research communications
μ-N-hydroxypicolinamidato)bis[bis(N-hydroxypicolinamide)sodium]
of bis(aDepartment of Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Street 64, 01601 Kiev, Ukraine, and bSSI "Institute for Single Crystals", National Academy of Sciences of Ukraine, Nauki ave. 60, Kharkiv, 61001, Ukraine
*Correspondence e-mail: safyanova_inna@mail.ru
The title compound, [Na2(C6H5N2O2)2(C6H6N2O2)4], is a centrosymmetric coordination dimer based on the sodium(I) salt of N-hydroxypicolinamide. The molecule has an {Na2O6(μ-O)2} core with two bridging carbonyl O atoms and two hydroxamate O atoms of two mono-deprotonated residues of N-hydroxypicolinamide, while two neutral N-hydroxypicolinamide molecules are coordinated in a monodentate manner to each sodium ion via the carbonyl O atoms [the Na—O distances range from 2.3044 (2) to 2.3716 (2) Å]. The pentacoordinated sodium ion exhibits a distorted trigonal–pyramidal In the crystal, the coordination dimers are linked into chains along the c axis via N—H⋯O and N—H⋯N hydrogen bonds; the chains are linked into a two-dimensional framework parallel to (100) via weak C—H⋯O and π–π stacking interactions.
Keywords: crystal structure; hydroxamic acids; hydrogen bonds; π–π stacking.
CCDC reference: 1520114
1. Chemical context
). The coordination ability of has led to their extensive use in coordination and supramolecular chemistry (Świątek-Kozłowska et al., 2000; Dobosz et al., 1999). In particular, over the past two decades they have often been used as frameworks of metallacrowns (Golenya et al., 2012a; Safyanova et al., 2015; Stemmler et al., 1999; Jankolovits et al., 2013a,b) and as building blocks of coordination polymers (Gumienna-Kontecka et al., 2007; Golenya et al., 2014; Pavlishchuk et al., 2010, 2011). They have also been studied intensively in biology and medicine due to their various biological activities, especially their metal-chelating ability and inhibition of a series of metalloenzymes (Codd, 2008; Griffith et al., 2005; Marmion et al., 2013).
as a class of organic compounds originate from Lossen's invention (Lossen, 1869N-Hydroxypicolinamide (or picoline-2-hydroxamic acid, H2PicHA) has been used extensively for the synthesis of polynuclear complexes, especially various metallacrowns (Stemmler et al., 1999; Seda et al., 2007; Jankolovits et al., 2013a; Golenya et al., 2012a; Gumienna-Kontecka et al., 2013). A large number of polynuclear metal complexes based on this ligand has been investigated. The Cambridge Structural Database (Groom et al., 2016) contains data on the crystal structures of over 20 coordination compounds based on o-PicHA. The crystal and molecular structure of N-hydroxypicolinamide monohydrate was the subject of two recent independent investigations (Chaiyaveij et al., 2015; Safyanova et al., 2016).
In the course of the synthesis of hydroxamate metal complexes, especially metallacrowns, in some cases alkaline metal hydroxamates appear to be more preferable starting materials than the parent N-hydroxypicolinamide, we noticed that the elementary analysis data differ noticeably from those expected for the monosodium salt or its hydrates, which might affect the reagent ratio in the synthesis of coordination compounds. In order to find out the reason for this deviation in the analytical data, we undertook a single crystal X-ray analysis of the sodium salt of N-hydroxypicolinamide. Herein we present the crystal and molecular structure of the title compound.
due to their better solubility in water. During our synthetic attempts using the sodium salt of2. Structural commentary
The molecular structure of title compound is shown in Fig. 1. The revealed that the dinuclear hydroxamate acid salt was obtained, with the ratio of neutral and deprotonated N-hydroxypicolinamide being 2:1. A centrosymmetric dimeric structure is formed by non-planar subunits interconnected through the bridging carbonyl O atoms belonging to the deprotonated residues of N-hydroxypicolinamide [the Na—μ-O distances are Na1—O5 = 2.3044 (14) Å and Na1—O5i = 2.3558 (14) Å; symmetry code: (i) 1 − x, −y, 1 − z] . Coordination of the μ-O carbonyl and hydroxamate O atoms of the same anion lead to the formation of five-membered chelate rings [Na1—O6i = 2.3716 (14) Å and O5i—Na—O6i = 70.26 (5)°]. Two neutral N-hydroxypicolinamide molecules coordinate in a monodentate manner to each sodium ion via the carbonyl O atoms [Na1—O1 = 2.3300 (16) Å and Na1—O3 = 2.3225 (15) Å]. As a result, each pentacoordinated sodium ion reveals a distorted trigonal–pyramidal (τ5 = 0.50; Addison et al., 1984) with O1, O3, and O5i atoms forming the equatorial plane. The distance between the equatorial plane and the Na atom is 0.408 (1) Å and the deviation of the O—Na—O angles from ideal values are up to 23.47 (5)°. The Na—O bond lengths are in the range 2.3044 (14)—2.3716 (14) Å, which is common for pentacoordinated sodium cations (Groom et al., 2016; Golenya et al., 2012b; Malinkin et al., 2012a,b). The central Na2(μ-O)2 core is virtually planar and approaches a square [the O—Na—O angles are 86.43 (5) and 93.57 (5)°].
