research communications
cis-(1,4,8,11-tetraazacyclotetradecane-κ4N)bis(thiocyanato-κN)chromium(III)] dichromate monohydrate from synchrotron X-ray diffraction data
of bis[aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, bDepartment of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and cDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr
The structure of the complex salt, cis-[Cr(NCS)2(cyclam)]2[Cr2O7]·H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane, C10H24N4), has been determined from synchrotron data. The comprises of one [Cr(NCS)2(cyclam)]+ cation, one half of a Cr2O72− anion (completed by inversion symmetry) and one half of a water molecule (completed by twofold rotation symmetry). The CrIII ion is coordinated by the four cyclam N atoms and by two N atoms of cis-arranged thiocyanate anions, displaying a distorted octahedral coordination sphere. The Cr—N(cyclam) bond lengths are in the range 2.080 (2) to 2.097 (2) Å while the average Cr—N(NCS) bond length is 1.985 (4) Å. The macrocyclic cyclam moiety adopts the cis-V conformation. The bridging O atom of the dichromate anion is disordered around an inversion centre, leading to a bending of the Cr—O—Cr bridging angle [157.7 (3)°]; the anion has a The is stabilized by intermolecular hydrogen bonds involving the cyclam N—H groups and water O—H groups as donor groups, and the O atoms of the Cr2O72− anion and water molecules as acceptor groups, giving rise to a three-dimensional network.
Keywords: crystal structure; cyclam; chromium(III) complex; thiocyanate ligand; cis-V conformation; dichromate anion; hydrogen bonding; synchrotron radiation.
CCDC reference: 1523266
1. Chemical context
Recently, it has been established that cyclam (1,4,8,11-tetraazacyclotetradecane, C10H24N4) derivatives and their complexes can exhibit anti-HIV effects or stimulate the activity of stem cells from bone marrow (Ronconi & Sadler, 2007; De Clercq, 2010; Ross et al., 2012). Cyclam has a moderately flexible structure and can adopt both planar (trans) and folded (cis) conformations (Poon & Pun, 1980). There are five configurational trans isomers for the macrocycle, which differ in the of the sec-NH sites (Choi, 2009). The trans-I, trans-II and trans-V configurations also can fold to form cis-I, cis-II and cis-V isomers, respectively (Subhan et al., 2011). The configuration of the macrocyclic ligand and the influence of the counter-anion are important factors in developing new highly effective anti-HIV drugs.
The dichromate anion is environmentally important due to its high toxicity (Yusof & Malek, 2009), and its use in industrial processing (Goyal et al., 2003). Since counter-anionic species play an important role in coordination chemistry (Martínez-Máñez & Sancenón, 2003; Fabbrizzi & Poggi, 2013), it may be possible that the [Cr(NCS)2(cyclam)]+ cation is suitable to bind specifically to an oxoanion. In this context, we report here on the synthesis of a new chromium(III)–dichromate salt, [Cr(NCS)2(cyclam)]2(Cr2O7)·H2O, (I), and its structural characterization by synchrotron single-crystal X-ray diffraction.
2. Structural commentary
Fig. 1 displays the molecular components of (I). The structure is another example of a [Cr(NCS)2(cyclam)]+ cation (Friesen et al., 1997; Moon et al., 2013) but with a different counter-anion. The comprises of one [Cr(NCS)2(cyclam)]+ cation, one half of a Cr2O72− anion (completed by inversion symmetry) and one half of a water molecule (completed by twofold rotation symmetry). In the complex cation, the CrIII ion is coordinated by the N atoms of the cyclam ligand in the folded conformation. The nitrogen atoms of two NCS− ligands coordinate to the chromium atoms in a cis arrangement. The cyclam moiety adopts the