research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­[cis-(1,4,8,11-tetra­aza­cyclo­tetra­deca­ne-κ4N)bis­(thio­cyanato-κN)chrom­ium(III)] dichromate monohydrate from synchrotron X-ray diffraction data

CROSSMARK_Color_square_no_text.svg

aPohang Accelerator Laboratory, POSTECH, Pohang 37673, Republic of Korea, bDepartment of Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, and cDepartment of Chemistry, Andong National University, Andong 36729, Republic of Korea
*Correspondence e-mail: jhchoi@anu.ac.kr

Edited by M. Weil, Vienna University of Technology, Austria (Received 7 December 2016; accepted 18 December 2016; online 1 January 2017)

The structure of the complex salt, cis-[Cr(NCS)2(cyclam)]2[Cr2O7]·H2O (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4), has been determined from synchrotron data. The asymmetric unit comprises of one [Cr(NCS)2(cyclam)]+ cation, one half of a Cr2O72− anion (completed by inversion symmetry) and one half of a water mol­ecule (completed by twofold rotation symmetry). The CrIII ion is coordinated by the four cyclam N atoms and by two N atoms of cis-arranged thio­cyanate anions, displaying a distorted octa­hedral coordination sphere. The Cr—N(cyclam) bond lengths are in the range 2.080 (2) to 2.097 (2) Å while the average Cr—N(NCS) bond length is 1.985 (4) Å. The macrocyclic cyclam moiety adopts the cis-V conformation. The bridging O atom of the dichromate anion is disordered around an inversion centre, leading to a bending of the Cr—O—Cr bridging angle [157.7 (3)°]; the anion has a staggered conformation. The crystal structure is stabilized by inter­molecular hydrogen bonds involving the cyclam N—H groups and water O—H groups as donor groups, and the O atoms of the Cr2O72− anion and water mol­ecules as acceptor groups, giving rise to a three-dimensional network.

1. Chemical context

Recently, it has been established that cyclam (1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4) derivatives and their complexes can exhibit anti-HIV effects or stimulate the activity of stem cells from bone marrow (Ronconi & Sadler, 2007[Ronconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633-1648.]; De Clercq, 2010[De Clercq, E. (2010). J. Med. Chem. 53, 1438-1450.]; Ross et al., 2012[Ross, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408-6418.]). Cyclam has a moderately flexible structure and can adopt both planar (trans) and folded (cis) conformations (Poon & Pun, 1980[Poon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568-569.]). There are five configurational trans isomers for the macrocycle, which differ in the chirality of the sec-NH sites (Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]). The trans-I, trans-II and trans-V configurations also can fold to form cis-I, cis-II and cis-V isomers, respectively (Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). The configuration of the macrocyclic ligand and the influence of the counter-anion are important factors in developing new highly effective anti-HIV drugs.

The dichromate anion is environmentally important due to its high toxicity (Yusof & Malek, 2009[Yusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019-1024.]), and its use in industrial processing (Goyal et al., 2003[Goyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311-319.]). Since counter-anionic species play an important role in coordination chemistry (Martínez-Máñez & Sancenón, 2003[Martínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419-4476.]; Fabbrizzi & Poggi, 2013[Fabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681-1699.]), it may be possible that the [Cr(NCS)2(cyclam)]+ cation is suitable to bind specifically to an oxoanion. In this context, we report here on the synthesis of a new chromium(III)–dichromate salt, [Cr(NCS)2(cyclam)]2(Cr2O7)·H2O, (I)[link], and its structural characterization by synchrotron single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