The deprotonated hydroxamate atom O6 acts as an acceptor of two hydrogen bonds (Table 1) in which the O—H groups of the protonated hydroxamic groups of two neutral molecules of N-hydroxypicolinamide act as donors [O2—H2⋯O6(1 − x, −y, 1 − z) = 1.65 (2) Å and 169 (2)°; O4—H4⋯O6(1 − x, −y, 1 − z) = 1.66 (3) Å and 177 (3)°]. The nearly coplanar pyridine rings of two neutral molecules of N-hydroxypicolinamide coordinating to the same sodium ion reveal intramolecular stacking interactions in unusual `head-to-head' manner [angle between planes = 10.00 (7)°, intercentroid distance = 3.801 (1) Å, mean interplanar separation = 3.760 (1) Å, mean plane shift = 0.508 (4) Å].
The deprotonated N-hydroxypicolinamide residue adopts a strongly flattened conformation with a dihedral angle of only 0.6 (2)° between the hydroxamic group and the pyridine ring. At the same time, the corresponding dihedral angles in both neutral N-hydroxypicolinamide molecules are noticeably greater [17.5 (2) and 8.9 (2)°], indicating a deviation of the hydroxamic group from the plane of pyridine rings. The configuration about the hydroxamic C—N bond is Z and that about the C—C bond between the pyridine and hydroxamic groups is E for both the neutral and deprotonated hydroxamates. Intramolecular N—H⋯N attractive contacts between the hydroxamate group and the nitrogen atom of pyridine ring [2.25 (2)–2.35 (3) Å] are present in both the neutral and deprotonated N-hydroxypicolinamide molecules (Table 1).
The bond lengths and angles within both the neutral and deprotonated hydroxamic groups are within normal ranges. The C—N and C—C bond lengths in the pyridine moiety are typical for 2-substituted pyridine derivatives (Moroz et al., 2012; Strotmeyer et al., 2003; Fritsky et al., 2004).
3. Supramolecular features
In the crystal (Fig. 2), the dimeric molecules are linked into chains along the c axis via two pairs of classical intermolecular N5—H5⋯O2(x, y, z − 1) and N1—H1⋯N6(x, y, z − 1) hydrogen bonds supported by a pair of weak non-classical C17—H17⋯N2(x, y, z − 1) hydrogen bonds (Table 1). The chains are linked into a two-dimensional framework parallel to (100) by weaker interactions, namely a C5—H5A⋯O4(−x + 1, −y + 1, −z + 2) hydrogen bond and π–π stacking between the N4/C7–C11 pyridine ring and the deprotonated O5/C18/N5/O6 hydroxamic group [angle between planes = 4.89 (7)°, intercentroid distance = 3.766 (1) Å, mean interplanar separation = 3.385 (2) Å, mean plane shift = 1.644 (4) Å]. Intermolecular π–π stacking between the same deprotonated hydroxamic group and the N2/C1–C5 pyridine ring [angle between planes = 10.78 (8)°, intercentroid distance = 3.823 (1) Å, mean interplanar separation = 3.589 (2) Å, mean plane shift = 1.319 (4) Å] links the frameworks into a three-dimensional structure.
4. Database survey
A search of the Cambridge Structural Database (Groom et al., 2016) for metal complexes based on N-hydroxypicolinamide revealed the crystal structures of over 20 compounds, mostly belonging to the metallacrown (MC) family. In particular, heterometallic copper(II) 15-metallacrown-5 complexes with encapsulated GdIII and EuIII ions (Stemmler et al., 1999), Ca2+, Pr3+ and Nd3+ ions (Safyanova et al., 2015), UO22+ (Stemmler et al., 1996), and Pb2+ and Hg2+ ions (Seda et al., 2007; Saf'yanova et al., 2014) have been structurally characterized. Nickel(II) 15-metallacrown-5 complexes with Eu3+ (Jankolovits et al., 2013b), Sm3+ and Pb2+ ions (Seda et al., 2006a) in the central cavity have also been synthesized and structurally characterized. Homo-[12-MCZn(II),picHA-4](OTf)1.25(OH)0.75 (Jankolovits et al., 2013a) and heterometallic zinc(II) 12-metallacrown-4 complexes including DyIII[12-MCZn(II),picHA-4]2(OH)3(py)2 (Jankolovits et al., 2014) and TbIII[12-MCZn(II),picHA-4]2·[24 MCZn(II),picHA-8]·(pyridine)8·(triflate)3 (Jankolovits et al., 2011) have also been reported. Three structures of collapsed copper(II) metallacrowns have been reported (Golenya et al., 2012a) as well as a trinuclear mixed-ligand copper(II) complex with pyridine (Seda et al., 2006b) and 2,2′-dipyridine (Gumienna-Kontecka et al., 2013), and mono- and binuclear complexes with platinum(II) (Griffith et al., 2005). In addition, a tetranuclear Zn4(picHA)2(OAc)4(DMF)2 collapsed metallacrown complex has been structurally characterized (Jankolovits et al., 2013a).