cis-V (anti–anti) conformation (Subhan et al., 2011). The Cr—N(cyclam) bond lengths are in the range 2.080 (2) to 2.097 (2) Å, in good agreement with those determined in related structures, namely cis-[Cr(NCS)2(cyclam)]SCN [2.0851 (14)–2.0897 (14) Å; Moon et al., 2013], cis-[Cr(N3)2(cyclam)]ClO4 [2.069 (3)–2.103 (3) Å; Meyer et al., 1998], cis-[Cr(ONO)2(cyclam)]NO2 [2.0874 (16)–2.0916 (15) Å; Choi et al., 2004a], [Cr(acac)(cyclam)](ClO4)2·0.5H2O [2.070(5–2.089 (5) Å, acac = acetylacetonate; Subhan et al., 2011] or cis-[CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 [2.075 (5)–2.096 (5) Å; Moon & Choi, 2016a]. The Cr—N(cyclam) bond lengths with co-ligands in cis orientations are slightly longer than those found in trans-[Cr(NCS)2(cyclam)]ClO4 [2.046 (2)–2.060 (2) Å; Friesen et al., 1997], trans-[Cr(ONO)2(cyclam)]BF4 [2.064 (4)–2.073 (4) Å; De Leo et al., 2000], trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O [2.0501 (15)–2.0615 (15) Å; Moon & Choi, 2016b] or trans-[Cr(nic-O)2(cyclam)]ClO4 [2.058 (4) – 2.064 (4) Å, nic-O = O-coordinating nicotinate; Choi, 2009]. The two Cr—N(NCS) bond lengths in (I) average to 1.985 (4) Å and are close to the values found in cis-[Cr(NCS)2(cyclam)]NCS [1.996 (15) Å; Moon et al., 2013], cis-[Cr(NCS)2(cyclam)]ClO4 [1.981 (4)–1.998 (4) Å; Friesen et al., 1997], trans-[Cr(NCS)2(cyclam)]2[ZnCl4] [1.995 (6) Å; Moon et al., 2015a] or trans-[Cr(NCS)2(Me2tn)2]SCN·0.5H2O [1.983 (2)–1.990 (2) Å; Choi & Lee, 2009]. The five- and six-membered chelate rings of the cyclam ligand adopt gauche and stable chair conformations, respectively. The folded angle [96.05 (8)°] of cyclam is comparable to the values of 98.55 (2), 97.17 (5), 97.03 (2), 95.09 (9), 94.51 (2) and 92.8 (2)° in [Cr(ox)(cyclam)]ClO4, cis-[Cr(NCS)2(cyclam)]SCN, [Cr(acac)(cyclam)](ClO4)2·0.5H2O, cis-[Cr(ONO)2(cyclam)]NO2, cis-[Cr(N3)2(cyclam)]ClO4 and cis-[Cr(cyclam)Cl2]Cl, respectively (Choi et al., 2004b; Moon et al., 2013; Subhan et al., 2011; Choi et al., 2004a; Meyer et al., 1998; Forsellini et al., 1986, respectively).
The two N-bound thiocyanate anions are almost linear, with N—C—S angles of 178.8 (2) and 179.0 (3)°. The bridging O atom of the Cr2O72− anion is positionally disordered over an inversion centre, giving rise to a bending of the Cr2B—O1B—Cr2B(−x + 1, −y + 1, −z + 1) angle [157.7 (3)°]. The Cr2O72− anion in (I) has a while a nearly eclipsed conformation is observed in ionic compounds K2Cr2O7, Rb2Cr2O7 and (C3H5N2)(NH4)[Cr2O7] (Brandon & Brown, 1968; Löfgren, 1971; Zhu, 2012). The conformation of the dichromate anion is influenced by the charge and size of the counter-cation (Moon et al., 2015b; Moon & Choi, 2016). The O—Cr2B—O bond angles range from 102.3 (3) to 119.5 (2)°; the terminal Cr2B—O bond lengths vary from 1.596 (2) to 1.612 (2) Å, with a mean terminal Cr2B—O bond length of 1.604 (12) Å. The bridging Cr2B—O1B bond has a length of 1.746 (9) Å. These values are comparable to those reported for the anions in the structures of [Cr(urea)6](Cr2O7)Br·H2O (Moon et al., 2015b) or [CrCl2(tn)2]2(Cr2O7) (tn = propane-1,3-diamine; Moon & Choi, 2016). A further distortion of the anion is due to its involvement in hydrogen-bonding interactions with water molecule and complex cation (see Supramolecular features).
3. Supramolecular features
Two O—H⋯O hydrogen bonds link the water molecule to neighboring Cr2O72− anions while N—H⋯O hydrogen bonds interconnect [Cr(NCS)2(cyclam)]+ cations with both the anions and water molecules (Table 1; Figs. 1 and 2) . An extensive array of these contacts generates a three-dimensional network of molecules stacked along the c-axis.
4. Database survey
A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016) gave 17 hits for a cis-[CrL2(C10H24N4)]+ unit.
5. Synthesis and crystallization
Cyclam was purchased from Stream Chemicals and used as provided. All chemicals were reagent-grade materials and used without further purification. The starting material, cis-[Cr(NCS)2(cyclam)]SCN was prepared according to a literature protocol (Ferguson & Tobe, 1970). The thiocyanate salt (0.513 g) was dissolved in 15 mL water at 347 K. The filtrate was added to 5 mL of water containing solid K2Cr2O7 (0.02 g). The resulting solution was evaporated slowly at room temperature until formation of crystals. The obtained block-like orange crystals of the dichromate salt were washed with small amounts of 2-propanol and dried in air before collecting the synchrotron data. Elemental analysis calculated for [Cr(NCS)2(C10H24N4)]2(Cr2O7)·H2O: C, 29.69; H, 5.19; N, 17.31%; found C, 29.84; H, 4.90; N, 17.28%.
6. Refinement
Crystal data, data collection and structure . All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.98 Å and N—H = 0.99 Å, and with Uiso(H) values of 1.2Ueq of the parent atoms. The hydrogen atom of the solvent water molecule was assigned based on a difference Fourier map, and the O—H distance and the H—O—H angle were restrained [0.84 (1) Å, 136 (2)°]. The bridging oxygen atom of the dichromate anion is positionally disordered around an inversion centre and consequently was refined with half-occupancy.
details are summarized in Table 2Supporting information
CCDC reference: 1523266
https://doi.org/10.1107/S2056989016020120/wm5351sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016020120/wm5351Isup2.hkl
Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell
HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip,2010).[Cr(NCS)2(C10H24N4)]2[Cr2O7]·H2O | F(000) = 2008 |
Mr = 971.00 | Dx = 1.650 Mg m−3 |
Monoclinic, C2/c | Synchrotron radiation, λ = 0.620 Å |
a = 16.044 (2) Å | Cell parameters from 51334 reflections |
b = 16.221 (2) Å | θ = 0.4–33.6° |
c = 15.041 (2) Å | µ = 0.92 mm−1 |
β = 93.335 (3)° | T = 243 K |
V = 3907.8 (9) Å3 | Block, orange |
Z = 4 | 0.04 × 0.03 × 0.02 mm |
ADSC Q210 CCD area detector diffractometer | 4156 reflections with I > 2σ(I) |
Radiation source: PLSII 2D bending magnet | Rint = 0.018 |
ω scan | θmax = 26.0°, θmin = 1.6° |
Absorption correction: empirical (using intensity measurements) (HKL3000sm Scalepack; Otwinowski & Minor, 1997) | h = −22→22 |
Tmin = 0.799, Tmax = 1.000 | k = −22→22 |
11326 measured reflections | l = −21→21 |
5767 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0961P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.148 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 1.07 e Å−3 |
5767 reflections | Δρmin = −0.73 e Å−3 |
244 parameters | Extinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
3 restraints | Extinction coefficient: 0.0074 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cr1A | 0.21438 (2) | 0.57578 (2) | 0.25925 (2) | 0.03091 (13) | |
S1A | 0.04950 (5) | 0.36485 (4) | 0.11771 (4) | 0.04880 (19) | |
S2A | 0.10063 (7) | 0.74359 (5) | 0.02581 (6) | 0.0745 (3) | |
N1A | 0.12183 (13) | 0.61482 (13) | 0.34086 (12) | 0.0382 (4) | |
H1A | 0.079016 | 0.642089 | 0.300936 | 0.046* | |
N2A | 0.27533 (14) | 0.68147 (13) | 0.31024 (13) | 0.0434 (5) | |
H2A | 0.316020 | 0.664275 | 0.358709 | 0.052* | |
N3A | 0.32354 (14) | 0.54328 (15) | 0.19902 (14) | 0.0446 (5) | |
H3A | 0.306385 | 0.502794 | 0.152215 | 0.054* | |
N4A | 0.25948 (13) | 0.49636 (12) | 0.35970 (12) | 0.0346 (4) | |
H4A | 0.288918 | 0.530211 | 0.406434 | 0.041* | |
N5A | 0.15160 (14) | 0.48029 (13) | 0.20628 (13) | 0.0413 (5) | |
N6A | 0.17022 (15) | 0.64396 (14) | 0.15798 (14) | 0.0438 (5) | |
C1A | 0.15574 (19) | 0.68028 (17) | 0.40197 (18) | 0.0494 (6) | |
H1A1 | 0.188173 | 0.655601 | 0.452403 | 0.059* | |
H1A2 | 0.110059 | 0.712466 | 0.425097 | 0.059* | |
C2A | 0.2102 (2) | 0.73442 (17) | 0.34991 (19) | 0.0529 (7) | |
H2A1 | 0.237031 | 0.776231 | 0.388958 | 0.063* | |
H2A2 | 0.176737 | 0.762617 | 0.302565 | 0.063* | |
C3A | 0.3207 (2) | 0.73028 (18) | 0.24429 (19) | 0.0538 (7) | |
H3A1 | 0.341165 | 0.781628 | 0.272119 | 0.065* | |
H3A2 | 0.282160 | 0.744693 | 0.193779 | 0.065* | |
C4A | 0.39357 (19) | 0.6825 (2) | 0.2110 (2) | 0.0590 (8) | |
H4A1 | 0.428513 | 0.663492 | 0.262585 | 0.071* | |
H4A2 | 0.427404 | 0.720062 | 0.176952 | 0.071* | |
C5A | 0.3701 (2) | 0.6088 (2) | 0.15325 (18) | 0.0562 (7) | |
H5A1 | 0.335888 | 0.627816 | 0.101176 | 0.067* | |
H5A2 | 0.421255 | 0.584763 | 0.131733 | 0.067* | |
C6A | 0.37777 (18) | 0.49700 (19) | 0.26556 (18) | 0.0504 (6) | |
H6A1 | 0.409094 | 0.535645 | 0.304869 | 0.061* | |
H6A2 | 0.417792 | 0.463030 | 0.235079 | 0.061* | |
C7A | 0.32269 (18) | 0.44260 (17) | 0.31975 (18) | 0.0461 (6) | |
H7A1 | 0.294855 | 0.400899 | 0.281353 | 0.055* | |
H7A2 | 0.356505 | 0.414318 | 0.366772 | 0.055* | |
C8A | 0.19634 (16) | 0.44486 (15) | 0.40364 (16) | 0.0410 (5) | |
H8A1 | 0.225168 | 0.408506 | 0.447454 | 0.049* | |
H8A2 | 0.166940 | 0.410082 | 0.358709 | 0.049* | |
C9A | 0.13381 (18) | 0.49627 (17) | 0.44937 (16) | 0.0446 (6) | |
H9A1 | 0.164157 | 0.532275 | 0.492398 | 0.053* | |
H9A2 | 0.098970 | 0.459365 | 0.483051 | 0.053* | |
C10A | 0.07670 (17) | 0.54960 (17) | 0.38902 (17) | 0.0441 (6) | |
H10A | 0.046651 | 0.514150 | 0.345211 | 0.053* | |
H10B | 0.035225 | 0.575948 | 0.425015 | 0.053* | |
C11A | 0.10820 (16) | 0.43251 (14) | 0.16879 (14) | 0.0354 (5) | |
C12A | 0.14135 (15) | 0.68562 (15) | 0.10176 (15) | 0.0376 (5) | |
Cr2B | 0.43256 (3) | 0.58043 (3) | 0.52084 (3) | 0.04068 (14) | |
O1B1 | 0.5133 (5) | 0.5087 (6) | 0.5160 (6) | 0.0703 (17) | 0.25 |
O1B2 | 0.5133 (5) | 0.5087 (6) | 0.5160 (6) | 0.0703 (17) | 0.25 |
O2B | 0.46377 (19) | 0.62450 (18) | 0.61164 (14) | 0.0817 (8) | |
O3B | 0.43108 (16) | 0.64288 (14) | 0.43819 (14) | 0.0686 (6) | |
O4B | 0.33924 (14) | 0.54580 (18) | 0.52960 (14) | 0.0737 (7) | |
O1W | 0.500000 | 0.75939 (19) | 0.750000 | 0.0587 (8) | |
H1OW | 0.483 (2) | 0.7293 (10) | 0.7074 (11) | 0.088* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cr1A | 0.0380 (2) | 0.0291 (2) | 0.02458 (18) | −0.00533 (14) | −0.00667 (13) | 0.00188 (12) |
S1A | 0.0635 (4) | 0.0365 (3) | 0.0439 (3) | −0.0122 (3) | −0.0183 (3) | −0.0014 (3) |
S2A | 0.1159 (8) | 0.0473 (4) | 0.0554 (5) | 0.0173 (5) | −0.0380 (5) | 0.0057 (4) |
N1A | 0.0448 (11) | 0.0365 (11) | 0.0325 (9) | −0.0010 (9) | −0.0040 (8) | 0.0010 (8) |
N2A | 0.0535 (12) | 0.0377 (11) | 0.0372 (10) | −0.0140 (9) | −0.0116 (9) | 0.0014 (9) |
N3A | 0.0447 (12) | 0.0561 (13) | 0.0328 (10) | −0.0070 (10) | 0.0005 (8) | 0.0015 (9) |
N4A | 0.0430 (10) | 0.0318 (9) | 0.0282 (8) | −0.0009 (8) | −0.0035 (7) | 0.0029 (7) |
N5A | 0.0519 (12) | 0.0368 (11) | 0.0337 (9) | −0.0103 (9) | −0.0092 (8) | −0.0011 (8) |
N6A | 0.0552 (13) | 0.0402 (12) | 0.0343 (10) | −0.0057 (9) | −0.0104 (9) | 0.0065 (8) |
C1A | 0.0675 (18) | 0.0390 (13) | 0.0409 (13) | −0.0006 (12) | −0.0021 (12) | −0.0068 (11) |
C2A | 0.075 (2) | 0.0344 (13) | 0.0481 (14) | −0.0057 (13) | −0.0049 (13) | −0.0066 (11) |
C3A | 0.0632 (18) | 0.0456 (15) | 0.0511 (15) | −0.0241 (13) | −0.0085 (13) | 0.0059 (12) |
C4A | 0.0543 (17) | 0.071 (2) | 0.0515 (15) | −0.0223 (15) | −0.0041 (13) | 0.0133 (14) |
C5A | 0.0542 (16) | 0.072 (2) | 0.0432 (14) | −0.0119 (15) | 0.0063 (12) | 0.0119 (14) |
C6A | 0.0456 (14) | 0.0634 (17) | 0.0422 (13) | 0.0067 (13) | 0.0018 (11) | 0.0010 (13) |
C7A | 0.0494 (14) | 0.0466 (14) | 0.0418 (13) | 0.0099 (12) | −0.0011 (11) | 0.0019 (11) |
C8A | 0.0526 (14) | 0.0347 (12) | 0.0351 (11) | −0.0056 (10) | −0.0029 (10) | 0.0099 (9) |
C9A | 0.0524 (15) | 0.0485 (14) | 0.0329 (11) | −0.0050 (12) | 0.0027 (10) | 0.0081 (10) |
C10A | 0.0446 (13) | 0.0479 (14) | 0.0397 (12) | −0.0025 (11) | 0.0004 (10) | 0.0054 (11) |
C11A | 0.0472 (13) | 0.0308 (11) | 0.0273 (10) | −0.0001 (9) | −0.0068 (9) | 0.0033 (8) |
C12A | 0.0463 (13) | 0.0354 (12) | 0.0300 (10) | −0.0024 (10) | −0.0068 (9) | −0.0036 (9) |
Cr2B | 0.0457 (2) | 0.0434 (3) | 0.0319 (2) | 0.00024 (17) | −0.00628 (16) | 0.00294 (15) |
O1B1 | 0.060 (5) | 0.063 (4) | 0.087 (6) | 0.014 (3) | 0.000 (3) | −0.009 (4) |
O1B2 | 0.060 (5) | 0.063 (4) | 0.087 (6) | 0.014 (3) | 0.000 (3) | −0.009 (4) |
O2B | 0.107 (2) | 0.0956 (19) | 0.0407 (11) | −0.0337 (16) | −0.0147 (12) | −0.0019 (12) |
O3B | 0.0960 (18) | 0.0621 (14) | 0.0461 (11) | 0.0021 (13) | −0.0096 (11) | 0.0156 (10) |
O4B | 0.0511 (12) | 0.122 (2) | 0.0466 (11) | −0.0224 (13) | −0.0071 (9) | −0.0004 (13) |
O1W | 0.076 (2) | 0.0548 (17) | 0.0435 (15) | 0.000 | −0.0078 (14) | 0.000 |
Cr1A—N6A | 1.980 (2) | C3A—H3A2 | 0.9800 |
Cr1A—N5A | 1.989 (2) | C4A—C5A | 1.512 (4) |
Cr1A—N1A | 2.080 (2) | C4A—H4A1 | 0.9800 |
Cr1A—N4A | 2.0829 (19) | C4A—H4A2 | 0.9800 |
Cr1A—N3A | 2.086 (2) | C5A—H5A1 | 0.9800 |
Cr1A—N2A | 2.097 (2) | C5A—H5A2 | 0.9800 |
S1A—C11A | 1.612 (2) | C6A—C7A | 1.519 (4) |
S2A—C12A | 1.590 (2) | C6A—H6A1 | 0.9800 |
N1A—C1A | 1.487 (3) | C6A—H6A2 | 0.9800 |
N1A—C10A | 1.493 (3) | C7A—H7A1 | 0.9800 |
N1A—H1A | 0.9900 | C7A—H7A2 | 0.9800 |
N2A—C3A | 1.492 (3) | C8A—C9A | 1.502 (4) |
N2A—C2A | 1.502 (4) | C8A—H8A1 | 0.9800 |
N2A—H2A | 0.9900 | C8A—H8A2 | 0.9800 |
N3A—C6A | 1.490 (3) | C9A—C10A | 1.522 (4) |
N3A—C5A | 1.491 (4) | C9A—H9A1 | 0.9800 |
N3A—H3A | 0.9900 | C9A—H9A2 | 0.9800 |
N4A—C7A | 1.490 (3) | C10A—H10A | 0.9800 |
N4A—C8A | 1.496 (3) | C10A—H10B | 0.9800 |
N4A—H4A | 0.9900 | Cr2B—O2B | 1.596 (2) |
N5A—C11A | 1.165 (3) | Cr2B—O3B | 1.603 (2) |
N6A—C12A | 1.158 (3) | Cr2B—O4B | 1.612 (2) |
C1A—C2A | 1.493 (4) | Cr2B—O1B1 | 1.746 (9) |
C1A—H1A1 | 0.9800 | Cr2B—O1B2 | 1.746 (9) |
C1A—H1A2 | 0.9800 | Cr2B—O1B1i | 1.791 (9) |
C2A—H2A1 | 0.9800 | O1B1—O1B1i | 0.686 (9) |
C2A—H2A2 | 0.9800 | O1W—H1OW | 0.839 (7) |
C3A—C4A | 1.511 (5) | O1W—H1OWii | 0.839 (7) |
C3A—H3A1 | 0.9800 | ||
N6A—Cr1A—N5A | 88.66 (9) | C5A—C4A—H4A1 | 108.5 |
N6A—Cr1A—N1A | 92.76 (9) | C3A—C4A—H4A2 | 108.5 |
N5A—Cr1A—N1A | 96.39 (9) | C5A—C4A—H4A2 | 108.5 |
N6A—Cr1A—N4A | 175.72 (8) | H4A1—C4A—H4A2 | 107.5 |
N5A—Cr1A—N4A | 87.44 (8) | N3A—C5A—C4A | 114.4 (2) |
N1A—Cr1A—N4A | 89.43 (8) | N3A—C5A—H5A1 | 108.7 |
N6A—Cr1A—N3A | 94.53 (9) | C4A—C5A—H5A1 | 108.7 |
N5A—Cr1A—N3A | 92.73 (9) | N3A—C5A—H5A2 | 108.7 |
N1A—Cr1A—N3A | 168.45 (8) | C4A—C5A—H5A2 | 108.7 |
N4A—Cr1A—N3A | 83.89 (8) | H5A1—C5A—H5A2 | 107.6 |
N6A—Cr1A—N2A | 87.88 (8) | N3A—C6A—C7A | 108.5 (2) |
N5A—Cr1A—N2A | 176.30 (9) | N3A—C6A—H6A1 | 110.0 |
N1A—Cr1A—N2A | 82.47 (8) | C7A—C6A—H6A1 | 110.0 |
N4A—Cr1A—N2A | 96.05 (8) | N3A—C6A—H6A2 | 110.0 |
N3A—Cr1A—N2A | 88.86 (9) | C7A—C6A—H6A2 | 110.0 |
C1A—N1A—C10A | 112.12 (19) | H6A1—C6A—H6A2 | 108.4 |
C1A—N1A—Cr1A | 109.52 (16) | N4A—C7A—C6A | 107.9 (2) |
C10A—N1A—Cr1A | 116.98 (17) | N4A—C7A—H7A1 | 110.1 |
C1A—N1A—H1A | 105.8 | C6A—C7A—H7A1 | 110.1 |
C10A—N1A—H1A | 105.8 | N4A—C7A—H7A2 | 110.1 |
Cr1A—N1A—H1A | 105.8 | C6A—C7A—H7A2 | 110.1 |
C3A—N2A—C2A | 109.8 (2) | H7A1—C7A—H7A2 | 108.4 |
C3A—N2A—Cr1A | 115.22 (16) | N4A—C8A—C9A | 112.3 (2) |
C2A—N2A—Cr1A | 107.01 (16) | N4A—C8A—H8A1 | 109.1 |
C3A—N2A—H2A | 108.2 | C9A—C8A—H8A1 | 109.1 |
C2A—N2A—H2A | 108.2 | N4A—C8A—H8A2 | 109.1 |
Cr1A—N2A—H2A | 108.2 | C9A—C8A—H8A2 | 109.1 |
C6A—N3A—C5A | 112.4 (2) | H8A1—C8A—H8A2 | 107.9 |
C6A—N3A—Cr1A | 107.93 (15) | C8A—C9A—C10A | 116.0 (2) |
C5A—N3A—Cr1A | 118.5 (2) | C8A—C9A—H9A1 | 108.3 |
C6A—N3A—H3A | 105.7 | C10A—C9A—H9A1 | 108.3 |
C5A—N3A—H3A | 105.7 | C8A—C9A—H9A2 | 108.3 |
Cr1A—N3A—H3A | 105.7 | C10A—C9A—H9A2 | 108.3 |
C7A—N4A—C8A | 110.21 (19) | H9A1—C9A—H9A2 | 107.4 |
C7A—N4A—Cr1A | 106.58 (14) | N1A—C10A—C9A | 113.6 (2) |
C8A—N4A—Cr1A | 116.75 (15) | N1A—C10A—H10A | 108.8 |
C7A—N4A—H4A | 107.7 | C9A—C10A—H10A | 108.8 |
C8A—N4A—H4A | 107.7 | N1A—C10A—H10B | 108.8 |
Cr1A—N4A—H4A | 107.7 | C9A—C10A—H10B | 108.8 |
C11A—N5A—Cr1A | 170.5 (2) | H10A—C10A—H10B | 107.7 |
C12A—N6A—Cr1A | 176.3 (2) | N5A—C11A—S1A | 178.8 (2) |
N1A—C1A—C2A | 107.5 (2) | N6A—C12A—S2A | 179.0 (3) |
N1A—C1A—H1A1 | 110.2 | O2B—Cr2B—O3B | 111.73 (13) |
C2A—C1A—H1A1 | 110.2 | O2B—Cr2B—O4B | 109.44 (13) |
N1A—C1A—H1A2 | 110.2 | O3B—Cr2B—O4B | 108.17 (13) |
C2A—C1A—H1A2 | 110.2 | O2B—Cr2B—O1B1 | 97.9 (2) |
H1A1—C1A—H1A2 | 108.5 | O3B—Cr2B—O1B1 | 111.5 (4) |
C1A—C2A—N2A | 108.3 (2) | O4B—Cr2B—O1B1 | 117.8 (3) |
C1A—C2A—H2A1 | 110.0 | O2B—Cr2B—O1B2 | 97.9 (2) |
N2A—C2A—H2A1 | 110.0 | O3B—Cr2B—O1B2 | 111.5 (4) |
C1A—C2A—H2A2 | 110.0 | O4B—Cr2B—O1B2 | 117.8 (3) |
N2A—C2A—H2A2 | 110.0 | O2B—Cr2B—O1B1i | 119.5 (2) |
H2A1—C2A—H2A2 | 108.4 | O3B—Cr2B—O1B1i | 104.8 (4) |
N2A—C3A—C4A | 111.4 (2) | O4B—Cr2B—O1B1i | 102.3 (3) |
N2A—C3A—H3A1 | 109.3 | O1B1—Cr2B—O1B1i | 22.3 (3) |
C4A—C3A—H3A1 | 109.3 | O1B2—Cr2B—O1B1i | 22.3 (3) |
N2A—C3A—H3A2 | 109.3 | O1B1i—O1B1—Cr2B | 82.5 (15) |
C4A—C3A—H3A2 | 109.3 | O1B1i—O1B1—Cr2Bi | 75.2 (15) |
H3A1—C3A—H3A2 | 108.0 | Cr2B—O1B1—Cr2Bi | 157.7 (3) |
C3A—C4A—C5A | 115.1 (2) | Cr2B—O1B2—Cr2Bi | 157.7 (3) |
C3A—C4A—H4A1 | 108.5 | H1OW—O1W—H1OWii | 109 (2) |
C10A—N1A—C1A—C2A | 171.4 (2) | C7A—N4A—C8A—C9A | 176.9 (2) |
Cr1A—N1A—C1A—C2A | 39.8 (3) | Cr1A—N4A—C8A—C9A | −61.4 (2) |
N1A—C1A—C2A—N2A | −55.7 (3) | N4A—C8A—C9A—C10A | 65.3 (3) |
C3A—N2A—C2A—C1A | 169.5 (2) | C1A—N1A—C10A—C9A | −69.4 (3) |
Cr1A—N2A—C2A—C1A | 43.8 (2) | Cr1A—N1A—C10A—C9A | 58.4 (3) |
C2A—N2A—C3A—C4A | 173.1 (2) | C8A—C9A—C10A—N1A | −64.1 (3) |
Cr1A—N2A—C3A—C4A | −66.0 (3) | O2B—Cr2B—O1B1—O1B1i | 166.3 (18) |
N2A—C3A—C4A—C5A | 68.6 (3) | O3B—Cr2B—O1B1—O1B1i | −76.5 (19) |
C6A—N3A—C5A—C4A | −72.0 (3) | O4B—Cr2B—O1B1—O1B1i | 49 (2) |
Cr1A—N3A—C5A—C4A | 55.0 (3) | O2B—Cr2B—O1B1—Cr2Bi | 166.3 (18) |
C3A—C4A—C5A—N3A | −62.5 (4) | O3B—Cr2B—O1B1—Cr2Bi | −76.5 (19) |
C5A—N3A—C6A—C7A | 170.2 (2) | O4B—Cr2B—O1B1—Cr2Bi | 49 (2) |
Cr1A—N3A—C6A—C7A | 37.7 (3) | O1B1i—Cr2B—O1B1—Cr2Bi | 0.004 (6) |
C8A—N4A—C7A—C6A | 172.4 (2) | O2B—Cr2B—O1B2—Cr2Bi | 166.3 (18) |
Cr1A—N4A—C7A—C6A | 44.8 (2) | O3B—Cr2B—O1B2—Cr2Bi | −76.5 (19) |
N3A—C6A—C7A—N4A | −55.9 (3) | O4B—Cr2B—O1B2—Cr2Bi | 49 (2) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1A—H1A···O1Wiii | 0.99 | 2.15 | 3.089 (3) | 157 |
N2A—H2A···O3B | 0.99 | 2.17 | 3.127 (3) | 163 |
N3A—H3A···O4Biv | 0.99 | 2.10 | 2.953 (3) | 143 |
N4A—H4A···O4B | 0.99 | 1.99 | 2.904 (3) | 152 |
O1W—H1OW···O2B | 0.84 (1) | 2.24 (1) | 3.052 (3) | 164 (2) |
Symmetry codes: (iii) −x+1/2, −y+3/2, −z+1; (iv) x, −y+1, z−1/2. |
Acknowledgements
This work was supported by a grant from the 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.
References
Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933–941. CrossRef CAS Google Scholar
Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89. Web of Science CSD CrossRef CAS Google Scholar
Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44. Web of Science CSD CrossRef CAS Google Scholar
De Clercq, E. (2010). J. Med. Chem. 53, 1438–1450. Web of Science CrossRef PubMed CAS Google Scholar
De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950. Web of Science CSD CrossRef CAS Google Scholar
Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699. Web of Science CrossRef CAS PubMed Google Scholar
Ferguson, J. & Tobe, M. L. (1970). Inorg. Chim. Acta, 4, 109–112. CrossRef CAS Google Scholar
Forsellini, E., Parasassi, T., Bombieri, G., Tobe, M. L. & Sosa, M. E. (1986). Acta Cryst. C42, 563–565. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Goyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311–319. Web of Science CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Löfgren, P. (1971). Acta Chem. Scand. 25, 44–58. CAS Google Scholar
Martínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419–4476. Web of Science CrossRef PubMed CAS Google Scholar
Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180–5188. Web of Science CSD CrossRef CAS Google Scholar
Moon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 1417–1420. CSD CrossRef IUCr Journals Google Scholar
Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 456–459. CSD CrossRef IUCr Journals Google Scholar
Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377. CSD CrossRef IUCr Journals Google Scholar
Moon, D., Ryoo, K. S. & Choi, J.-H. (2015a). Acta Cryst. E71, 540–543. CSD CrossRef IUCr Journals Google Scholar
Moon, D., Ryoo, K. S. & Choi, J.-H. (2016). Acta Cryst. E72, 1293–1296. CSD CrossRef IUCr Journals Google Scholar
Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015b). Acta Cryst. E71, 1336–1339. CSD CrossRef IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569. CrossRef CAS Web of Science Google Scholar
Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648. Web of Science CrossRef CAS Google Scholar
Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373. Web of Science CrossRef IUCr Journals Google Scholar
Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024. Web of Science CrossRef PubMed CAS Google Scholar
Zhu, R.-Q. (2012). Acta Cryst. E68, m389. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.