Fig. 1[link] displays the mol­ecular components of (I)[link]. The structure is another example of a [Cr(NCS)2(cyclam)]+ cation (Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]; Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]) but with a different counter-anion. The asymmetric unit comprises of one [Cr(NCS)2(cyclam)]+ cation, one half of a Cr2O72− anion (completed by inversion symmetry) and one half of a water mol­ecule (completed by twofold rotation symmetry). In the complex cation, the CrIII ion is coordinated by the N atoms of the cyclam ligand in the folded conformation. The nitro­gen atoms of two NCS ligands coordinate to the chromium atoms in a cis arrangement. The cyclam moiety adopts the cis-V (antianti) conformation (Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]). The Cr—N(cyclam) bond lengths are in the range 2.080 (2) to 2.097 (2) Å, in good agreement with those determined in related structures, namely cis-[Cr(NCS)2(cyclam)]SCN [2.0851 (14)–2.0897 (14) Å; Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]], cis-[Cr(N3)2(cyclam)]ClO4 [2.069 (3)–2.103 (3) Å; Meyer et al., 1998[Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180-5188.]], cis-[Cr(ONO)2(cyclam)]NO2 [2.0874 (16)–2.0916 (15) Å; Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238-m240.]], [Cr(acac)(cyclam)](ClO4)2·0.5H2O [2.070(5–2.089 (5) Å, acac = acetyl­acetonate; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]] or cis-[CrCl2(cyclam)][Cr(ox)(cyclam)](ClO4)2 [2.075 (5)–2.096 (5) Å; Moon & Choi, 2016a[Moon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 1417-1420.]]. The Cr—N(cyclam) bond lengths with co-ligands in cis orientations are slightly longer than those found in trans-[Cr(NCS)2(cyclam)]ClO4 [2.046 (2)–2.060 (2) Å; Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]], trans-[Cr(ONO)2(cyclam)]BF4 [2.064 (4)–2.073 (4) Å; De Leo et al., 2000[De Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300-302, 944-950.]], trans-[Cr(NH3)2(cyclam)][ZnCl4]Cl·H2O [2.0501 (15)–2.0615 (15) Å; Moon & Choi, 2016b[Moon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 456-459.]] or trans-[Cr(nic-O)2(cyclam)]ClO4 [2.058 (4) – 2.064 (4) Å, nic-O = O-coordinating nicotinate; Choi, 2009[Choi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231-4236.]]. The two Cr—N(NCS) bond lengths in (I)[link] average to 1.985 (4) Å and are close to the values found in cis-[Cr(NCS)2(cyclam)]NCS [1.996 (15) Å; Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]], cis-[Cr(NCS)2(cyclam)]ClO4 [1.981 (4)–1.998 (4) Å; Friesen et al., 1997[Friesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687-691.]], trans-[Cr(NCS)2(cyclam)]2[ZnCl4] [1.995 (6) Å; Moon et al., 2015a[Moon, D., Ryoo, K. S. & Choi, J.-H. (2015a). Acta Cryst. E71, 540-543.]] or trans-[Cr(NCS)2(Me2tn)2]SCN·0.5H2O [1.983 (2)–1.990 (2) Å; Choi & Lee, 2009[Choi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84-89.]]. The five- and six-membered chelate rings of the cyclam ligand adopt gauche and stable chair conformations, respectively. The folded angle [96.05 (8)°] of cyclam is comparable to the values of 98.55 (2), 97.17 (5), 97.03 (2), 95.09 (9), 94.51 (2) and 92.8 (2)° in [Cr(ox)(cyclam)]ClO4, cis-[Cr(NCS)2(cyclam)]SCN, [Cr(acac)(cyclam)](ClO4)2·0.5H2O, cis-[Cr(ONO)2(cyclam)]NO2, cis-[Cr(N3)2(cyclam)]ClO4 and cis-[Cr(cyclam)Cl2]Cl, respectively (Choi et al., 2004b[Choi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39-44.]; Moon et al., 2013[Moon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376-m377.]; Subhan et al., 2011[Subhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193-2197.]; Choi et al., 2004a[Choi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238-m240.]; Meyer et al., 1998[Meyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180-5188.]; Forsellini et al., 1986[Forsellini, E., Parasassi, T., Bombieri, G., Tobe, M. L. & Sosa, M. E. (1986). Acta Cryst. C42, 563-565.], respectively).

[Figure 1]
Figure 1
The mol­ecular components in the structure of (I)[link] with displacement ellipsoids drawn at the 30% probability level. Only one orientation of the disordered anion is shown; primed atoms are related by symmetry code (−x, −y + 1, −z − [{1\over 2}]). Dashed lines represent hydrogen bonds.

The two N-bound thio­cyanate anions are almost linear, with N—C—S angles of 178.8 (2) and 179.0 (3)°. The bridging O atom of the Cr2O72− anion is positionally disordered over an inversion centre, giving rise to a bending of the Cr2B—O1B—Cr2B(−x + 1, −y + 1, −z + 1) angle [157.7 (3)°]. The Cr2O72− anion in (I)[link] has a staggered conformation while a nearly eclipsed conformation is observed in ionic compounds K2Cr2O7, Rb2Cr2O7 and (C3H5N2)(NH4)[Cr2O7] (Brandon & Brown, 1968[Brandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933-941.]; Löfgren, 1971[Löfgren, P. (1971). Acta Chem. Scand. 25, 44-58.]; Zhu, 2012[Zhu, R.-Q. (2012). Acta Cryst. E68, m389.]). The conformation of the dichromate anion is influenced by the charge and size of the counter-cation (Moon et al., 2015b[Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015b). Acta Cryst. E71, 1336-1339.]; Moon & Choi, 2016[Moon, D., Ryoo, K. S. & Choi, J.-H. (2016). Acta Cryst. E72, 1293-1296.]). The O—Cr2B—O bond angles range from 102.3 (3) to 119.5 (2)°; the terminal Cr2B—O bond lengths vary from 1.596 (2) to 1.612 (2) Å, with a mean terminal Cr2B—O bond length of 1.604 (12) Å. The bridging Cr2B—O1B bond has a length of 1.746 (9) Å. These values are comparable to those reported for the anions in the structures of [Cr(urea)6](Cr2O7)Br·H2O (Moon et al., 2015b[Moon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015b). Acta Cryst. E71, 1336-1339.]) or [CrCl2(tn)2]2(Cr2O7) (tn = propane-1,3-di­amine; Moon & Choi, 2016[Moon, D., Ryoo, K. S. & Choi, J.-H. (2016). Acta Cryst. E72, 1293-1296.]). A further distortion of the anion is due to its involvement in hydrogen-bonding inter­actions with water mol­ecule and complex cation (see Supra­molecular features).

