9—H9B | 109.5 |
C1—C2—H2A | 109.1 | H9A—C9—H9B | 108.0 |
S1—C2—H2A | 109.1 | N2—C10—C9 | 111.90 (17) |
C1—C2—H2B | 109.1 | N2—C10—H10A | 109.2 |
S1—C2—H2B | 109.1 | C9—C10—H10A | 109.2 |
H2A—C2—H2B | 107.8 | N2—C10—H10B | 109.2 |
C4—C3—S1 | 111.67 (14) | C9—C10—H10B | 109.2 |
C4—C3—H3A | 109.3 | H10A—C10—H10B | 107.9 |
S1—C3—H3A | 109.3 | O2—C11—N2 | 121.7 (2) |
C4—C3—H3B | 109.3 | O2—C11—C12 | 120.4 (2) |
S1—C3—H3B | 109.3 | N2—C11—C12 | 117.9 (2) |
H3A—C3—H3B | 107.9 | C11—C12—H12A | 109.5 |
N1—C4—C3 | 111.95 (18) | C11—C12—H12B | 109.5 |
N1—C4—H4A | 109.2 | H12A—C12—H12B | 109.5 |
C3—C4—H4A | 109.2 | C11—C12—H12C | 109.5 |
N1—C4—H4B | 109.2 | H12A—C12—H12C | 109.5 |
C3—C4—H4B | 109.2 | H12B—C12—H12C | 109.5 |
H4A—C4—H4B | 107.9 | ||
C5—N1—C1—C2 | −120.4 (2) | C11—N2—C7—C8 | −120.0 (2) |
C4—N1—C1—C2 | 61.1 (3) | C10—N2—C7—C8 | 62.5 (2) |
N1—C1—C2—S1 | −59.4 (2) | N2—C7—C8—S2 | −60.5 (2) |
C3—S1—C2—C1 | 52.97 (17) | C9—S2—C8—C7 | 54.16 (18) |
Cu1—S1—C2—C1 | 162.73 (14) | Cu1—S2—C8—C7 | 170.60 (15) |
C2—S1—C3—C4 | −53.85 (17) | C8—S2—C9—C10 | −54.05 (16) |
Cu1—S1—C3—C4 | −158.97 (13) | Cu1—S2—C9—C10 | −163.52 (12) |
C5—N1—C4—C3 | 119.1 (2) | C11—N2—C10—C9 | 118.9 (2) |
C1—N1—C4—C3 | −62.5 (2) | C7—N2—C10—C9 | −63.8 (2) |
S1—C3—C4—N1 | 61.7 (2) | S2—C9—C10—N2 | 61.7 (2) |
C1—N1—C5—O1 | 2.6 (3) | C10—N2—C11—O2 | 172.7 (2) |
C4—N1—C5—O1 | −179.1 (2) | C7—N2—C11—O2 | −4.6 (3) |
C1—N1—C5—C6 | −175.7 (2) | C10—N2—C11—C12 | −8.6 (3) |
C4—N1—C5—C6 | 2.6 (3) | C7—N2—C11—C12 | 174.10 (19) |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4A···O2ii | 0.99 | 2.52 | 3.241 (3) | 129 |
C6—H6B···O2ii | 0.98 | 2.47 | 3.418 (3) | 162 |
C10—H10A···O1iii | 0.99 | 2.58 | 3.144 (3) | 116 |
C12—H12B···O2iv | 0.98 | 2.59 | 3.372 (3) | 137 |
Symmetry codes: (ii) −x+1/2, y+1/2, −z+1/2; (iii) −x, −y+1, −z; (iv) −x+1, −y+1, −z. |
Acknowledgements
This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).
References
Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181–195. CSD CrossRef CAS Google Scholar
Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cariati, E., Roberto, D., Ugo, R., Ford, P. C., Galli, S. & Sironi, A. (2002). Chem. Mater. 14, 5116–5123. Web of Science CSD CrossRef CAS Google Scholar
Harvey, P. D. & Knorr, M. (2010). Macromol. Rapid Commun. 31, 808–826. CrossRef CAS Google Scholar
Henline, K. M., Wang, C., Pike, R. D., Ahern, J. C., Sousa, B., Patterson, H. H., Kerr, A. T. & Cahill, C. L. (2014). Cryst. Growth Des. 14, 1449–1458. CSD CrossRef CAS Google Scholar
Kang, C. & Anson, F. C. (1995). Inorg. Chem. 34, 2771–2780. CrossRef CAS Google Scholar
Kang, G., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o679. CSD CrossRef IUCr Journals Google Scholar
Knorr, M., Pam, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D. & Harvey, P. D. (2010). Inorg. Chem. 49, 5834–5844. Web of Science CSD CrossRef CAS PubMed Google Scholar
Moreno, J. M., Suarez-Varela, J., Colacio, E., Avila-Rosón, J. C., Hidalgo, M. A. & Martin-Ramos, D. (1995). Can. J. Chem. 73, 1591–1595. CSD CrossRef CAS Google Scholar
Munakata, M., Wu, L. P. & Kuroda-Sowa, T. (1997). Bull. Chem. Soc. Jpn, 70, 1727–1743. CrossRef CAS Web of Science Google Scholar
Näther, C., Wriedt, M. & Jess, I. (2003). Inorg. Chem. 42, 2391–2397. Web of Science CSD CrossRef PubMed Google Scholar
Peng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1–18. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Thébault, F., Barnett, S. A., Blake, J. A., Wilson, C., Champness, N. R. & Schröder, M. (2006). Inorg. Chem. 45, 6179–6187. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.