5. Synthesis and crystallization
The title compound was obtained by the reaction of N-hydroxypicolinamide (0.156 g, 1 mmol, dissolved in 5 ml of water) with sodium hydrogen carbonate (1 M aqueous solution, 1 ml). Colorless crystals suitable for X-ray diffraction were obtained from the resulting aqueous solution by slow evaporation at ambient temperature within 48 h (yield 78%).
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were found in the difference Fourier maps; H atoms of pyridine rings were constrained to ride on their parent atoms with C—H = 0.93 Å and Uiso = 1.2Ueq(C), and H atoms of the N—H and O—H groups were refined isotropically.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1520114
https://doi.org/10.1107/S2056989016019095/xu5895sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016019095/xu5895Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2013); cell
CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).[Na2(C6H5N2O2)2(C6H6N2O2)4] | Z = 1 |
Mr = 872.73 | F(000) = 452 |
Triclinic, P1 | Dx = 1.529 Mg m−3 |
a = 9.7997 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.0959 (7) Å | Cell parameters from 2896 reflections |
c = 11.0401 (8) Å | θ = 3.2–31.6° |
α = 96.618 (6)° | µ = 0.14 mm−1 |
β = 102.741 (6)° | T = 298 K |
γ = 113.902 (7)° | Block, clear colourless |
V = 948.02 (13) Å3 | 0.3 × 0.3 × 0.3 mm |
Agilent Xcalibur Sapphire3 diffractometer | 5514 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 3066 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
Detector resolution: 16.1827 pixels mm-1 | θmax = 30.0°, θmin = 3.0° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −14→14 |
Tmin = 0.965, Tmax = 1.000 | l = −15→15 |
12244 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.064 | w = 1/[σ2(Fo2) + (0.0618P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.144 | (Δ/σ)max < 0.001 |
S = 0.96 | Δρmax = 0.23 e Å−3 |
5521 reflections | Δρmin = −0.23 e Å−3 |
300 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.46101 (9) | 0.10567 (8) | 0.60562 (6) | 0.0406 (2) | |
O1 | 0.23043 (17) | 0.04309 (17) | 0.66132 (12) | 0.0517 (4) | |
O2 | 0.33418 (18) | 0.01016 (16) | 0.90258 (13) | 0.0445 (4) | |
H2 | 0.426 (3) | 0.053 (3) | 0.883 (2) | 0.066 (8)* | |
O3 | 0.56164 (19) | 0.36282 (15) | 0.66630 (13) | 0.0555 (4) | |
O4 | 0.74368 (18) | 0.39266 (18) | 0.90321 (14) | 0.0516 (4) | |
H4 | 0.681 (3) | 0.293 (3) | 0.876 (3) | 0.107 (11)* | |
O5 | 0.39508 (16) | 0.03347 (14) | 0.38677 (12) | 0.0413 (3) | |
O6 | 0.42798 (15) | −0.11024 (13) | 0.17918 (12) | 0.0374 (3) | |
N1 | 0.2660 (2) | 0.10347 (19) | 0.87255 (16) | 0.0397 (4) | |
H1 | 0.250 (3) | 0.145 (3) | 0.930 (2) | 0.075 (9)* | |
N2 | 0.1263 (2) | 0.28298 (18) | 0.84096 (15) | 0.0445 (4) | |
N3 | 0.6408 (2) | 0.45461 (19) | 0.87873 (17) | 0.0428 (4) | |
H3 | 0.643 (3) | 0.517 (3) | 0.940 (2) | 0.068 (8)* | |
N4 | 0.4699 (2) | 0.60614 (18) | 0.85596 (16) | 0.0454 (4) | |
N5 | 0.34178 (18) | −0.03212 (17) | 0.17342 (15) | 0.0325 (4) | |
H5 | 0.301 (2) | −0.018 (2) | 0.104 (2) | 0.049 (6)* | |
N6 | 0.16908 (19) | 0.11506 (18) | 0.13287 (14) | 0.0391 (4) | |
C1 | 0.1203 (2) | 0.19678 (19) | 0.73700 (17) | 0.0327 (4) | |
C2 | 0.0281 (3) | 0.1793 (3) | 0.61794 (19) | 0.0515 (6) | |
H2A | 0.0291 | 0.1203 | 0.5472 | 0.062* | |
C3 | −0.0661 (3) | 0.2507 (3) | 0.6045 (2) | 0.0596 (6) | |
H3A | −0.1316 | 0.2385 | 0.5248 | 0.072* | |
C4 | −0.0623 (2) | 0.3393 (2) | 0.7094 (2) | 0.0483 (5) | |
H4A | −0.1247 | 0.3889 | 0.7029 | 0.058* | |
C5 | 0.0357 (3) | 0.3532 (2) | 0.8243 (2) | 0.0522 (6) | |
H5A | 0.0399 | 0.4154 | 0.8954 | 0.063* | |
C6 | 0.2119 (2) | 0.1080 (2) | 0.75329 (17) | 0.0337 (4) | |
C7 | 0.4699 (2) | 0.52978 (19) | 0.74923 (18) | 0.0358 (4) | |
C8 | 0.3960 (3) | 0.5331 (3) | 0.6301 (2) | 0.0583 (6) | |
H8 | 0.3977 | 0.4771 | 0.5579 | 0.070* | |
C9 | 0.3190 (3) | 0.6209 (3) | 0.6188 (2) | 0.0679 (7) | |
H9 | 0.2696 | 0.6265 | 0.5387 | 0.082* | |
C10 | 0.3159 (3) | 0.6994 (2) | 0.7263 (2) | 0.0515 (6) | |
H10 | 0.2635 | 0.7584 | 0.7214 | 0.062* | |
C11 | 0.3925 (3) | 0.6887 (2) | 0.8421 (2) | 0.0502 (6) | |
H11 | 0.3905 | 0.7424 | 0.9155 | 0.060* | |
C12 | 0.5611 (2) | 0.44067 (19) | 0.76097 (18) | 0.0371 (4) | |
C13 | 0.2335 (2) | 0.11871 (18) | 0.25376 (16) | 0.0301 (4) | |
C14 | 0.2116 (3) | 0.1935 (3) | 0.3547 (2) | 0.0540 (6) | |
H14 | 0.2580 | 0.1948 | 0.4382 | 0.065* | |
C15 | 0.1199 (3) | 0.2665 (3) | 0.3297 (2) | 0.0595 (6) | |
H15 | 0.1045 | 0.3184 | 0.3964 | 0.071* | |
C16 | 0.0524 (2) | 0.2621 (2) | 0.2072 (2) | 0.0431 (5) | |
H16 | −0.0103 | 0.3101 | 0.1881 | 0.052* | |
C17 | 0.0792 (2) | 0.1845 (2) | 0.11211 (19) | 0.0465 (5) | |
H17 | 0.0316 | 0.1803 | 0.0280 | 0.056* | |
C18 | 0.3310 (2) | 0.03654 (18) | 0.27692 (16) | 0.0299 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0567 (5) | 0.0543 (5) | 0.0255 (4) | 0.0397 (4) | 0.0115 (3) | 0.0068 (3) |
O1 | 0.0587 (9) | 0.0844 (10) | 0.0293 (8) | 0.0518 (9) | 0.0114 (7) | 0.0031 (7) |
O2 | 0.0571 (10) | 0.0604 (9) | 0.0423 (8) | 0.0450 (8) | 0.0217 (7) | 0.0219 (7) |
O3 | 0.0912 (12) | 0.0558 (9) | 0.0339 (8) | 0.0507 (9) | 0.0141 (8) | 0.0025 (7) |
O4 | 0.0543 (9) | 0.0553 (9) | 0.0494 (9) | 0.0368 (8) | 0.0044 (7) | 0.0007 (7) |
O5 | 0.0575 (9) | 0.0562 (8) | 0.0241 (7) | 0.0395 (7) | 0.0098 (6) | 0.0101 (6) |
O6 | 0.0486 (8) | 0.0475 (7) | 0.0333 (7) | 0.0374 (7) | 0.0128 (6) | 0.0101 (6) |
N1 | 0.0550 (11) | 0.0544 (10) | 0.0294 (9) | 0.0410 (9) | 0.0154 (8) | 0.0121 (8) |
N2 | 0.0551 (11) | 0.0550 (10) | 0.0325 (9) | 0.0366 (9) | 0.0089 (8) | 0.0040 (8) |
N3 | 0.0558 (11) | 0.0469 (10) | 0.0349 (10) | 0.0347 (9) | 0.0103 (8) | 0.0035 (8) |
N4 | 0.0634 (12) | 0.0487 (9) | 0.0362 (10) | 0.0343 (9) | 0.0198 (8) | 0.0082 (8) |
N5 | 0.0432 (9) | 0.0423 (9) | 0.0234 (8) | 0.0307 (8) | 0.0079 (7) | 0.0079 (7) |
N6 | 0.0462 (10) | 0.0531 (10) | 0.0313 (9) | 0.0343 (8) | 0.0124 (7) | 0.0101 (7) |
C1 | 0.0354 (10) | 0.0400 (10) | 0.0292 (10) | 0.0206 (8) | 0.0130 (8) | 0.0101 (8) |
C2 | 0.0690 (15) | 0.0727 (14) | 0.0288 (11) | 0.0515 (13) | 0.0081 (10) | 0.0065 (10) |
C3 | 0.0722 (16) | 0.0826 (16) | 0.0386 (13) | 0.0562 (14) | 0.0033 (11) | 0.0097 (11) |
C4 | 0.0554 (13) | 0.0542 (12) | 0.0515 (14) | 0.0399 (11) | 0.0139 (11) | 0.0153 (10) |
C5 | 0.0673 (15) | 0.0583 (13) | 0.0402 (12) | 0.0424 (12) | 0.0105 (11) | −0.0001 (10) |
C6 | 0.0342 (10) | 0.0436 (10) | 0.0273 (9) | 0.0216 (9) | 0.0092 (8) | 0.0061 (8) |
C7 | 0.0418 (11) | 0.0306 (9) | 0.0348 (10) | 0.0162 (8) | 0.0118 (8) | 0.0049 (8) |
C8 | 0.0881 (18) | 0.0653 (14) | 0.0330 (12) | 0.0537 (14) | 0.0065 (11) | 0.0004 (10) |
C9 | 0.0954 (19) | 0.0793 (16) | 0.0420 (14) | 0.0639 (16) | −0.0008 (13) | 0.0063 (12) |
C10 | 0.0547 (14) | 0.0495 (12) | 0.0598 (15) | 0.0335 (11) | 0.0152 (11) | 0.0112 (11) |
C11 | 0.0666 (15) | 0.0522 (12) | 0.0471 (13) | 0.0377 (12) | 0.0257 (11) | 0.0072 (10) |
C12 | 0.0485 (12) | 0.0324 (9) | 0.0336 (11) | 0.0202 (9) | 0.0144 (9) | 0.0065 (8) |
C13 | 0.0333 (10) | 0.0323 (9) | 0.0279 (9) | 0.0171 (8) | 0.0104 (7) | 0.0067 (7) |
C14 | 0.0792 (16) | 0.0755 (15) | 0.0311 (11) | 0.0598 (14) | 0.0132 (10) | 0.0079 (10) |
C15 | 0.0878 (18) | 0.0793 (16) | 0.0399 (13) | 0.0650 (15) | 0.0215 (12) | 0.0066 (11) |
C16 | 0.0480 (12) | 0.0487 (11) | 0.0483 (13) | 0.0333 (10) | 0.0191 (10) | 0.0143 (10) |
C17 | 0.0543 (13) | 0.0663 (13) | 0.0350 (11) | 0.0420 (11) | 0.0115 (10) | 0.0161 (10) |
C18 | 0.0342 (10) | 0.0327 (9) | 0.0270 (9) | 0.0183 (8) | 0.0101 (7) | 0.0063 (7) |
Na1—O5 | 2.3044 (14) | C1—C2 | 1.367 (3) |
Na1—O3 | 2.3225 (15) | C1—C6 | 1.503 (2) |
Na1—O1 | 2.3300 (16) | C2—C3 | 1.377 (3) |
Na1—O5i | 2.3558 (14) | C2—H2A | 0.9300 |
Na1—O6i | 2.3716 (14) | C3—C4 | 1.363 (3) |
Na1—Na1i | 3.3964 (13) | C3—H3A | 0.9300 |
O1—C6 | 1.232 (2) | C4—C5 | 1.365 (3) |
O2—N1 | 1.388 (2) | C4—H4A | 0.9300 |
O2—H2 | 0.91 (2) | C5—H5A | 0.9300 |
O3—C12 | 1.235 (2) | C7—C8 | 1.366 (3) |
O4—N3 | 1.383 (2) | C7—C12 | 1.501 (3) |
O4—H4 | 0.91 (3) | C8—C9 | 1.378 (3) |
O5—C18 | 1.247 (2) | C8—H8 | 0.9300 |
O5—Na1i | 2.3558 (14) | C9—C10 | 1.362 (3) |
O6—N5 | 1.3666 (18) | C9—H9 | 0.9300 |
O6—Na1i | 2.3716 (14) | C10—C11 | 1.372 (3) |
N1—C6 | 1.320 (2) | C10—H10 | 0.9300 |
N1—H1 | 0.80 (2) | C11—H11 | 0.9300 |
N2—C1 | 1.333 (2) | C13—C14 | 1.379 (3) |
N2—C5 | 1.339 (2) | C13—C18 | 1.500 (2) |
N3—C12 | 1.319 (3) | C14—C15 | 1.379 (3) |
N3—H3 | 0.86 (2) | C14—H14 | 0.9300 |
N4—C7 | 1.332 (2) | C15—C16 | 1.355 (3) |
N4—C11 | 1.336 (2) | C15—H15 | 0.9300 |
N5—C18 | 1.314 (2) | C16—C17 | 1.372 (3) |
N5—H5 | 0.84 (2) | C16—H16 | 0.9300 |
N6—C17 | 1.330 (2) | C17—H17 | 0.9300 |
N6—C13 | 1.334 (2) | ||
O5—Na1—O3 | 109.39 (6) | N2—C5—C4 | 124.16 (19) |
O5—Na1—O1 | 107.77 (5) | N2—C5—H5A | 117.9 |
O3—Na1—O1 | 98.10 (6) | C4—C5—H5A | 117.9 |
O5—Na1—O5i | 86.43 (5) | O1—C6—N1 | 123.81 (17) |
O3—Na1—O5i | 126.64 (6) | O1—C6—C1 | 121.78 (17) |
O1—Na1—O5i | 125.87 (6) | N1—C6—C1 | 114.39 (16) |
O5—Na1—O6i | 156.53 (5) | N4—C7—C8 | 123.26 (18) |
O3—Na1—O6i | 87.61 (5) | N4—C7—C12 | 118.11 (17) |
O1—Na1—O6i | 84.80 (5) | C8—C7—C12 | 118.58 (17) |
O5i—Na1—O6i | 70.26 (5) | C7—C8—C9 | 118.8 (2) |
C6—O1—Na1 | 127.13 (13) | C7—C8—H8 | 120.6 |
N1—O2—H2 | 102.4 (15) | C9—C8—H8 | 120.6 |
C12—O3—Na1 | 129.55 (13) | C10—C9—C8 | 119.3 (2) |
N3—O4—H4 | 103.9 (19) | C10—C9—H9 | 120.4 |
C18—O5—Na1 | 151.93 (12) | C8—C9—H9 | 120.4 |
C18—O5—Na1i | 114.42 (11) | C9—C10—C11 | 118.0 (2) |
Na1—O5—Na1i | 93.57 (5) | C9—C10—H10 | 121.0 |
N5—O6—Na1i | 110.28 (9) | C11—C10—H10 | 121.0 |
C6—N1—O2 | 121.64 (15) | N4—C11—C10 | 124.06 (19) |
C6—N1—H1 | 121.1 (19) | N4—C11—H11 | 118.0 |
O2—N1—H1 | 116.7 (19) | C10—C11—H11 | 118.0 |
C1—N2—C5 | 116.66 (17) | O3—C12—N3 | 123.70 (18) |
C12—N3—O4 | 121.18 (16) | O3—C12—C7 | 121.61 (18) |
C12—N3—H3 | 119.5 (17) | N3—C12—C7 | 114.69 (16) |
O4—N3—H3 | 118.2 (17) | N6—C13—C14 | 122.09 (17) |
C7—N4—C11 | 116.62 (18) | N6—C13—C18 | 117.42 (15) |
C18—N5—O6 | 121.82 (15) | C14—C13—C18 | 120.49 (17) |
C18—N5—H5 | 116.6 (14) | C13—C14—C15 | 118.87 (19) |
O6—N5—H5 | 121.3 (14) | C13—C14—H14 | 120.6 |
C17—N6—C13 | 117.46 (16) | C15—C14—H14 | 120.6 |
N2—C1—C2 | 123.00 (17) | C16—C15—C14 | 119.55 (19) |
N2—C1—C6 | 118.12 (16) | C16—C15—H15 | 120.2 |
C2—C1—C6 | 118.77 (16) | C14—C15—H15 | 120.2 |
C1—C2—C3 | 118.83 (19) | C15—C16—C17 | 118.02 (18) |
C1—C2—H2A | 120.6 | C15—C16—H16 | 121.0 |
C3—C2—H2A | 120.6 | C17—C16—H16 | 121.0 |
C4—C3—C2 | 119.3 (2) | N6—C17—C16 | 124.00 (19) |
C4—C3—H3A | 120.3 | N6—C17—H17 | 118.0 |
C2—C3—H3A | 120.3 | C16—C17—H17 | 118.0 |
C3—C4—C5 | 117.99 (19) | O5—C18—N5 | 123.20 (16) |
C3—C4—H4A | 121.0 | O5—C18—C13 | 121.78 (15) |
C5—C4—H4A | 121.0 | N5—C18—C13 | 115.02 (15) |
Na1i—O6—N5—C18 | 1.8 (2) | Na1—O3—C12—C7 | −113.54 (18) |
C5—N2—C1—C2 | 0.4 (3) | O4—N3—C12—O3 | 6.3 (3) |
C5—N2—C1—C6 | −175.88 (18) | O4—N3—C12—C7 | −172.72 (16) |
N2—C1—C2—C3 | −1.8 (3) | N4—C7—C12—O3 | 177.27 (19) |
C6—C1—C2—C3 | 174.5 (2) | C8—C7—C12—O3 | −5.1 (3) |
C1—C2—C3—C4 | 1.6 (4) | N4—C7—C12—N3 | −3.7 (3) |
C2—C3—C4—C5 | −0.1 (4) | C8—C7—C12—N3 | 173.90 (19) |
C1—N2—C5—C4 | 1.2 (3) | C17—N6—C13—C14 | −1.3 (3) |
C3—C4—C5—N2 | −1.4 (4) | C17—N6—C13—C18 | 178.22 (17) |
Na1—O1—C6—N1 | −72.4 (2) | N6—C13—C14—C15 | 0.2 (3) |
Na1—O1—C6—C1 | 109.31 (18) | C18—C13—C14—C15 | −179.3 (2) |
O2—N1—C6—O1 | −7.4 (3) | C13—C14—C15—C16 | 0.6 (4) |
O2—N1—C6—C1 | 170.99 (16) | C14—C15—C16—C17 | −0.3 (4) |
N2—C1—C6—O1 | −169.34 (18) | C13—N6—C17—C16 | 1.7 (3) |
C2—C1—C6—O1 | 14.2 (3) | C15—C16—C17—N6 | −0.9 (3) |
N2—C1—C6—N1 | 12.2 (3) | Na1—O5—C18—N5 | 175.36 (18) |
C2—C1—C6—N1 | −164.23 (19) | Na1i—O5—C18—N5 | 0.2 (2) |
C11—N4—C7—C8 | 0.0 (3) | Na1—O5—C18—C13 | −5.3 (4) |
C11—N4—C7—C12 | 177.53 (17) | Na1i—O5—C18—C13 | 179.48 (12) |
N4—C7—C8—C9 | 0.8 (4) | O6—N5—C18—O5 | −1.4 (3) |
C12—C7—C8—C9 | −176.6 (2) | O6—N5—C18—C13 | 179.24 (14) |
C7—C8—C9—C10 | −1.3 (4) | N6—C13—C18—O5 | −179.72 (17) |
C8—C9—C10—C11 | 0.9 (4) | C14—C13—C18—O5 | −0.2 (3) |
C7—N4—C11—C10 | −0.5 (3) | N6—C13—C18—N5 | −0.4 (2) |
C9—C10—C11—N4 | 0.0 (4) | C14—C13—C18—N5 | 179.15 (19) |
Na1—O3—C12—N3 | 67.5 (3) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···N2 | 0.80 (3) | 2.35 (3) | 2.688 (3) | 106 (2) |
N3—H3···N4 | 0.86 (3) | 2.30 (3) | 2.681 (3) | 107 (2) |
N5—H5···N6 | 0.84 (2) | 2.25 (2) | 2.670 (3) | 111.1 (17) |
O2—H2···O6i | 0.91 (2) | 1.65 (2) | 2.549 (2) | 169 (2) |
O4—H4···O6i | 0.91 (3) | 1.66 (3) | 2.5744 (19) | 177 (3) |
N1—H1···N6ii | 0.80 (2) | 2.55 (3) | 3.224 (2) | 143 (2) |
N5—H5···O2iii | 0.84 (2) | 2.35 (2) | 3.058 (2) | 142.6 (19) |
C5—H5A···O4iv | 0.93 | 2.61 | 3.341 (3) | 136 |
C17—H17···N2iii | 0.93 | 2.60 | 3.330 (3) | 136 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z+1; (iii) x, y, z−1; (iv) −x+1, −y+1, −z+2. |
Acknowledgements
Financial support from the European Community's Seventh Framework Program (FP7/2007–2013) under grant agreement PIRSES-GA-2013–611488 is gratefully acknowledged. KAO acknowledges for the DAAD fellowship (Leonhard-Euler-Program).
References
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. &Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Agilent (2013). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Chaiyaveij, D., Batsanov, A. S., Fox, M. A., Marder, T. B. & Whiting, A. (2015). J. Org. Chem. 80, 9518–9534. CSD CrossRef CAS Google Scholar
Codd, R. (2008). Coord. Chem. Rev. 252, 1387–1408. Web of Science CrossRef CAS Google Scholar
Dobosz, A., Dudarenko, N. M., Fritsky, I. O., Głowiak, T., Karaczyn, A., Kozłowski, H., Sliva, T. Yu. & Świątek-Kozłowska, J. (1999). J. Chem. Soc. Dalton Trans. pp. 743–750. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fritsky, I. O., Świątek-Kozłowska, J., Dobosz, A., Sliva, T. Y. & Dudarenko, N. M. (2004). Inorg. Chim. Acta, 357, 3746–3752. Web of Science CSD CrossRef CAS Google Scholar
Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012a). Inorg. Chem. 51, 6221–6227. CSD CrossRef CAS Google Scholar
Golenya, I. A., Gumienna-Kontecka, E., Boyko, A. N., Haukka, M. & Fritsky, I. O. (2012b). Dalton Trans. 41, 9427–9430. CSD CrossRef CAS Google Scholar
Golenya, I. A., Gumienna-Kontecka, E., Haukka, M., Korsun, O. M., Kalugin, O. N. & Fritsky, I. O. (2014). CrystEngComm, 16, 1904–1918. Web of Science CSD CrossRef CAS Google Scholar
Griffith, D., Lyssenko, K., Jensen, P., Kruger, P. E. & Marmion, C. J. (2005). Dalton Trans. pp. 956–961. Web of Science CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gumienna-Kontecka, E., Golenya, I. A., Dudarenko, N. M., Dobosz, A., Haukka, M., Fritsky, I. O. & Świątek-Kozłowska, J. (2007). New J. Chem. 31, 1798–1805. Web of Science CSD CrossRef CAS Google Scholar
Gumienna-Kontecka, E., Golenya, I. A., Szebesczyk, A., Haukka, M., Krämer, R. & Fritsky, I. O. (2013). Inorg. Chem. 52, 7633–7644. Web of Science CAS PubMed Google Scholar
Jankolovits, J., Andolina, C. M., Kampf, J. W., Raymond, K. N. & Pecoraro, V. L. (2011). Angew. Chem. Int. Ed. 50, 9660–9664. Web of Science CSD CrossRef CAS Google Scholar
Jankolovits, J., Kampf, J. W. & Pecoraro, V. L. (2013a). Inorg. Chem. 52, 5063–5076. CSD CrossRef CAS Google Scholar
Jankolovits, J., Kampf, J. W. & Pecoraro, V. L. (2013b). Polyhedron, 52, 491–499. CSD CrossRef CAS Google Scholar
Jankolovits, J., Kampf, J. W. & Pecoraro, V. L. (2014). Inorg. Chem. 53, 7534–7546. CSD CrossRef CAS Google Scholar
Lossen, H. (1869). Justus Liebigs Ann. Chem. 150, 314–322. CrossRef Google Scholar
Malinkin, S. O., Moroz, Y. S., Penkova, L. V., Bon, V. V., Gumienna-Kontecka, E., Pavlenko, V. A., Pekhnyo, V. I., Meyer, F. & Fritsky, I. O. (2012a). Polyhedron, 37, 77–84. CSD CrossRef CAS Google Scholar
Malinkin, S. O., Moroz, Y. S., Penkova, L. V., Haukka, M., Szebesczyk, A., Gumienna-Kontecka, E., Pavlenko, V. A., Nordlander, E., Meyer, F. & Fritsky, I. O. (2012b). Inorg. Chim. Acta, 392, 322–330. CSD CrossRef CAS Google Scholar
Marmion, C. J., Parker, J. P. & Nolan, K. B. (2013). Comprehensive Inorganic Chemistry II: From Elements to Applications, Vol. 3, edited by J. Reedijk & K. Poeppelmeier, pp. 684–708. Amsterdam: Elsevier. Google Scholar
Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. Web of Science CSD CrossRef CAS PubMed Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836. Web of Science CSD CrossRef Google Scholar
Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858. Web of Science CSD CrossRef Google Scholar
Saf'yanova, I. S., Golenya, I. O., Pavlenko, V. O. & Frits'kii, I. O. (2014). Ukr. Khim. Zh. 80, 78–82. CAS Google Scholar
Safyanova, I. S., Golenya, I. A., Pavlenko, V. A., Gumienna-Kontecka, E., Pekhnyo, V. I., Bon, V. V. & Fritsky, I. O. (2015). Z. Anorg. Allg. Chem. 641, 2326–2332. Web of Science CSD CrossRef CAS Google Scholar
Safyanova, I. S., Ohui, K. A. & Omelchenko, I. V. (2016). Acta Cryst. E72, 117–119. CSD CrossRef IUCr Journals Google Scholar
Seda, S. H., Janczak, J. & Lisowski, J. (2006a). Inorg. Chem. Commun. 9, 792–796. CSD CrossRef CAS Google Scholar
Seda, S. H., Janczak, J. & Lisowski, J. (2006b). Inorg. Chim. Acta, 359, 1055–1063. CSD CrossRef CAS Google Scholar
Seda, S. H., Janczak, J. & Lisowski, J. (2007). Eur. J. Inorg. Chem. pp. 3015–3022. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stemmler, A. J., Kampf, J. W., Kirk, M. L., Atasi, B. H. & Pecoraro, V. L. (1999). Inorg. Chem. 38, 2807–2817. Web of Science CSD CrossRef PubMed CAS Google Scholar
Stemmler, A. J., Kampf, J. W. & Pecoraro, V. L. (1996). Angew. Chem. Int. Ed. Engl. 35, 2841–2843. CSD CrossRef CAS Google Scholar
Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547. Web of Science CSD CrossRef CAS Google Scholar
Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.