3. Supra­molecular features

Two O—H⋯O hydrogen bonds link the water mol­ecule to neighboring Cr2O72− anions while N—H⋯O hydrogen bonds inter­connect [Cr(NCS)2(cyclam)]+ cations with both the anions and water mol­ecules (Table 1[link]; Figs. 1[link] and 2[link]) . An extensive array of these contacts generates a three-dimensional network of mol­ecules stacked along the c-axis.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O1Wi 0.99 2.15 3.089 (3) 157
N2A—H2A⋯O3B 0.99 2.17 3.127 (3) 163
N3A—H3A⋯O4Bii 0.99 2.10 2.953 (3) 143
N4A—H4A⋯O4B 0.99 1.99 2.904 (3) 152
O1W—H1OW⋯O2B 0.84 (1) 2.24 (1) 3.052 (3) 164 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x, -y+1, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
The crystal packing in compound (I)[link], viewed perpendicular to the ac plane. Dashed lines represent O—H⋯O (green) and N—-H⋯O (pink) hydrogen-bonding inter­actions.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37, Feb 2016 with two updates; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 17 hits for a cis-[CrL2(C10H24N4)]+ unit.

5. Synthesis and crystallization

Cyclam was purchased from Stream Chemicals and used as provided. All chemicals were reagent-grade materials and used without further purification. The starting material, cis-[Cr(NCS)2(cyclam)]SCN was prepared according to a literature protocol (Ferguson & Tobe, 1970[Ferguson, J. & Tobe, M. L. (1970). Inorg. Chim. Acta, 4, 109-112.]). The thio­cyanate salt (0.513 g) was dissolved in 15 mL water at 347 K. The filtrate was added to 5 mL of water containing solid K2Cr2O7 (0.02 g). The resulting solution was evaporated slowly at room temperature until formation of crystals. The obtained block-like orange crystals of the dichromate salt were washed with small amounts of 2-propanol and dried in air before collecting the synchrotron data. Elemental analysis calculated for [Cr(NCS)2(C10H24N4)]2(Cr2O7)·H2O: C, 29.69; H, 5.19; N, 17.31%; found C, 29.84; H, 4.90; N, 17.28%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.98 Å and N—H = 0.99 Å, and with Uiso(H) values of 1.2Ueq of the parent atoms. The hydrogen atom of the solvent water mol­ecule was assigned based on a difference Fourier map, and the O—H distance and the H—O—H angle were restrained [0.84 (1) Å, 136 (2)°]. The bridging oxygen atom of the dichromate anion is positionally disordered around an inversion centre and consequently was refined with half-occupancy.

Table 2
Experimental details

Crystal data
Chemical formula [Cr(NCS)2(C10H24N4)]2[Cr2O7]·H2O
Mr 971.00
Crystal system, space group Monoclinic, C2/c
Temperature (K) 243
a, b, c (Å) 16.044 (2), 16.221 (2), 15.041 (2)
β (°) 93.335 (3)
V3) 3907.8 (9)
Z 4
Radiation type Synchrotron, λ = 0.620 Å
μ (mm−1) 0.92
Crystal size (mm) 0.04 × 0.03 × 0.02
 
Data collection
Diffractometer ADSC Q210 CCD area detector
Absorption correction Empirical (using intensity measurements) (HKL3000sm SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])
Tmin, Tmax 0.799, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11326, 5767, 4156
Rint 0.018
(sin θ/λ)max−1) 0.707
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.148, 1.06
No. of reflections 5767
No. of parameters 244
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.07, −0.73
Computer programs: PAL BL2D-SMDC (Shin et al., 2016[Shin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369-373.]), HKL3000sm (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND 4 (Putz & Brandenburg, 2014[Putz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), publCIF (Westrip,2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: PAL BL2D-SMDC (Shin et al., 2016); cell refinement: HKL3000sm (Otwinowski & Minor, 1997); data reduction: HKL3000sm (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015b); molecular graphics: DIAMOND 4 (Putz & Brandenburg, 2014); software used to prepare material for publication: publCIF (Westrip,2010).

Bis[cis-(1,4,8,11-tetraazacyclotetradecane-κ4N)bis(thiocyanato-κN)chromium(III)] dichromate monohydrate top
Crystal data top
[Cr(NCS)2(C10H24N4)]2[Cr2O7]·H2OF(000) = 2008
Mr = 971.00Dx = 1.650 Mg m3
Monoclinic, C2/cSynchrotron radiation, λ = 0.620 Å
a = 16.044 (2) ÅCell parameters from 51334 reflections
b = 16.221 (2) Åθ = 0.4–33.6°
c = 15.041 (2) ŵ = 0.92 mm1
β = 93.335 (3)°T = 243 K
V = 3907.8 (9) Å3Block, orange
Z = 40.04 × 0.03 × 0.02 mm
Data collection top
ADSC Q210 CCD area detector
diffractometer
4156 reflections with I > 2σ(I)
Radiation source: PLSII 2D bending magnetRint = 0.018
ω scanθmax = 26.0°, θmin = 1.6°
Absorption correction: empirical (using intensity measurements)
(HKL3000sm Scalepack; Otwinowski & Minor, 1997)
h = 2222
Tmin = 0.799, Tmax = 1.000k = 2222
11326 measured reflectionsl = 2121
5767 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0961P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.148(Δ/σ)max = 0.001
S = 1.06Δρmax = 1.07 e Å3
5767 reflectionsΔρmin = 0.73 e Å3
244 parametersExtinction correction: SHELXL-2016/6 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.0074 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr1A0.21438 (2)0.57578 (2)0.25925 (2)0.03091 (13)
S1A0.04950 (5)0.36485 (4)0.11771 (4)0.04880 (19)
S2A0.10063 (7)0.74359 (5)0.02581 (6)0.0745 (3)
N1A0.12183 (13)0.61482 (13)0.34086 (12)0.0382 (4)
H1A0.0790160.6420890.3009360.046*
N2A0.27533 (14)0.68147 (13)0.31024 (13)0.0434 (5)
H2A0.3160200.6642750.3587090.052*
N3A0.32354 (14)0.54328 (15)0.19902 (14)0.0446 (5)
H3A0.3063850.5027940.1522150.054*
N4A0.25948 (13)0.49636 (12)0.35970 (12)0.0346 (4)
H4A0.2889180.5302110.4064340.041*
N5A0.15160 (14)0.48029 (13)0.20628 (13)0.0413 (5)
N6A0.17022 (15)0.64396 (14)0.15798 (14)0.0438 (5)
C1A0.15574 (19)0.68028 (17)0.40197 (18)0.0494 (6)
H1A10.1881730.6556010.4524030.059*
H1A20.1100590.7124660.4250970.059*
C2A0.2102 (2)0.73442 (17)0.34991 (19)0.0529 (7)
H2A10.2370310.7762310.3889580.063*
H2A20.1767370.7626170.3025650.063*
C3A0.3207 (2)0.73028 (18)0.24429 (19)0.0538 (7)
H3A10.3411650.7816280.2721190.065*
H3A20.2821600.7446930.1937790.065*
C4A0.39357 (19)0.6825 (2)0.2110 (2)0.0590 (8)
H4A10.4285130.6634920.2625850.071*
H4A20.4274040.7200620.1769520.071*
C5A0.3701 (2)0.6088 (2)0.15325 (18)0.0562 (7)
H5A10.3358880.6278160.1011760.067*
H5A20.4212550.5847630.1317330.067*
C6A0.37777 (18)0.49700 (19)0.26556 (18)0.0504 (6)
H6A10.4090940.5356450.3048690.061*
H6A20.4177920.4630300.2350790.061*
C7A0.32269 (18)0.44260 (17)0.31975 (18)0.0461 (6)
H7A10.2948550.4008990.2813530.055*
H7A20.3565050.4143180.3667720.055*
C8A0.19634 (16)0.44486 (15)0.40364 (16)0.0410 (5)
H8A10.2251680.4085060.4474540.049*
H8A20.1669400.4100820.3587090.049*
C9A0.13381 (18)0.49627 (17)0.44937 (16)0.0446 (6)
H9A10.1641570.5322750.4923980.053*
H9A20.0989700.4593650.4830510.053*
C10A0.07670 (17)0.54960 (17)0.38902 (17)0.0441 (6)
H10A0.0466510.5141500.3452110.053*
H10B0.0352250.5759480.4250150.053*
C11A0.10820 (16)0.43251 (14)0.16879 (14)0.0354 (5)
C12A0.14135 (15)0.68562 (15)0.10176 (15)0.0376 (5)
Cr2B0.43256 (3)0.58043 (3)0.52084 (3)0.04068 (14)
O1B10.5133 (5)0.5087 (6)0.5160 (6)0.0703 (17)0.25
O1B20.5133 (5)0.5087 (6)0.5160 (6)0.0703 (17)0.25
O2B0.46377 (19)0.62450 (18)0.61164 (14)0.0817 (8)
O3B0.43108 (16)0.64288 (14)0.43819 (14)0.0686 (6)
O4B0.33924 (14)0.54580 (18)0.52960 (14)0.0737 (7)
O1W0.5000000.75939 (19)0.7500000.0587 (8)
H1OW0.483 (2)0.7293 (10)0.7074 (11)0.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr1A0.0380 (2)0.0291 (2)0.02458 (18)0.00533 (14)0.00667 (13)0.00188 (12)
S1A0.0635 (4)0.0365 (3)0.0439 (3)0.0122 (3)0.0183 (3)0.0014 (3)
S2A0.1159 (8)0.0473 (4)0.0554 (5)0.0173 (5)0.0380 (5)0.0057 (4)
N1A0.0448 (11)0.0365 (11)0.0325 (9)0.0010 (9)0.0040 (8)0.0010 (8)
N2A0.0535 (12)0.0377 (11)0.0372 (10)0.0140 (9)0.0116 (9)0.0014 (9)
N3A0.0447 (12)0.0561 (13)0.0328 (10)0.0070 (10)0.0005 (8)0.0015 (9)
N4A0.0430 (10)0.0318 (9)0.0282 (8)0.0009 (8)0.0035 (7)0.0029 (7)
N5A0.0519 (12)0.0368 (11)0.0337 (9)0.0103 (9)0.0092 (8)0.0011 (8)
N6A0.0552 (13)0.0402 (12)0.0343 (10)0.0057 (9)0.0104 (9)0.0065 (8)
C1A0.0675 (18)0.0390 (13)0.0409 (13)0.0006 (12)0.0021 (12)0.0068 (11)
C2A0.075 (2)0.0344 (13)0.0481 (14)0.0057 (13)0.0049 (13)0.0066 (11)
C3A0.0632 (18)0.0456 (15)0.0511 (15)0.0241 (13)0.0085 (13)0.0059 (12)
C4A0.0543 (17)0.071 (2)0.0515 (15)0.0223 (15)0.0041 (13)0.0133 (14)
C5A0.0542 (16)0.072 (2)0.0432 (14)0.0119 (15)0.0063 (12)0.0119 (14)
C6A0.0456 (14)0.0634 (17)0.0422 (13)0.0067 (13)0.0018 (11)0.0010 (13)
C7A0.0494 (14)0.0466 (14)0.0418 (13)0.0099 (12)0.0011 (11)0.0019 (11)
C8A0.0526 (14)0.0347 (12)0.0351 (11)0.0056 (10)0.0029 (10)0.0099 (9)
C9A0.0524 (15)0.0485 (14)0.0329 (11)0.0050 (12)0.0027 (10)0.0081 (10)
C10A0.0446 (13)0.0479 (14)0.0397 (12)0.0025 (11)0.0004 (10)0.0054 (11)
C11A0.0472 (13)0.0308 (11)0.0273 (10)0.0001 (9)0.0068 (9)0.0033 (8)
C12A0.0463 (13)0.0354 (12)0.0300 (10)0.0024 (10)0.0068 (9)0.0036 (9)
Cr2B0.0457 (2)0.0434 (3)0.0319 (2)0.00024 (17)0.00628 (16)0.00294 (15)
O1B10.060 (5)0.063 (4)0.087 (6)0.014 (3)0.000 (3)0.009 (4)
O1B20.060 (5)0.063 (4)0.087 (6)0.014 (3)0.000 (3)0.009 (4)
O2B0.107 (2)0.0956 (19)0.0407 (11)0.0337 (16)0.0147 (12)0.0019 (12)
O3B0.0960 (18)0.0621 (14)0.0461 (11)0.0021 (13)0.0096 (11)0.0156 (10)
O4B0.0511 (12)0.122 (2)0.0466 (11)0.0224 (13)0.0071 (9)0.0004 (13)
O1W0.076 (2)0.0548 (17)0.0435 (15)0.0000.0078 (14)0.000
Geometric parameters (Å, º) top
Cr1A—N6A1.980 (2)C3A—H3A20.9800
Cr1A—N5A1.989 (2)C4A—C5A1.512 (4)
Cr1A—N1A2.080 (2)C4A—H4A10.9800
Cr1A—N4A2.0829 (19)C4A—H4A20.9800
Cr1A—N3A2.086 (2)C5A—H5A10.9800
Cr1A—N2A2.097 (2)C5A—H5A20.9800
S1A—C11A1.612 (2)C6A—C7A1.519 (4)
S2A—C12A1.590 (2)C6A—H6A10.9800
N1A—C1A1.487 (3)C6A—H6A20.9800
N1A—C10A1.493 (3)C7A—H7A10.9800
N1A—H1A0.9900C7A—H7A20.9800
N2A—C3A1.492 (3)C8A—C9A1.502 (4)
N2A—C2A1.502 (4)C8A—H8A10.9800
N2A—H2A0.9900C8A—H8A20.9800
N3A—C6A1.490 (3)C9A—C10A1.522 (4)
N3A—C5A1.491 (4)C9A—H9A10.9800
N3A—H3A0.9900C9A—H9A20.9800
N4A—C7A1.490 (3)C10A—H10A0.9800
N4A—C8A1.496 (3)C10A—H10B0.9800
N4A—H4A0.9900Cr2B—O2B1.596 (2)
N5A—C11A1.165 (3)Cr2B—O3B1.603 (2)
N6A—C12A1.158 (3)Cr2B—O4B1.612 (2)
C1A—C2A1.493 (4)Cr2B—O1B11.746 (9)
C1A—H1A10.9800Cr2B—O1B21.746 (9)
C1A—H1A20.9800Cr2B—O1B1i1.791 (9)
C2A—H2A10.9800O1B1—O1B1i0.686 (9)
C2A—H2A20.9800O1W—H1OW0.839 (7)
C3A—C4A1.511 (5)O1W—H1OWii0.839 (7)
C3A—H3A10.9800
N6A—Cr1A—N5A88.66 (9)C5A—C4A—H4A1108.5
N6A—Cr1A—N1A92.76 (9)C3A—C4A—H4A2108.5
N5A—Cr1A—N1A96.39 (9)C5A—C4A—H4A2108.5
N6A—Cr1A—N4A175.72 (8)H4A1—C4A—H4A2107.5
N5A—Cr1A—N4A87.44 (8)N3A—C5A—C4A114.4 (2)
N1A—Cr1A—N4A89.43 (8)N3A—C5A—H5A1108.7
N6A—Cr1A—N3A94.53 (9)C4A—C5A—H5A1108.7
N5A—Cr1A—N3A92.73 (9)N3A—C5A—H5A2108.7
N1A—Cr1A—N3A168.45 (8)C4A—C5A—H5A2108.7
N4A—Cr1A—N3A83.89 (8)H5A1—C5A—H5A2107.6
N6A—Cr1A—N2A87.88 (8)N3A—C6A—C7A108.5 (2)
N5A—Cr1A—N2A176.30 (9)N3A—C6A—H6A1110.0
N1A—Cr1A—N2A82.47 (8)C7A—C6A—H6A1110.0
N4A—Cr1A—N2A96.05 (8)N3A—C6A—H6A2110.0
N3A—Cr1A—N2A88.86 (9)C7A—C6A—H6A2110.0
C1A—N1A—C10A112.12 (19)H6A1—C6A—H6A2108.4
C1A—N1A—Cr1A109.52 (16)N4A—C7A—C6A107.9 (2)
C10A—N1A—Cr1A116.98 (17)N4A—C7A—H7A1110.1
C1A—N1A—H1A105.8C6A—C7A—H7A1110.1
C10A—N1A—H1A105.8N4A—C7A—H7A2110.1
Cr1A—N1A—H1A105.8C6A—C7A—H7A2110.1
C3A—N2A—C2A109.8 (2)H7A1—C7A—H7A2108.4
C3A—N2A—Cr1A115.22 (16)N4A—C8A—C9A112.3 (2)
C2A—N2A—Cr1A107.01 (16)N4A—C8A—H8A1109.1
C3A—N2A—H2A108.2C9A—C8A—H8A1109.1
C2A—N2A—H2A108.2N4A—C8A—H8A2109.1
Cr1A—N2A—H2A108.2C9A—C8A—H8A2109.1
C6A—N3A—C5A112.4 (2)H8A1—C8A—H8A2107.9
C6A—N3A—Cr1A107.93 (15)C8A—C9A—C10A116.0 (2)
C5A—N3A—Cr1A118.5 (2)C8A—C9A—H9A1108.3
C6A—N3A—H3A105.7C10A—C9A—H9A1108.3
C5A—N3A—H3A105.7C8A—C9A—H9A2108.3
Cr1A—N3A—H3A105.7C10A—C9A—H9A2108.3
C7A—N4A—C8A110.21 (19)H9A1—C9A—H9A2107.4
C7A—N4A—Cr1A106.58 (14)N1A—C10A—C9A113.6 (2)
C8A—N4A—Cr1A116.75 (15)N1A—C10A—H10A108.8
C7A—N4A—H4A107.7C9A—C10A—H10A108.8
C8A—N4A—H4A107.7N1A—C10A—H10B108.8
Cr1A—N4A—H4A107.7C9A—C10A—H10B108.8
C11A—N5A—Cr1A170.5 (2)H10A—C10A—H10B107.7
C12A—N6A—Cr1A176.3 (2)N5A—C11A—S1A178.8 (2)
N1A—C1A—C2A107.5 (2)N6A—C12A—S2A179.0 (3)
N1A—C1A—H1A1110.2O2B—Cr2B—O3B111.73 (13)
C2A—C1A—H1A1110.2O2B—Cr2B—O4B109.44 (13)
N1A—C1A—H1A2110.2O3B—Cr2B—O4B108.17 (13)
C2A—C1A—H1A2110.2O2B—Cr2B—O1B197.9 (2)
H1A1—C1A—H1A2108.5O3B—Cr2B—O1B1111.5 (4)
C1A—C2A—N2A108.3 (2)O4B—Cr2B—O1B1117.8 (3)
C1A—C2A—H2A1110.0O2B—Cr2B—O1B297.9 (2)
N2A—C2A—H2A1110.0O3B—Cr2B—O1B2111.5 (4)
C1A—C2A—H2A2110.0O4B—Cr2B—O1B2117.8 (3)
N2A—C2A—H2A2110.0O2B—Cr2B—O1B1i119.5 (2)
H2A1—C2A—H2A2108.4O3B—Cr2B—O1B1i104.8 (4)
N2A—C3A—C4A111.4 (2)O4B—Cr2B—O1B1i102.3 (3)
N2A—C3A—H3A1109.3O1B1—Cr2B—O1B1i22.3 (3)
C4A—C3A—H3A1109.3O1B2—Cr2B—O1B1i22.3 (3)
N2A—C3A—H3A2109.3O1B1i—O1B1—Cr2B82.5 (15)
C4A—C3A—H3A2109.3O1B1i—O1B1—Cr2Bi75.2 (15)
H3A1—C3A—H3A2108.0Cr2B—O1B1—Cr2Bi157.7 (3)
C3A—C4A—C5A115.1 (2)Cr2B—O1B2—Cr2Bi157.7 (3)
C3A—C4A—H4A1108.5H1OW—O1W—H1OWii109 (2)
C10A—N1A—C1A—C2A171.4 (2)C7A—N4A—C8A—C9A176.9 (2)
Cr1A—N1A—C1A—C2A39.8 (3)Cr1A—N4A—C8A—C9A61.4 (2)
N1A—C1A—C2A—N2A55.7 (3)N4A—C8A—C9A—C10A65.3 (3)
C3A—N2A—C2A—C1A169.5 (2)C1A—N1A—C10A—C9A69.4 (3)
Cr1A—N2A—C2A—C1A43.8 (2)Cr1A—N1A—C10A—C9A58.4 (3)
C2A—N2A—C3A—C4A173.1 (2)C8A—C9A—C10A—N1A64.1 (3)
Cr1A—N2A—C3A—C4A66.0 (3)O2B—Cr2B—O1B1—O1B1i166.3 (18)
N2A—C3A—C4A—C5A68.6 (3)O3B—Cr2B—O1B1—O1B1i76.5 (19)
C6A—N3A—C5A—C4A72.0 (3)O4B—Cr2B—O1B1—O1B1i49 (2)
Cr1A—N3A—C5A—C4A55.0 (3)O2B—Cr2B—O1B1—Cr2Bi166.3 (18)
C3A—C4A—C5A—N3A62.5 (4)O3B—Cr2B—O1B1—Cr2Bi76.5 (19)
C5A—N3A—C6A—C7A170.2 (2)O4B—Cr2B—O1B1—Cr2Bi49 (2)
Cr1A—N3A—C6A—C7A37.7 (3)O1B1i—Cr2B—O1B1—Cr2Bi0.004 (6)
C8A—N4A—C7A—C6A172.4 (2)O2B—Cr2B—O1B2—Cr2Bi166.3 (18)
Cr1A—N4A—C7A—C6A44.8 (2)O3B—Cr2B—O1B2—Cr2Bi76.5 (19)
N3A—C6A—C7A—N4A55.9 (3)O4B—Cr2B—O1B2—Cr2Bi49 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1Wiii0.992.153.089 (3)157
N2A—H2A···O3B0.992.173.127 (3)163
N3A—H3A···O4Biv0.992.102.953 (3)143
N4A—H4A···O4B0.991.992.904 (3)152
O1W—H1OW···O2B0.84 (1)2.24 (1)3.052 (3)164 (2)
Symmetry codes: (iii) x+1/2, y+3/2, z+1; (iv) x, y+1, z1/2.
 

Acknowledgements

This work was supported by a grant from the 2016 Research Funds of Andong National University. The X-ray crystallography experiment at PLS-II BL2D-SMC beamline was supported in part by MSIP and POSTECH.

References

First citationBrandon, J. K. & Brown, I. D. (1968). Can. J. Chem. 46, 933–941.  CrossRef CAS Google Scholar
First citationChoi, J.-H. (2009). Inorg. Chim. Acta, 362, 4231–4236.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H. & Lee, S. H. (2009). J. Mol. Struct. 932, 84–89.  Web of Science CSD CrossRef CAS Google Scholar
First citationChoi, J.-H., Oh, I.-G., Lim, W.-T. & Park, K.-M. (2004a). Acta Cryst. C60, m238–m240.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChoi, J.-H., Oh, I.-G., Suzuki, T. & Kaizaki, S. (2004b). J. Mol. Struct. 694, 39–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationDe Clercq, E. (2010). J. Med. Chem. 53, 1438–1450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDe Leo, M. A., Bu, X., Bentow, J. & Ford, P. C. (2000). Inorg. Chim. Acta, 300–302, 944–950.  Web of Science CSD CrossRef CAS Google Scholar
First citationFabbrizzi, L. & Poggi, A. (2013). Chem. Soc. Rev. 42, 1681–1699.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerguson, J. & Tobe, M. L. (1970). Inorg. Chim. Acta, 4, 109–112.  CrossRef CAS Google Scholar
First citationForsellini, E., Parasassi, T., Bombieri, G., Tobe, M. L. & Sosa, M. E. (1986). Acta Cryst. C42, 563–565.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFriesen, D. A., Quail, J. W., Waltz, W. L. & Nashiem, R. E. (1997). Acta Cryst. C53, 687–691.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoyal, N., Jain, S. C. & Banerjee, U. C. (2003). Adv. Environ. Res. 7, 311–319.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLöfgren, P. (1971). Acta Chem. Scand. 25, 44–58.  CAS Google Scholar
First citationMartínez-Máñez, R. & Sancenón, F. (2003). Chem. Rev. 103, 4419–4476.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeyer, K., Bendix, J., Bill, E., Weyhermüller, T. & Wieghardt, K. (1998). Inorg. Chem. 37, 5180–5188.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, D. & Choi, J.-H. (2016a). Acta Cryst. E72, 1417–1420.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D. & Choi, J.-H. (2016b). Acta Cryst. E72, 456–459.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Choi, J.-H., Ryoo, K. S. & Hong, Y. P. (2013). Acta Cryst. E69, m376–m377.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Ryoo, K. S. & Choi, J.-H. (2015a). Acta Cryst. E71, 540–543.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Ryoo, K. S. & Choi, J.-H. (2016). Acta Cryst. E72, 1293–1296.  CSD CrossRef IUCr Journals Google Scholar
First citationMoon, D., Tanaka, S., Akitsu, T. & Choi, J.-H. (2015b). Acta Cryst. E71, 1336–1339.  CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPoon, C. K. & Pun, K. C. (1980). Inorg. Chem. 19, 568–569.  CrossRef CAS Web of Science Google Scholar
First citationPutz, H. & Brandenburg, K. (2014). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationRonconi, L. & Sadler, P. J. (2007). Coord. Chem. Rev. 251, 1633–1648.  Web of Science CrossRef CAS Google Scholar
First citationRoss, A., Choi, J.-H., Hunter, T. M., Pannecouque, C., Moggach, S. A., Parsons, S., De Clercq, E. & Sadler, P. J. (2012). Dalton Trans. 41, 6408–6418.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Eom, K. & Moon, D. (2016). J. Synchrotron Rad. 23, 369–373.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSubhan, M. A., Choi, J.-H. & Ng, S. W. (2011). Z. Anorg. Allg. Chem. 637, 2193–2197.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, A. M. & Malek, N. A. N. N. (2009). J. Hazard. Mater. 162, 1019–1024.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhu, R.-Q. (2012). Acta Cryst. E68, m389.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds