research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[bis­­(N-acethyl­thio­morpholine-κS)copper(I)]-μ-iodido]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry (BK21 plus) and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
*Correspondence e-mail: thkim@gnu.ac.kr, jekim@gnu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 1 December 2016; accepted 12 December 2016; online 1 January 2017)

The reaction of copper(I) iodide with N-acetyl­thio­morpholine (L, C6H11NOS) in aceto­nitrile results in a coordination polymer with composition [CuI(L)2]n. The CuI atom is coordinated by two S atoms and two I atoms, adopting a distorted tetra­hedral environment. The μ2-bridging mode of the I atoms gives rise to chains extending parallel to [010]. C—H⋯O hydrogen-bonding inter­actions between the chains lead to a three-dimensional network.

1. Chemical context

Synthesis, structures and luminescence properties of copper(I) complexes involving CuI and thio­ethers as co-ligands have been studied extensively (Harvey & Knorr, 2010[Harvey, P. D. & Knorr, M. (2010). Macromol. Rapid Commun. 31, 808-826.]; Knorr et al., 2010[Knorr, M., Pam, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D. & Harvey, P. D. (2010). Inorg. Chem. 49, 5834-5844.]; Henline et al., 2014[Henline, K. M., Wang, C., Pike, R. D., Ahern, J. C., Sousa, B., Patterson, H. H., Kerr, A. T. & Cahill, C. L. (2014). Cryst. Growth Des. 14, 1449-1458.]). The tendency of copper(I) iodide to form aggregates often leads to short Cu—Cu bonds and intriguing diversities in the respective crystal structures (Peng et al., 2010[Peng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1-18.]), comprising of [CuI]n chains with split stair motifs (Moreno et al., 1995[Moreno, J. M., Suarez-Varela, J., Colacio, E., Avila-Rosón, J. C., Hidalgo, M. A. & Martin-Ramos, D. (1995). Can. J. Chem. 73, 1591-1595.]; Blake et al., 1999[Blake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181-195.]; Cariati et al., 2002[Cariati, E., Roberto, D., Ugo, R., Ford, P. C., Galli, S. & Sironi, A. (2002). Chem. Mater. 14, 5116-5123.]; Näther et al., 2003[Näther, C., Wriedt, M. & Jess, I. (2003). Inorg. Chem. 42, 2391-2397.]; Thébault et al., 2006[Thébault, F., Barnett, S. A., Blake, J. A., Wilson, C., Champness, N. R. & Schröder, M. (2006). Inorg. Chem. 45, 6179-6187.]), zigzag chains (Munakata et al., 1997[Munakata, M., Wu, L. P. & Kuroda-Sowa, T. (1997). Bull. Chem. Soc. Jpn, 70, 1727-1743.]) or helical chains (Munakata et al., 1997[Munakata, M., Wu, L. P. & Kuroda-Sowa, T. (1997). Bull. Chem. Soc. Jpn, 70, 1727-1743.]; Kang & Anson, 1995[Kang, C. & Anson, F. C. (1995). Inorg. Chem. 34, 2771-2780.]). Most of these structures include aromatic nitro­gen donor co-ligands. In this context we have studied the inter­action of N-acetyl­thio­morpholine with CuI to investigate the coordination behaviour of the copper(I) atom with the S donor atom of the N-acetyl­thio­morpholine co-ligand, because both are soft atoms in the sense of the HSAB concept. Although a number of copper(I) complexes with thio­ether ligands are known (Knorr et al., 2010[Knorr, M., Pam, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D. & Harvey, P. D. (2010). Inorg. Chem. 49, 5834-5844.]; Henline et al., 2014[Henline, K. M., Wang, C., Pike, R. D., Ahern, J. C., Sousa, B., Patterson, H. H., Kerr, A. T. & Cahill, C. L. (2014). Cryst. Growth Des. 14, 1449-1458.]), to the best of our knowledge, a [CuI]n chain structure has not been reported until now. Herein, we report a copper(I) coordination polymer with a zigzag chain [CuI]n, resulting from the reaction of CuI with N-acetyl­thio­morpholine (L).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound, [CuI(L)2]n, comprises of a copper(I) iodide moiety and two N-acetyl­thio­morpholine co-ligands (LA and LB) and is shown in Fig. 1[link]. The CuI atom has a slightly distorted tetra­hedral environment (Table 1[link]). The two thio­morpholine rings have the stable chair conformation (Kang et al., 2015[Kang, G., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o679.]). The dihedral angles between acetyl CCO and thio­morpholine CNC planes are 3.9 (4) and 6.6 (2)° for LA and LB, respectively. The I atoms link neighboring CuI atoms in a μ2-bridging mode into polymeric zigzag chains extending parallel to [010] (Fig. 2[link]).

Table 1
Selected geometric parameters (Å, °)

Cu1—S1 2.3012 (6) Cu1—I1 2.6221 (3)
Cu1—S2 2.3064 (6) Cu1—I1i 2.6476 (3)
       
S1—Cu1—S2 114.28 (2) S2—Cu1—I1 101.246 (16)
S1—Cu1—I1 112.179 (17) I1—Cu1—I1i 109.949 (9)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
The asymmetric unit of the title compound, shown with displacement ellipsoids drawn at the 50% probability level. H atom are shown as small spheres of arbitrary radius.
[Figure 2]
Figure 2
The polymeric chain structure in [CuI(L)2] formed through the μ2-bridging mode of the I atoms. All H atoms have been omitted for clarity.

3. Supra­molecular features

As shown in Fig. 3[link], C10—H10A⋯ O1 hydrogen bonds (yellow dashed lines) between the thio­morpholine ring of LB and the carbonyl oxygen atoms of LA result in a layered network parallel to (101). Additional C12—H12B⋯O2 hydrogen bonds between methyl groups of LB ligands and carbonyl oxygen atoms of neighbouring LB ligands (red dashed lines) form cyclic centrosymmetric dimers of N-acetyl­thio­morpholines. The combination of the [CuI]n chains and the two types of hydrogen-bonding inter­actions with additional C—H⋯O inter­actions (Table 2[link]) leads to a three-dimensional network.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2ii 0.99 2.52 3.241 (3) 129
C6—H6B⋯O2ii 0.98 2.47 3.418 (3) 162
C10—H10A⋯O1iii 0.99 2.58 3.144 (3) 116
C12—H12B⋯O2iv 0.98 2.59 3.372 (3) 137
Symmetry codes: (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x, -y+1, -z; (iv) -x+1, -y+1, -z.
[Figure 3]
Figure 3
The crystal structure of [CuI(L)2] in a projection along [010]. C—H⋯O hydrogen bonds are shown as yellow and red dashed lines. H atoms not involved in inter­molecular inter­actions have been omitted for clarity.

4. Synthesis and crystallization

Preparation of N-acetyl­thio­morpholine (L)

Thio­morpholine (1.03 g, 0.010 mol) and tri­ethyl­amine (1.03 g, 0.010 mol) in chloro­form (20 mL) were placed in a one-neck round-bottomed flask and kept at 273 K. Then, acetic anhydride (1.02 g, 0.010 mol) was added dropwise. The reactant mixture was stirred for approximately one day. The orange liquid product was purified by using short column chromatography (silica gel, 90% n-hexane and 10% ethyl acetate, Rf = 0.28; yield 1.08 g, 74.5%). 1H NMR (300 MHz, CDCl3) / ppm: 3.860 (triplet, 2H, CH2-N), 3.719 (triplet, 2H, CH2-N), 2.614 (triplet, 2H, CH2-S), 2.597 (triplet, 2H, CH2-S), 2.086 (singlet, 3H, CH3); 13C NMR (300MHz, CDCl3) / ppm: 168.919 (C=O); 48.993, 43.972 (N—C); 27.248, 27.740 (S—C), 21.527(CH3)

Preparation of [CuI(L)2]n

An aceto­nitrile (2 mL) solution of L (0.08 g, 0.55 mmol) was allowed to mix with an aceto­nitrile (3 mL) solution of CuI (0.052 g, 0.27 mmol). The colorless precipitate was filtered and washed with diethyl ether/aceto­nitrile (3/1 v/v) solution (yield 0.116 g, 88.5%). Single crystals suitable for X-ray analysis were obtained by slow evaporation.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All C-bound H atoms were positioned geometrically, with d(C—H) = 0.99 Å, Uiso = 1.2Ueq(C) for methyl­ene, and d(C—H) = 0.98 Å, Uiso = 1.5Ueq(C) for methyl groups.

Table 3
Experimental details

Crystal data
Chemical formula [CuI(C6H11NOS)2]
Mr 480.87
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 14.1513 (4), 7.6557 (2), 16.9423 (4)
β (°) 113.805 (1)
V3) 1679.34 (8)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.39
Crystal size (mm) 0.40 × 0.10 × 0.02
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.518, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 12664, 3306, 3020
Rint 0.023
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.045, 1.05
No. of reflections 3306
No. of parameters 183
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.37
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2010[Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2010); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

catena-poly[[Bis(N-acethylthiomorpholine-κS)copper(I)]-µ-iodido] top
Crystal data top
[CuI(C6H11NOS)2]F(000) = 952
Mr = 480.87Dx = 1.902 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.1513 (4) ÅCell parameters from 8258 reflections
b = 7.6557 (2) Åθ = 2.4–27.4°
c = 16.9423 (4) ŵ = 3.39 mm1
β = 113.805 (1)°T = 173 K
V = 1679.34 (8) Å3Plate, colourless
Z = 40.40 × 0.10 × 0.02 mm
Data collection top
Bruker APEXII CCD
diffractometer
3020 reflections with I > 2σ(I)
φ and ω scansRint = 0.023
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 26.0°, θmin = 1.6°
Tmin = 0.518, Tmax = 0.746h = 1317
12664 measured reflectionsk = 99
3306 independent reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.045 w = 1/[σ2(Fo2) + (0.0221P)2 + 0.5521P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.003
3306 reflectionsΔρmax = 0.51 e Å3
183 parametersΔρmin = 0.37 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.18899 (2)1.02851 (3)0.16379 (2)0.02035 (7)
I10.22857 (2)1.36381 (2)0.18629 (2)0.02246 (6)
S10.01447 (4)0.97167 (7)0.10384 (3)0.01843 (11)
S20.27317 (4)0.95551 (7)0.07682 (3)0.01754 (11)
O10.12671 (13)0.4134 (2)0.18413 (10)0.0306 (4)
O20.55531 (13)0.4901 (2)0.13221 (10)0.0326 (4)
N10.12119 (14)0.6992 (2)0.15212 (11)0.0222 (4)
N20.41457 (14)0.6547 (2)0.05909 (11)0.0211 (4)
C10.09223 (18)0.6587 (3)0.08061 (14)0.0261 (5)
H1A0.14570.70490.02640.031*
H1B0.08970.53030.07470.031*
C20.01160 (17)0.7356 (3)0.09339 (15)0.0237 (5)
H2A0.02790.70340.04370.028*
H2B0.06560.68450.14590.028*
C30.03090 (17)0.9830 (3)0.18944 (13)0.0204 (5)
H3A0.02200.93230.24270.024*
H3B0.04081.10680.20110.024*
C40.13193 (17)0.8852 (3)0.16610 (14)0.0226 (5)
H4A0.15590.89940.21310.027*
H4B0.18490.93650.11300.027*
C50.13845 (16)0.5668 (3)0.19871 (13)0.0227 (5)
C60.1756 (2)0.6151 (3)0.26767 (15)0.0301 (5)
H6A0.24610.66100.24060.045*
H6B0.13000.70450.30540.045*
H6C0.17480.51140.30180.045*
C70.46423 (17)0.8128 (3)0.10528 (14)0.0241 (5)
H7A0.47100.89830.06400.029*
H7B0.53450.78410.14800.029*
C80.40226 (17)0.8939 (3)0.15130 (14)0.0244 (5)
H8A0.43890.99870.18330.029*
H8B0.39730.80930.19370.029*
C90.23472 (16)0.7451 (3)0.02483 (13)0.0195 (4)
H9A0.22950.65960.06680.023*
H9B0.16580.75520.02330.023*
C100.31244 (17)0.6798 (3)0.00969 (14)0.0229 (5)
H10A0.28790.56770.04030.027*
H10B0.31720.76530.05180.027*
C110.46543 (18)0.4999 (3)0.07934 (14)0.0234 (5)
C120.4073 (2)0.3374 (3)0.03610 (18)0.0339 (6)
H12A0.45290.23580.05600.051*
H12B0.38370.34890.02660.051*
H12C0.34750.32210.05080.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02182 (15)0.01848 (14)0.02120 (14)0.00092 (11)0.00916 (12)0.00102 (10)
I10.03471 (10)0.01382 (8)0.01707 (8)0.00131 (6)0.00859 (7)0.00134 (5)
S10.0196 (3)0.0185 (3)0.0176 (2)0.0000 (2)0.0080 (2)0.00071 (19)
S20.0196 (3)0.0148 (2)0.0179 (2)0.0001 (2)0.0073 (2)0.00149 (19)
O10.0306 (9)0.0224 (9)0.0302 (9)0.0033 (7)0.0034 (7)0.0003 (7)
O20.0305 (10)0.0403 (10)0.0256 (9)0.0143 (8)0.0099 (8)0.0080 (7)
N10.0240 (10)0.0211 (10)0.0236 (9)0.0025 (8)0.0119 (8)0.0020 (7)
N20.0179 (9)0.0209 (10)0.0220 (9)0.0008 (7)0.0055 (8)0.0049 (7)
C10.0296 (13)0.0257 (12)0.0245 (12)0.0081 (10)0.0123 (10)0.0085 (9)
C20.0280 (12)0.0194 (11)0.0266 (11)0.0000 (10)0.0141 (10)0.0055 (9)
C30.0245 (12)0.0203 (11)0.0184 (10)0.0004 (9)0.0108 (9)0.0017 (8)
C40.0224 (12)0.0221 (12)0.0257 (11)0.0038 (9)0.0122 (10)0.0023 (9)
C50.0128 (11)0.0265 (12)0.0199 (11)0.0047 (9)0.0025 (9)0.0005 (9)
C60.0292 (13)0.0332 (14)0.0290 (12)0.0054 (11)0.0129 (11)0.0064 (10)
C70.0185 (11)0.0270 (12)0.0246 (11)0.0017 (10)0.0065 (9)0.0059 (9)
C80.0189 (12)0.0299 (12)0.0203 (11)0.0004 (10)0.0036 (9)0.0079 (9)
C90.0179 (11)0.0171 (10)0.0197 (10)0.0012 (9)0.0036 (9)0.0021 (8)
C100.0206 (11)0.0246 (11)0.0197 (11)0.0009 (9)0.0042 (9)0.0065 (9)
C110.0311 (13)0.0254 (12)0.0234 (11)0.0058 (10)0.0211 (11)0.0055 (9)
C120.0403 (15)0.0210 (12)0.0523 (16)0.0006 (11)0.0308 (13)0.0014 (11)
Geometric parameters (Å, º) top
Cu1—S12.3012 (6)C3—H3A0.9900
Cu1—S22.3064 (6)C3—H3B0.9900
Cu1—I12.6221 (3)C4—H4A0.9900
Cu1—I1i2.6476 (3)C4—H4B0.9900
I1—Cu1ii2.6476 (3)C5—C61.508 (3)
S1—C31.810 (2)C6—H6A0.9800
S1—C21.815 (2)C6—H6B0.9800
S2—C91.811 (2)C6—H6C0.9800
S2—C81.814 (2)C7—C81.521 (3)
O1—C51.225 (3)C7—H7A0.9900
O2—C111.227 (3)C7—H7B0.9900
N1—C51.366 (3)C8—H8A0.9900
N1—C11.460 (3)C8—H8B0.9900
N1—C41.462 (3)C9—C101.523 (3)
N2—C111.357 (3)C9—H9A0.9900
N2—C101.457 (3)C9—H9B0.9900
N2—C71.459 (3)C10—H10A0.9900
C1—C21.515 (3)C10—H10B0.9900
C1—H1A0.9900C11—C121.508 (3)
C1—H1B0.9900C12—H12A0.9800
C2—H2A0.9900C12—H12B0.9800
C2—H2B0.9900C12—H12C0.9800
C3—C41.518 (3)
S1—Cu1—S2114.28 (2)O1—C5—N1121.6 (2)
S1—Cu1—I1112.179 (17)O1—C5—C6120.6 (2)
S2—Cu1—I1101.246 (16)N1—C5—C6117.7 (2)
S1—Cu1—I1i108.190 (16)C5—C6—H6A109.5
S2—Cu1—I1i110.870 (16)C5—C6—H6B109.5
I1—Cu1—I1i109.949 (9)H6A—C6—H6B109.5
Cu1—I1—Cu1ii126.245 (8)C5—C6—H6C109.5
C3—S1—C297.16 (10)H6A—C6—H6C109.5
C3—S1—Cu1107.58 (7)H6B—C6—H6C109.5
C2—S1—Cu1102.08 (7)N2—C7—C8111.16 (18)
C9—S2—C897.32 (10)N2—C7—H7A109.4
C9—S2—Cu1113.27 (7)C8—C7—H7A109.4
C8—S2—Cu1104.68 (7)N2—C7—H7B109.4
C5—N1—C1119.82 (18)C8—C7—H7B109.4
C5—N1—C4125.09 (18)H7A—C7—H7B108.0
C1—N1—C4115.07 (17)C7—C8—S2112.12 (15)
C11—N2—C10124.83 (18)C7—C8—H8A109.2
C11—N2—C7119.84 (18)S2—C8—H8A109.2
C10—N2—C7115.28 (17)C7—C8—H8B109.2
N1—C1—C2112.30 (18)S2—C8—H8B109.2
N1—C1—H1A109.1H8A—C8—H8B107.9
C2—C1—H1A109.1C10—C9—S2110.89 (15)
N1—C1—H1B109.1C10—C9—H9A109.5
C2—C1—H1B109.1S2—C9—H9A109.5
H1A—C1—H1B107.9C10—C9—H9B109.5
C1—C2—S1112.54 (16)S2—C9—H9B109.5
C1—C2—H2A109.1H9A—C9—H9B108.0
S1—C2—H2A109.1N2—C10—C9111.90 (17)
C1—C2—H2B109.1N2—C10—H10A109.2
S1—C2—H2B109.1C9—C10—H10A109.2
H2A—C2—H2B107.8N2—C10—H10B109.2
C4—C3—S1111.67 (14)C9—C10—H10B109.2
C4—C3—H3A109.3H10A—C10—H10B107.9
S1—C3—H3A109.3O2—C11—N2121.7 (2)
C4—C3—H3B109.3O2—C11—C12120.4 (2)
S1—C3—H3B109.3N2—C11—C12117.9 (2)
H3A—C3—H3B107.9C11—C12—H12A109.5
N1—C4—C3111.95 (18)C11—C12—H12B109.5
N1—C4—H4A109.2H12A—C12—H12B109.5
C3—C4—H4A109.2C11—C12—H12C109.5
N1—C4—H4B109.2H12A—C12—H12C109.5
C3—C4—H4B109.2H12B—C12—H12C109.5
H4A—C4—H4B107.9
C5—N1—C1—C2120.4 (2)C11—N2—C7—C8120.0 (2)
C4—N1—C1—C261.1 (3)C10—N2—C7—C862.5 (2)
N1—C1—C2—S159.4 (2)N2—C7—C8—S260.5 (2)
C3—S1—C2—C152.97 (17)C9—S2—C8—C754.16 (18)
Cu1—S1—C2—C1162.73 (14)Cu1—S2—C8—C7170.60 (15)
C2—S1—C3—C453.85 (17)C8—S2—C9—C1054.05 (16)
Cu1—S1—C3—C4158.97 (13)Cu1—S2—C9—C10163.52 (12)
C5—N1—C4—C3119.1 (2)C11—N2—C10—C9118.9 (2)
C1—N1—C4—C362.5 (2)C7—N2—C10—C963.8 (2)
S1—C3—C4—N161.7 (2)S2—C9—C10—N261.7 (2)
C1—N1—C5—O12.6 (3)C10—N2—C11—O2172.7 (2)
C4—N1—C5—O1179.1 (2)C7—N2—C11—O24.6 (3)
C1—N1—C5—C6175.7 (2)C10—N2—C11—C128.6 (3)
C4—N1—C5—C62.6 (3)C7—N2—C11—C12174.10 (19)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2ii0.992.523.241 (3)129
C6—H6B···O2ii0.982.473.418 (3)162
C10—H10A···O1iii0.992.583.144 (3)116
C12—H12B···O2iv0.982.593.372 (3)137
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y+1, z.
 

Acknowledgements

This research was supported by the Basic Science Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2015R1D1A4A01020317).

References

First citationBlake, A. J., Brooks, N. R., Champness, N. R., Cooke, P. A., Crew, M., Deveson, A. M., Hanton, L. R., Hubberstey, P., Fenske, D. & Schröder, M. (1999). Cryst. Eng. 2, 181–195.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCariati, E., Roberto, D., Ugo, R., Ford, P. C., Galli, S. & Sironi, A. (2002). Chem. Mater. 14, 5116–5123.  Web of Science CSD CrossRef CAS Google Scholar
First citationHarvey, P. D. & Knorr, M. (2010). Macromol. Rapid Commun. 31, 808–826.  CrossRef CAS Google Scholar
First citationHenline, K. M., Wang, C., Pike, R. D., Ahern, J. C., Sousa, B., Patterson, H. H., Kerr, A. T. & Cahill, C. L. (2014). Cryst. Growth Des. 14, 1449–1458.  CSD CrossRef CAS Google Scholar
First citationKang, C. & Anson, F. C. (1995). Inorg. Chem. 34, 2771–2780.  CrossRef CAS Google Scholar
First citationKang, G., Kim, J., Kwon, E. & Kim, T. H. (2015). Acta Cryst. E71, o679.  CSD CrossRef IUCr Journals Google Scholar
First citationKnorr, M., Pam, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D. & Harvey, P. D. (2010). Inorg. Chem. 49, 5834–5844.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMoreno, J. M., Suarez-Varela, J., Colacio, E., Avila-Rosón, J. C., Hidalgo, M. A. & Martin-Ramos, D. (1995). Can. J. Chem. 73, 1591–1595.  CSD CrossRef CAS Google Scholar
First citationMunakata, M., Wu, L. P. & Kuroda-Sowa, T. (1997). Bull. Chem. Soc. Jpn, 70, 1727–1743.  CrossRef CAS Web of Science Google Scholar
First citationNäther, C., Wriedt, M. & Jess, I. (2003). Inorg. Chem. 42, 2391–2397.  Web of Science CSD CrossRef PubMed Google Scholar
First citationPeng, R., Li, M. & Li, D. (2010). Coord. Chem. Rev. 254, 1–18.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThébault, F., Barnett, S. A., Blake, J. A., Wilson, C., Champness, N. R. & Schröder, M. (2006). Inorg. Chem. 45, 6179–6187.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds