research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Disorder of the dimeric TCNQ–TCNQ unit in the crystal structure of [Ni(bpy)3]2(TCNQ–TCNQ)(TCNQ)2·6H2O (TCNQ is 7,7,8,8-tetra­cyano­quinodi­methane)

CROSSMARK_Color_square_no_text.svg

aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University in Košice, Moyzesova 11, 041 54 Košice, Slovakia
*Correspondence e-mail: juraj.cernak@upjs.sk

Edited by M. Zeller, Purdue University, USA (Received 22 November 2016; accepted 1 December 2016; online 1 January 2017)

Crystallization from an aqueous methanol system composed of Ni(NO3)2, 2,2′-bipyridine (bpy) and LiTCNQ (TCNQ is 7,7,8,8-tetra­cyano­quinodi­methane) in a 1:3:2 molar ratio yielded single crystals of bis­[tris­(2,2′-bi­pyridine-κ2N,N′)nickel(II)] bis­(7,7,8,8-tetra­cyano­quinodi­methane radical anion) bi[7,7,8,8-tetra­cyano­quino­dimethanide] hexa­hydrate, [Ni(C10H8N2)3]2(C24H8N8)(C12H4N4)2·6H2O or [Ni(bpy)3]2(TCNQ–TCNQ)(TCNQ)2·6H2O. The crystal structure comprises [Ni(bpy)3]2+ complex cations, two centrosymmetric crystallographically independent TCNQ· anion radicals with π-stacked exo groups, and an additional dimeric TCNQ–TCNQ unit which comprises 75.3 (9)% of a σ-dimerized (TCNQ–TCNQ)2− dianion and 24.7 (9)% of two TCNQ·− anion radicals with tightly π-stacked exo groups. The title complex represents the first example of an NiII complex containing a σ-dimerized (TCNQ–TCNQ)2− dianion. Disordered solvent water mol­ecules present in the crystal structure participate in hydrogen-bonding inter­actions.

1. Chemical context

In the quest for new promising mol­ecular magnetic materials besides the complexes of 3d and 4f elements, organic radicals have been explored (Nafady et al., 2014[Nafady, A., O'Mullane, A. P. & Bond, A. M. (2014). Coord. Chem. Rev. 268, 101-142.]; Kubota et al., 2014[Kubota, H., Takahashi, Y., Harada, J. & Inabe, T. (2014). Cryst. Growth Des. 14, 5575-5584.]; Starodub & Starodub, 2014[Starodub, V. A. & Starodub, T. N. (2014). Russ. Chem. Rev. 83, 391-438.]). Among these, 7,7,8,8-tetra­cyano­quinodi­methane (TCNQ) in its anion radical form responds to magnetic probing. Its combination with 3d or 4f metal atoms may lead to inter­esting magnetic properties (Nishijo & Enomoto, 2015[Nishijo, J. & Enomoto, M. (2015). Inorg. Chim. Acta, 437, 59-63.]; Madalan et al., 2002[Madalan, A. M., Roesky, H. W., Andruh, M., Noltmeyer, M. & Stanica, N. (2002). Chem. Commun. 15, 1638-1639.]; Ballester et al., 2002[Ballester, L., Gil, A. M., Gutiérrez, A., Perpiñán, M. F., Azcondo, M. T., Sánchez, A. E., Marzin, C., Tarrago, G. & Bellitto, C. (2002). Chem. Eur. J. 8, 2539-2548.]). In addition, materials containing TCNQ have been studied for their electric conductivity (Ballesteros-Rivas et al., 2011[Ballesteros-Rivas, M., Ota, A., Reinheimer, E., Prosvirin, A., Valdés-Martinez, J. & Dunbar, K. R. (2011). Angew. Chem. Int. Ed. 50, 9703-9707.]; Starodub & Starodub, 2014[Starodub, V. A. & Starodub, T. N. (2014). Russ. Chem. Rev. 83, 391-438.]). TCNQ (including its reduced forms), when combined with 3d metals, can be present as an non-coordinating species (in the neutral or anion radical form) or it can form a σ-bond with the metal atom (Ballester et al., 1999[Ballester, L., Gutiérrez, A., Perpiñán, M. F. & Azcondo, M. T. (1999). Coord. Chem. Rev. 190-192, 447-470.]). We note that TCNQ.− anion radicals tend to dimerize, usually via stacking of their π-clouds, but, in some cases, the dimerization tendency leads to the formation of σ-dimerized (TCNQ–TCNQ)2− dianions (Dong et al., 1977[Dong, V., Endres, H., Keller, H. J., Moroni, W. & Nöthe, D. (1977). Acta Cryst. B33, 2428-2431.]; Hoffmann et al., 1983[Hoffmann, S. K., Corvan, P. J., Singh, P., Sethulekshmi, C. N., Metzger, R. M. & Hatfield, W. E. (1983). J. Am. Chem. Soc. 105, 4608-4617.]; Shimomura et al., 2010[Shimomura, S., Higuchi, M., Matsuda, R., Yoneda, K., Hijikata, Y., Kubota, Y., Mita, Y., Kim, J., Takata, M. & Kitagawa, S. (2010). Nature Chem. 2, 633-637.]; Zhao et al., 1996[Zhao, H., Heintz, R. A., Dunbar, K. R. & Rogers, R. D. (1996). J. Am. Chem. Soc. 118, 12844-12845.]). Within our search for new heterospin materials based on 3d metals and organic radicals, we have undertaken a study of the aqueous methanol system containing NiII, 2,2′-bi­pyridine (bpy) and TCNQ. Several complexes of NiII-containing TCNQ species have been reported previously, e.g. [Ni(terpy)2](TCNQ)2 (terpy is 2,2′:6′,2′′-terpyridine) with non-coordinating π-dimerized anion radicals (Alonso et al., 2005[Alonso, C., Ballester, L., Gutiérrez, A., Perpiñán, M. F., Sánchez, A. E. & Azcondo, M. T. (2005). Eur. J. Inorg. Chem. pp. 486-495.]) or [Ni(cyclam)(TCNQ)2] (cyclam is 1,4,8,11-tetra­aza­cyclo­tetra­deca­ne) with σ-coordinating anion radicals (Ballester et al., 1997[Ballester, L., Gutiérrez, A., Perpiñán, M. F., Amador, U., Azcondo, M. T., Sánchez, A. E. & Bellito, C. (1997). Inorg. Chem. 36, 6390-6396.]). From a similar system with bpy, the formation of [Ni(bpy)3](TCNQ)4·(CH3)2CO was reported, along with the results of its crystal structure analysis (Vasylets et al., 2014[Vasylets, G. Y., Starodub, V. A., Barszcz, B., Graja, A., Medviediev, V. V., Shiskin, O. V. & Bukrinev, A. S. (2014). Synth. Met. 191, 89-98.]). Following our synthetic procedure, we have isolated single crystals of novel composition, i.e. [Ni(bpy)3]2(TCNQ–TCNQ)(TCNQ)2·6H2O (1) and report here its crystal structure.

[Scheme 1]

2. Structural commentary

The unit cell of the title complex, 1, comprises two [Ni(bpy)3]2+ complex cations, a centrosymmetric TCNQ–TCNQ dimeric unit, two centrosymmetric crystallographically independent TCNQ·− anion radicals, and three crystallographically independent disordered solvent water mol­ecules (Figs. 1[link]–5[link][link][link][link]). The complex cation is optically active, but due to the centrosymmetric character of the space group, both Δ and Λ enanti­omers are present in the structure. The Ni—N bond lengths range from 2.078 (2) to 2.109 (2) Å. Similar values of 2.0895 (2) and 2.1023 (2) Å for Ni—N bonds were found in [Ni(bpy)3]2[W(CN)8]·6H2O (Korzeniak et al., 2008[Korzeniak, T., Mathonière, C., Kaiba, A., Guionneau, P., Koziel, M. & Sieklucka, B. (2008). Inorg. Chim. Acta, 361, 3500-3504.]). An outstanding feature of the structure of 1 is the presence of a σ-dimerized dianion TCNQA (Figs. 2[link] and 3[link]), which is, to our knowledge, the first reported case of such a unit among NiII complexes with TCNQ. This dianion is disordered with a less prevalent pair of anion radicals for which the exocyclic groups inter­act solely via tight π-stacking, but are not σ-bonded; the refined site-occupation factors are 0.753 (9):0.247 (9) (Fig. 2[link]). The simultaneous presence of both a σ-dimerized dianion and a pair of anion radicals can be considered as a manifestation of a not completed dimerization reaction. The C37A—C37Aiii [symmetry code: (iii) 1 − x, 1 − y, 2 − z] dimerization bond length is 1.653 (11) Å and this value is within the usual range (see Database survey section). At the same time, this value is longer than a usual single C—C bond and, consequently, the corresponding bond angles around the C37A atom range from 105.6 (4) to 113.6 (3)°, displaying significant deviations from the ideal tetra­hedral angle. In the less populated pair of anion radicals within TCNQA, the distance between the C37B atom and its symmetry-related counterpart C37Biii is 3.06 (2) Å; the inter­planar distance between the least-squares plane P1 formed by atoms C31B, C37B, C38B and C39B and the least-squares plane P2 formed by their symmetry-related counterparts through a centre of symmetry at (1 − x, 1 − y, 2 − z) is 3.03 Å. The distance of the C37iii atom from the plane P1 is 2.90 Å and the slippage between atoms C37B and C37Biii is 0.98 Å. These geometric parameters suggest a very strong π-inter­action between the less populated pair of anion radicals in TCNQA, and they are pre-positioned for σ-dimerization with little structural rearrangement required upon formation of the covalent bond. This could be seen as an indication of σ-bond formation in the solid state upon crystallization rather than pre-formation of the σ-dimers in solution.

[Figure 1]
Figure 1
A view of the mol­ecular components of the title compound, 1, showing the labelling and with displacement ellipsoids drawn at the 30% probability level. For the dimerized (TCNQ)2 unit, only the more populated position is shown. [Symmetry codes: (i) 1 − x, 2 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, 1 − y, 2 − z.]
[Figure 2]
Figure 2
A view of the observed disorder of the dimerized (TCNQ)2 unit. The less populated atoms are shown with transparency. [Symmetry code: (iii) 1 − x, 1 − y, 2 − z.]
[Figure 3]
Figure 3
A view of the packing of the title compound, 1, approximatively along the a axis. The complex cations, H atoms and O3 water mol­ecules have been omitted for clarity. Possible hydrogen bonds are shown as orange dashed lines. [Symmetry codes: (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, 1 − y, 2 − z; (vii) x, 1 + y, z; (x) 1 + x, y, z.]
[Figure 4]
Figure 4
A view of the packing along the b axis, showing the role of the O3A water mol­ecule in linking the supra­molecular sheets into a three-dimensional supra­molecular network. The complex cations and H atoms have been omitted for clarity. Possible hydrogen bonds are shown as orange dashed lines. [Symmetry codes: (ii) 1 − x, 1 − y, 1 − z; (v) −x, 1 − y, 2 − z; (vi) x − 1, 1 + y, z; (vii) x, 1 + y, z; (x) 1 + x, y, z.]
[Figure 5]
Figure 5
A view of the possible hydrogen-bonding system in the crystal structure of the title complex, 1. Hydrogen bonds are represented by orange dashed lines. The different undertones of the red colour used for the O atoms reflect the value of the site-occupation factor (sof): dark-red (O2A): sof = 0.908 (3); light-red (O2B): 0.092 (3); inter­mediate (O1A and O2A): exactly 0.5. [Symmetry codes: (ii) 1 − x, 1 − y, 1 − z; (iii) 1 − x, 1 − y, 2 − z; (iv) −x, 2 − y, 2 − z; (v) −x, 1 − y, 2 − z; (vi) x − 1, 1 + y, z; (vii) x, 1 + y, z; (viii) −x, 2 − y, 2 − z; (ix) x − 1, 1 + y, 1 + z; (xi) −x, 2 − y, 1 − z.]

In addition to the TCNQA site, there are two crystallographically independent centrosymmetric TCNQ·− anion radicals, TCNQB and TCNQC, in the crystal structure of 1 (Fig. 3[link]). The two anion radicals are neighbours and stack in a π-stacked `external bond over external bond' fashion (see Ballester et al., 1999[Ballester, L., Gutiérrez, A., Perpiñán, M. F. & Azcondo, M. T. (1999). Coord. Chem. Rev. 190-192, 447-470.]). The exocyclic groups in these TCNQ units are almost in plane with the quinoide ring; the greatest deviation from planarity is represented by the torsion angle C45—C43—C46—C48 of 175.9 (2)° in TCNQB.

3. Supra­molecular features

A view of the packing of the structure of 1 is displayed in Fig. 3[link]. The TCNQ units are arranged in a chain-like manner along the b axis; one chain-like arrangement is formed only by the TCNQA dimeric units, while a second one is built up of alternating TCNQB and TCNQC anion radicals. In both chain-like arrangements, the exocyclic groups are π-stacked with each other. Ballester et al. (1999[Ballester, L., Gutiérrez, A., Perpiñán, M. F. & Azcondo, M. T. (1999). Coord. Chem. Rev. 190-192, 447-470.]) defined four different stacking modes of TCNQ units, with typical intra­dimer distances between 3.09 and 3.45 Å. For TNCQA, the site with disordered σ-dimerized and radical anions, mol­ecules are arranged in infinite channels along a string of inversion centres on both sides of each crystallographically independent unit. On one side there is the case of the less populated un-σ-dimerized dianion, clearly a rather strong π-stacking inter­action (see above). The other side of the mol­ecule, involving the di­cyano­methanide group containing the C40 atom, on the other hand, stacks with its inversion-symmetry-related counterpart in an `external bond over external bond' fashion defined as type `(d)' by Ballester et al. (1999[Ballester, L., Gutiérrez, A., Perpiñán, M. F. & Azcondo, M. T. (1999). Coord. Chem. Rev. 190-192, 447-470.]) (Fig. 3[link]). The shortest observed distance of 3.54 (5) Å between atoms C33Biii and N10vii [symmetry code: (vii) x, 1 + y, z] is, however, much longer than for the `front-end' di­cyano­methanide group. It is outside the usually observed range for strong π-stacking inter­actions in analogous systems (Ballester et al., 1999[Ballester, L., Gutiérrez, A., Perpiñán, M. F. & Azcondo, M. T. (1999). Coord. Chem. Rev. 190-192, 447-470.]).

The mutual positions of the TCNQB and TCNQC anion radicals within the supra­molecular chain-like arrangement can be described as π-stacked in an `external bond over external bond' fashion (Fig. 3[link]), but we have to note that the TCNQB and TCNQC quinoide rings are not coplanar, as the least-squares planes through these quinoide rings form an angle of 9.42 (8)°. The shortest distance between the TCNQB and TCNQC anion radicals within the chain-like arrangement is 3.397 (4) Å [C46⋯C52ii; symmetry code: (ii) 1 − x, 1 − y, 1 − z] and the second shortest contact is 3.479 (4) Å between atoms C46 and C53ii; the latter distance is already somewhat longer due to the noncoplanarity of the two anion radicals. These observed distances are at the upper border for stacking arrangements reported for similar compounds (Ballester et al., 1999[Ballester, L., Gutiérrez, A., Perpiñán, M. F. & Azcondo, M. T. (1999). Coord. Chem. Rev. 190-192, 447-470.]).

There are three crystallographically independent positionally disordered water solvent mol­ecules in the structure which, through the formation of O—H⋯O and O—H⋯N hydrogen bonds, play an important role in the formation of the supra­molecular structure of 1 (Figs. 3[link], 4[link] and 5[link], and Table 1[link]). Water mol­ecules O1A and O2A are linked via N⋯H—O—H⋯N (the N atoms are from the nitrile groups of the TCNQ units) hydrogen-bonded bridges involving TCNQA dianions and TCNQC anion radicals, yielding a supra­molecular layer within the bc plane (Figs. 3[link] and 4[link]). In addition, these supra­molecular layers are inter­connected by O2A⋯H—O3A—H⋯O1A hydrogen-bonded bridges, resulting in a three-dimensional hydrogen-bonded supra­molecular structure. We note that atoms O1A, O2A and O3A are only partially occupied due to the observed disorder. The alternatively positioned O1 and O3 water mol­ecules (disordered positions O1B and O3B) form an additional hydrogen-bonded bridging path, N⋯H—O2A⋯H—O3B—H⋯O1B—H⋯N, between the supra­molecular layers. On the other hand, the least-occupied position (O2B) of water mol­ecule O2 seems to be hydrogen bonded only to the nitrile N atom and so partially occupies the void in the structure in alternation with its symmetry-related atom O2Bxi [symmetry code: (xi) −x, 2 − y, 1 − z] (Fig. 5[link]). Additional weak hydrogen-bonding inter­actions of the C—H⋯N and C—H⋯O types (Table 1[link]) contribute to the stability of the structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N14i 0.84 (1) 2.60 (2) 3.438 (8) 174 (8)
O1A—H1B⋯N10ii 0.84 (1) 2.14 (2) 2.933 (5) 159 (5)
O1B—H1C⋯N10ii 0.84 (1) 2.11 (2) 2.865 (5) 150 (4)
O2A—H2A⋯N9iii 0.85 (1) 2.22 (1) 3.068 (4) 178 (4)
O2A—H2B⋯N13iv 0.85 (1) 2.15 (1) 2.993 (4) 173 (4)
O2B—H2C⋯N13iv 0.85 2.05 2.803 (16) 147
O3A—H3A⋯O2A 0.85 (1) 2.09 (2) 2.71 (2) 130 (3)
O3A—H3B⋯O1A 0.85 (1) 2.09 (2) 2.85 (2) 147 (5)
O3A—H3B⋯O1B 0.85 (1) 2.39 (4) 3.20 (2) 160 (6)
O3B—H3C⋯O1B 0.85 (1) 1.99 (2) 2.84 (2) 170 (9)
O3B—H3D⋯O2A 0.85 (1) 2.10 (2) 2.864 (16) 148 (5)
C4—H4⋯N11v 0.95 2.58 3.350 (3) 138
C5—H5⋯N3 0.95 2.67 3.213 (3) 117
C7—H7⋯O1Biii 0.95 2.53 3.418 (7) 156
C10—H10⋯N6 0.95 2.63 3.168 (3) 116
C12—H12⋯O2Bv 0.95 2.44 3.30 (2) 150
C15—H15⋯N5 0.95 2.65 3.188 (3) 117
C15—H15⋯N12vi 0.95 2.68 3.369 (4) 130
C20—H20⋯N2 0.95 2.69 3.227 (3) 116
C22—H22⋯O3B 0.95 2.48 3.366 (15) 155
C25—H25⋯N8vi 0.95 2.49 3.184 (3) 130
C27—H27⋯O3A 0.95 2.55 3.43 (2) 155
C27—H27⋯O3B 0.95 2.33 3.276 (18) 172
C29—H29⋯N8 0.95 2.67 3.432 (3) 137
C29—H29⋯N11i 0.95 2.69 3.295 (4) 123
C30—H30⋯N11i 0.95 2.63 3.279 (4) 126
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y+1, z; (iii) -x, -y+1, -z+2; (iv) x-1, y+1, z; (v) -x, -y+1, -z+1; (vi) x-1, y, z.

4. Database survey

A search of the CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed 16 compounds with σ-dimerized TCNQ–TCNQ units. Among the hits in the CSD with σ-dimerized TCNQ–TCNQ dianions, there is no example containing an NiII ion as the central atom, hence compound 1 is the first such example. The reported values of the C—C bond linking the two TCNQ units are slightly longer than a normal single bond; the reported values range from 1.612 Å, found in catena-[Zn(TCNQ–TCNQ)(bipy)]·p-xy (bipy is 4,4′-bi­pyridine and p-xy is p-xylene; Shimomura et al., 2010[Shimomura, S., Higuchi, M., Matsuda, R., Yoneda, K., Hijikata, Y., Kubota, Y., Mita, Y., Kim, J., Takata, M. & Kitagawa, S. (2010). Nature Chem. 2, 633-637.]), to 1.673 Å, found in [Pt(bpy)2)(TCNQ–TCNQ)] (Dong et al., 1977[Dong, V., Endres, H., Keller, H. J., Moroni, W. & Nöthe, D. (1977). Acta Cryst. B33, 2428-2431.]). In 1, the corresponding value is 1.653 (11) Å, which is in line with the observed range in the published crystal structures.

5. Synthesis and crystallization

A solution of LiTCNQ (0.150 mmol, 31.6 mg) in methanol (2 ml) heated to 323 K was added dropwise to a mixture of Ni(NO3)2·6H2O (0.075 mmol, 21.8 mg) and bpy (0.225 mmol, 35.1 mg) in methanol (2 ml) at the same temperature. The dark-green solution that resulted was immediately enclosed in a 5 ml vial and cooled to room temperature (8.75 K h−1) in a programmable drying oven. The dark-green crystalline solid that resulted was filtered off, washed with a small amount of methanol and ether, and dried in air. The solid was mainly of microcrystalline character, with a few single crystals suitable for X-ray study (yield 63%). IR (PerkinElmer Spectrum 100 FT–IR Spectrophotometer with a UATR accessory in the range 4000–400 cm−1, KBr, cm−1): 3341 (m), 3382 (m), 3074 (vw), 3033 (vw), 2200 (s), 2175 (vs), 2152ssh, 1598 (m), 1581 (s), 1504 (s), 1471 (m), 1441 (m), 1359 (s), 1182 (m), 1020 (w), 987 (w), 826 (w), 779 (m), 765 (m), 737 (w), 653 (w), 483 (w). CNH (CHNOS Elemental Analyzer vario MICRO instrument; calculated/experimental, %): C 65.54/67.00, H 3.87/3.98, N 19.81/19.80.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bound to C atoms were positioned in calculated positions, with their Uiso values set at 1.2 times the Ueq value of the parent C atom. During refinement it became apparent that what initially was considered as only a σ-dimerized (TCNQ–TCNQ)2− dianion is positionally disordered (see Fig. 2[link]); it consists mostly of a σ-dimerized dianion disordered with a less abundant dimeric unit having closly π-stacked di­cyano­methanide groups. The effort to resolve this disorder yielded refined site-occupation factors of 0.753 (9):0.247 (9). The observed disorder involves the di­cyano­methanide group involved in dimerization, as well as the quinoide ring atoms with the exception of atom C34. In order to control the geometric parameters, the disordered quinoide ring atoms, as well as the C37 atoms of each disordered moiety, were restrained to be coplanar (FLAT command) and equivalent bond lengths of disordered atoms were restrained to be similar (SADI commands). The refinement process concerning the solvent water mol­ecules was carried out using an iterative approach which showed that there are three crystallographically independent water mol­ecules in the asymmetric unit and that all of them are positionally disordered; some of the disorder is symmetry imposed, with atoms related through a centre of symmetry being mutually exclusive due to close contacts, and the site-occupation factors for these atoms (O1A, O1B, O3A and O3B) were considered to be exactly one half, while the refined site-occupation factors for atoms O2A and O2B are 0.908 (3) and 0.092 (3), respectively. Some of the water H atoms were resolved in difference maps and all H-atom positions were refined assuming idealized geometric parameters of O—H = 0.85 (1) Å and H⋯H = 1.344 (1) Å. For the H atoms of the O2B water mol­ecule (the least-occupied water mol­ecule), a riding model was used. The Uiso parameters for water H atoms were set at 1.5 times the Ueq value of the parent O atom.

Table 2
Experimental details

Crystal data
Chemical formula [Ni(C10H8N2)3]2(C24H8N8)(C12H4N4)2·6H2O
Mr 1979.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 12.4034 (4), 13.2921 (4), 15.4869 (4)
α, β, γ (°) 88.828 (3), 86.336 (3), 73.586 (3)
V3) 2444.21 (13)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.46
Crystal size (mm) 0.52 × 0.39 × 0.28
 
Data collection
Diffractometer Rigaku OD Xcalibur, Sapphire2, large Be window
Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.864, 0.914
No. of measured, independent and observed [I > 2σ(I)] reflections 31246, 11255, 7475
Rint 0.035
(sin θ/λ)max−1) 0.681
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.126, 1.05
No. of reflections 11255
No. of parameters 726
No. of restraints 37
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis[tris(2,2'-bipyridine-κ2N,N')nickel(II)] bis(7,7,8,8-tetracyanoquinonedimethane radical anion) bi[7,7,8,8-tetracyanoquinonedimethanide] hexahydrate top
Crystal data top
[Ni(C10H8N2)3]2(C24H8N8)(C12H4N4)2·6H2OZ = 1
Mr = 1979.35F(000) = 1024
Triclinic, P1Dx = 1.345 Mg m3
a = 12.4034 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.2921 (4) ÅCell parameters from 10858 reflections
c = 15.4869 (4) Åθ = 3.4–3.4°
α = 88.828 (3)°µ = 0.46 mm1
β = 86.336 (3)°T = 200 K
γ = 73.586 (3)°Prism, green
V = 2444.21 (13) Å30.52 × 0.39 × 0.28 mm
Data collection top
Rigaku OD Xcalibur, Sapphire2, large Be window
diffractometer
11255 independent reflections
Radiation source: fine-focus sealed X-ray tube7475 reflections with I > 2σ(I)
Detector resolution: 8.3438 pixels mm-1Rint = 0.035
ω scansθmax = 29.0°, θmin = 2.9°
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
h = 1616
Tmin = 0.864, Tmax = 0.914k = 1817
31246 measured reflectionsl = 2019
Refinement top
Refinement on F237 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.050P)2 + 0.5977P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
11255 reflectionsΔρmax = 0.34 e Å3
726 parametersΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.1896 (5)0.8735 (5)0.8522 (4)0.1007 (18)0.5
H1A0.247 (4)0.847 (8)0.820 (5)0.151*0.5
H1B0.210 (7)0.903 (5)0.893 (2)0.151*0.5
O1B0.0587 (5)0.9770 (6)0.9161 (4)0.129 (2)0.5
H1C0.125 (4)0.982 (9)0.909 (3)0.193*0.5
H1D0.033 (6)1.005 (11)0.964 (5)0.193*0.5
O2A0.1755 (2)0.9694 (2)0.65321 (18)0.0834 (8)0.908 (3)
H2A0.232 (2)0.975 (3)0.689 (2)0.125*0.908 (3)
H2B0.197 (3)1.020 (2)0.618 (2)0.125*0.908 (3)
O2B0.0574 (17)1.0092 (17)0.5847 (16)0.0834 (8)0.092 (3)
H2C0.10451.06970.58350.125*0.092 (3)
H2D0.02101.00370.53570.125*0.092 (3)
O3A0.0233 (18)0.8983 (17)0.7290 (12)0.186 (7)0.5
H3A0.047 (2)0.924 (13)0.739 (2)0.279*0.5
H3B0.051 (5)0.911 (10)0.775 (5)0.279*0.5
O3B0.0063 (16)0.8831 (12)0.7729 (13)0.155 (7)0.5
H3C0.007 (9)0.918 (8)0.814 (7)0.232*0.5
H3D0.069 (5)0.920 (10)0.756 (3)0.232*0.5
Ni10.00252 (2)0.36352 (2)0.74798 (2)0.03705 (10)
N10.11257 (15)0.28116 (15)0.78825 (12)0.0382 (4)
N20.02588 (16)0.34809 (16)0.88183 (12)0.0415 (5)
N30.01954 (16)0.34866 (16)0.61637 (12)0.0399 (5)
N40.12404 (16)0.22081 (16)0.71749 (12)0.0411 (5)
N50.11165 (15)0.51236 (16)0.75713 (12)0.0403 (5)
N60.10952 (16)0.45865 (16)0.73098 (12)0.0418 (5)
C10.11042 (19)0.25284 (19)0.87224 (15)0.0392 (5)
C20.1837 (2)0.2005 (2)0.90954 (17)0.0535 (7)
H20.18100.18140.96900.064*
C30.2613 (2)0.1765 (2)0.85878 (19)0.0582 (7)
H30.31300.14160.88340.070*
C40.2627 (2)0.2036 (2)0.77311 (18)0.0519 (7)
H40.31460.18720.73710.062*
C50.1865 (2)0.25578 (19)0.74003 (17)0.0445 (6)
H50.18700.27420.68040.053*
C60.0262 (2)0.28306 (19)0.92217 (15)0.0403 (5)
C70.0015 (2)0.2457 (2)1.00526 (16)0.0583 (7)
H70.03850.19881.03250.070*
C80.0777 (3)0.2778 (3)1.04744 (18)0.0666 (9)
H80.09790.25131.10330.080*
C90.1271 (2)0.3487 (3)1.00788 (18)0.0620 (8)
H90.17910.37431.03690.074*
C100.0994 (2)0.3815 (2)0.92542 (17)0.0530 (7)
H100.13390.43010.89790.064*
C110.0359 (2)0.25522 (19)0.58218 (15)0.0404 (5)
C120.0153 (3)0.2252 (2)0.50062 (17)0.0587 (7)
H120.05550.15850.47760.070*
C130.0648 (3)0.2945 (3)0.45379 (18)0.0664 (9)
H130.08270.27470.39910.080*
C140.1182 (2)0.3921 (3)0.48679 (17)0.0602 (8)
H140.17110.44190.45430.072*
C150.0937 (2)0.4167 (2)0.56792 (16)0.0490 (6)
H150.13060.48440.59060.059*
C160.1199 (2)0.18548 (19)0.63741 (16)0.0414 (6)
C170.1909 (2)0.0903 (2)0.60849 (19)0.0564 (7)
H170.18600.06560.55210.068*
C180.2686 (3)0.0322 (2)0.6630 (2)0.0654 (8)
H180.31920.03250.64380.078*
C190.2733 (2)0.0672 (2)0.7442 (2)0.0627 (8)
H190.32630.02750.78240.075*
C200.1987 (2)0.1624 (2)0.76974 (18)0.0530 (7)
H200.20080.18680.82660.064*
C210.0658 (2)0.59287 (19)0.74590 (14)0.0389 (5)
C220.1307 (2)0.6948 (2)0.73577 (16)0.0463 (6)
H220.09630.74990.72710.056*
C230.2465 (2)0.7157 (2)0.73844 (17)0.0527 (7)
H230.29270.78530.73110.063*
C240.2941 (2)0.6348 (2)0.75180 (17)0.0512 (7)
H240.37350.64760.75520.061*
C250.2239 (2)0.5343 (2)0.76024 (17)0.0480 (6)
H250.25690.47820.76860.058*
C260.0594 (2)0.5614 (2)0.74387 (14)0.0399 (5)
C270.1211 (2)0.6318 (2)0.75518 (16)0.0496 (6)
H270.08450.70380.76620.059*
C280.2382 (2)0.5942 (3)0.75003 (17)0.0577 (8)
H280.28270.64060.75820.069*
C290.2888 (2)0.4909 (3)0.73328 (17)0.0566 (7)
H290.36850.46480.72740.068*
C300.2221 (2)0.4246 (2)0.72501 (16)0.0510 (7)
H300.25740.35220.71470.061*
N80.54409 (19)0.48344 (18)0.81067 (14)0.0533 (6)
N90.3772 (3)0.0161 (2)1.21738 (16)0.0813 (9)
N100.2633 (2)0.0190 (2)0.95837 (16)0.0712 (8)
C340.42800 (19)0.16964 (19)1.03807 (14)0.0385 (5)
N7A0.7420 (5)0.4375 (8)1.0324 (8)0.0541 (15)0.753 (9)
C31A0.5096 (4)0.3468 (4)0.9968 (3)0.0344 (10)0.753 (9)
C32A0.5305 (7)0.2926 (7)1.0769 (5)0.0389 (13)0.753 (9)
H32A0.57400.31471.11700.047*0.753 (9)
C33A0.4886 (9)0.2079 (16)1.0975 (10)0.0393 (18)0.753 (9)
H33A0.50090.17521.15260.047*0.753 (9)
C35A0.4121 (11)0.2223 (7)0.9579 (4)0.0415 (17)0.753 (9)
H35A0.37270.19770.91610.050*0.753 (9)
C36A0.4508 (6)0.3076 (5)0.9373 (5)0.0389 (13)0.753 (9)
H36A0.43770.34020.88230.047*0.753 (9)
C37A0.5439 (3)0.4471 (4)0.9774 (2)0.0368 (10)0.753 (9)
C38A0.6576 (2)0.4385 (2)1.00707 (16)0.0434 (6)0.753 (9)
C39A0.5463 (7)0.4688 (4)0.8835 (3)0.0334 (12)0.753 (9)
N7B0.725 (2)0.460 (3)1.041 (3)0.0541 (15)0.247 (9)
C31B0.5328 (15)0.3184 (15)0.9834 (12)0.0344 (10)0.247 (9)
C32B0.549 (3)0.277 (3)1.0618 (17)0.0389 (13)0.247 (9)
H32B0.59410.30101.09930.047*0.247 (9)
C33B0.504 (3)0.202 (5)1.088 (3)0.0393 (18)0.247 (9)
H33B0.52270.16871.14220.047*0.247 (9)
C35B0.423 (4)0.203 (3)0.9511 (13)0.0415 (17)0.247 (9)
H35B0.38860.17190.91050.050*0.247 (9)
C36B0.470 (2)0.2819 (19)0.926 (2)0.0389 (13)0.247 (9)
H36B0.45960.31160.87020.047*0.247 (9)
C37B0.5775 (11)0.4002 (12)0.9580 (8)0.0368 (10)0.247 (9)
C38B0.6576 (2)0.4385 (2)1.00707 (16)0.0434 (6)0.247 (9)
C39B0.561 (3)0.4429 (15)0.8746 (11)0.0334 (12)0.247 (9)
C400.3769 (2)0.08793 (19)1.06320 (15)0.0437 (6)
C410.3786 (3)0.0475 (2)1.14731 (17)0.0529 (7)
C420.3148 (2)0.0497 (2)1.00509 (16)0.0481 (6)
N110.5248 (2)0.7399 (2)0.29382 (17)0.0701 (7)
N120.7339 (2)0.6518 (2)0.51503 (18)0.0747 (8)
C430.5416 (2)0.8954 (2)0.46974 (15)0.0431 (6)
C440.5744 (2)0.9267 (2)0.54848 (16)0.0477 (6)
H440.62550.87630.58170.057*
C450.4651 (2)0.9737 (2)0.42244 (16)0.0475 (6)
H450.44120.95560.36930.057*
C460.5846 (2)0.7918 (2)0.43755 (17)0.0479 (6)
C470.5512 (2)0.7624 (2)0.35862 (19)0.0508 (6)
N130.7442 (2)0.1592 (2)0.54178 (17)0.0708 (7)
N140.5887 (3)0.2293 (2)0.29481 (19)0.0916 (10)
C480.6669 (2)0.7136 (2)0.48084 (18)0.0531 (7)
C490.5579 (2)0.3964 (2)0.47270 (16)0.0490 (7)
C500.5688 (2)0.4322 (2)0.55632 (16)0.0523 (7)
H500.61560.38590.59500.063*
C510.4861 (2)0.4685 (2)0.41768 (16)0.0518 (7)
H510.47630.44680.36140.062*
C520.6141 (2)0.2929 (2)0.44541 (17)0.0539 (7)
C530.6858 (2)0.2194 (2)0.49858 (18)0.0549 (7)
C540.6000 (3)0.2571 (2)0.3622 (2)0.0646 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.135 (5)0.103 (4)0.097 (4)0.076 (4)0.062 (3)0.024 (3)
O1B0.111 (5)0.151 (6)0.161 (6)0.089 (5)0.067 (4)0.062 (5)
O2A0.095 (2)0.0602 (16)0.086 (2)0.0038 (15)0.0259 (15)0.0048 (14)
O2B0.095 (2)0.0602 (16)0.086 (2)0.0038 (15)0.0259 (15)0.0048 (14)
O3A0.167 (11)0.162 (14)0.248 (18)0.060 (9)0.114 (12)0.053 (10)
O3B0.159 (12)0.082 (5)0.250 (17)0.054 (6)0.131 (12)0.071 (8)
Ni10.03132 (16)0.04012 (19)0.03937 (17)0.00905 (13)0.00397 (12)0.00099 (13)
N10.0336 (10)0.0374 (11)0.0430 (11)0.0081 (9)0.0075 (8)0.0009 (9)
N20.0373 (11)0.0474 (12)0.0413 (11)0.0134 (10)0.0060 (9)0.0056 (9)
N30.0379 (11)0.0399 (12)0.0394 (11)0.0066 (9)0.0059 (9)0.0054 (9)
N40.0360 (11)0.0432 (12)0.0420 (11)0.0071 (9)0.0057 (9)0.0030 (9)
N50.0311 (10)0.0421 (12)0.0478 (11)0.0109 (9)0.0004 (9)0.0019 (9)
N60.0325 (10)0.0486 (13)0.0442 (11)0.0111 (10)0.0015 (9)0.0020 (9)
C10.0398 (13)0.0367 (13)0.0412 (13)0.0106 (11)0.0025 (10)0.0031 (10)
C20.0614 (17)0.0563 (17)0.0477 (15)0.0254 (15)0.0009 (13)0.0012 (13)
C30.0547 (17)0.0537 (17)0.074 (2)0.0296 (15)0.0025 (15)0.0002 (15)
C40.0458 (15)0.0441 (15)0.0702 (18)0.0172 (13)0.0140 (13)0.0056 (13)
C50.0413 (14)0.0438 (15)0.0502 (14)0.0127 (12)0.0132 (11)0.0006 (12)
C60.0389 (13)0.0442 (14)0.0367 (12)0.0095 (11)0.0019 (10)0.0055 (11)
C70.0668 (19)0.073 (2)0.0397 (14)0.0265 (16)0.0074 (13)0.0007 (14)
C80.073 (2)0.090 (2)0.0379 (15)0.0221 (19)0.0156 (14)0.0043 (15)
C90.0554 (17)0.087 (2)0.0486 (16)0.0246 (17)0.0145 (14)0.0170 (15)
C100.0467 (15)0.0690 (19)0.0499 (15)0.0250 (14)0.0078 (12)0.0104 (14)
C110.0396 (13)0.0432 (14)0.0385 (12)0.0127 (12)0.0004 (10)0.0023 (11)
C120.0697 (19)0.0617 (19)0.0438 (15)0.0160 (16)0.0050 (14)0.0070 (13)
C130.082 (2)0.081 (2)0.0377 (15)0.0225 (19)0.0177 (15)0.0044 (15)
C140.0613 (18)0.073 (2)0.0451 (15)0.0142 (16)0.0168 (14)0.0167 (15)
C150.0464 (14)0.0493 (16)0.0472 (14)0.0067 (13)0.0068 (12)0.0086 (12)
C160.0381 (13)0.0383 (14)0.0460 (14)0.0092 (11)0.0013 (11)0.0016 (11)
C170.0571 (17)0.0441 (16)0.0621 (17)0.0053 (14)0.0000 (14)0.0055 (13)
C180.0598 (19)0.0400 (16)0.083 (2)0.0053 (14)0.0029 (16)0.0020 (15)
C190.0479 (16)0.0545 (18)0.074 (2)0.0051 (14)0.0104 (15)0.0178 (16)
C200.0439 (15)0.0562 (18)0.0529 (16)0.0033 (13)0.0116 (12)0.0077 (13)
C210.0419 (13)0.0415 (14)0.0347 (12)0.0136 (12)0.0043 (10)0.0030 (10)
C220.0517 (16)0.0424 (15)0.0461 (14)0.0146 (13)0.0067 (12)0.0015 (11)
C230.0541 (16)0.0423 (15)0.0554 (16)0.0025 (13)0.0069 (13)0.0034 (12)
C240.0361 (14)0.0530 (17)0.0594 (16)0.0039 (13)0.0010 (12)0.0085 (13)
C250.0361 (13)0.0460 (15)0.0621 (16)0.0125 (12)0.0006 (12)0.0038 (13)
C260.0405 (13)0.0481 (15)0.0342 (12)0.0171 (12)0.0041 (10)0.0013 (11)
C270.0553 (16)0.0537 (17)0.0463 (14)0.0250 (14)0.0084 (12)0.0002 (12)
C280.0534 (17)0.080 (2)0.0530 (16)0.0391 (17)0.0104 (13)0.0025 (15)
C290.0388 (14)0.080 (2)0.0559 (16)0.0245 (15)0.0060 (12)0.0024 (15)
C300.0358 (14)0.0642 (18)0.0539 (16)0.0157 (13)0.0006 (12)0.0021 (13)
N80.0599 (14)0.0644 (16)0.0454 (13)0.0334 (13)0.0035 (11)0.0019 (11)
N90.142 (3)0.0666 (18)0.0517 (15)0.0527 (19)0.0295 (16)0.0160 (13)
N100.092 (2)0.0799 (19)0.0594 (15)0.0493 (17)0.0246 (14)0.0083 (13)
C340.0394 (13)0.0392 (13)0.0367 (12)0.0101 (11)0.0057 (10)0.0006 (10)
N7A0.038 (3)0.055 (5)0.069 (3)0.011 (3)0.007 (3)0.014 (3)
C31A0.033 (3)0.035 (3)0.036 (2)0.012 (2)0.0042 (18)0.0033 (17)
C32A0.039 (4)0.050 (4)0.030 (3)0.013 (3)0.008 (2)0.005 (2)
C33A0.045 (4)0.042 (3)0.032 (4)0.012 (4)0.009 (3)0.001 (2)
C35A0.046 (3)0.047 (4)0.0359 (16)0.020 (3)0.0114 (18)0.001 (2)
C36A0.041 (3)0.049 (4)0.029 (3)0.017 (3)0.006 (2)0.001 (2)
C37A0.035 (2)0.043 (3)0.0364 (19)0.016 (2)0.0047 (16)0.0032 (17)
C38A0.0355 (13)0.0482 (15)0.0483 (14)0.0143 (12)0.0043 (11)0.0031 (12)
C39A0.031 (3)0.030 (3)0.0401 (17)0.011 (3)0.0026 (17)0.0086 (18)
N7B0.038 (3)0.055 (5)0.069 (3)0.011 (3)0.007 (3)0.014 (3)
C31B0.033 (3)0.035 (3)0.036 (2)0.012 (2)0.0042 (18)0.0033 (17)
C32B0.039 (4)0.050 (4)0.030 (3)0.013 (3)0.008 (2)0.005 (2)
C33B0.045 (4)0.042 (3)0.032 (4)0.012 (4)0.009 (3)0.001 (2)
C35B0.046 (3)0.047 (4)0.0359 (16)0.020 (3)0.0114 (18)0.001 (2)
C36B0.041 (3)0.049 (4)0.029 (3)0.017 (3)0.006 (2)0.001 (2)
C37B0.035 (2)0.043 (3)0.0364 (19)0.016 (2)0.0047 (16)0.0032 (17)
C38B0.0355 (13)0.0482 (15)0.0483 (14)0.0143 (12)0.0043 (11)0.0031 (12)
C39B0.031 (3)0.030 (3)0.0401 (17)0.011 (3)0.0026 (17)0.0086 (18)
C400.0560 (15)0.0388 (14)0.0390 (13)0.0161 (12)0.0122 (11)0.0017 (11)
C410.079 (2)0.0384 (15)0.0488 (16)0.0259 (14)0.0176 (14)0.0023 (12)
C420.0624 (17)0.0473 (15)0.0413 (13)0.0254 (14)0.0096 (12)0.0059 (12)
N110.0596 (16)0.0695 (18)0.0756 (18)0.0043 (13)0.0215 (14)0.0143 (14)
N120.0734 (18)0.0589 (17)0.0824 (19)0.0006 (14)0.0258 (15)0.0092 (14)
C430.0384 (13)0.0483 (15)0.0435 (13)0.0131 (12)0.0070 (11)0.0088 (11)
C440.0456 (14)0.0496 (16)0.0467 (14)0.0094 (13)0.0167 (12)0.0129 (12)
C450.0442 (14)0.0572 (17)0.0409 (13)0.0121 (13)0.0133 (11)0.0056 (12)
C460.0456 (14)0.0464 (16)0.0523 (15)0.0122 (13)0.0130 (12)0.0081 (12)
C470.0385 (14)0.0469 (16)0.0645 (17)0.0058 (12)0.0121 (13)0.0001 (13)
N130.0707 (17)0.0765 (19)0.0655 (16)0.0187 (15)0.0198 (14)0.0149 (14)
N140.143 (3)0.0602 (18)0.0742 (19)0.0231 (18)0.0528 (19)0.0038 (15)
C480.0482 (16)0.0474 (16)0.0648 (17)0.0135 (14)0.0119 (14)0.0019 (14)
C490.0516 (15)0.0598 (18)0.0451 (14)0.0300 (14)0.0131 (12)0.0167 (13)
C500.0590 (17)0.0601 (18)0.0457 (15)0.0269 (15)0.0214 (13)0.0201 (13)
C510.0613 (17)0.0618 (19)0.0408 (14)0.0287 (15)0.0180 (13)0.0142 (13)
C520.0638 (18)0.0572 (18)0.0501 (15)0.0298 (15)0.0199 (13)0.0161 (13)
C530.0595 (17)0.0591 (18)0.0515 (16)0.0238 (15)0.0156 (14)0.0126 (14)
C540.090 (2)0.0494 (17)0.0608 (18)0.0253 (17)0.0302 (17)0.0153 (14)
Geometric parameters (Å, º) top
O1A—H1A0.844 (10)C24—C251.382 (4)
O1A—H1B0.837 (10)C24—H240.9500
O1B—H1C0.844 (10)C25—H250.9500
O1B—H1D0.845 (10)C26—C271.385 (3)
O2A—H2A0.852 (10)C27—C281.394 (4)
O2A—H2B0.850 (10)C27—H270.9500
O2B—H2C0.8508C28—C291.362 (4)
O2B—H2D0.8509C28—H280.9500
O3A—H3A0.853 (10)C29—C301.381 (4)
O3A—H3B0.853 (10)C29—H290.9500
O3B—H3C0.853 (10)C30—H300.9500
O3B—H3D0.853 (10)N8—C39B1.121 (15)
Ni1—N62.078 (2)N8—C39A1.142 (5)
Ni1—N52.084 (2)N9—C411.155 (3)
Ni1—N12.0897 (19)N10—C421.147 (3)
Ni1—N32.0945 (19)C34—C35B1.409 (16)
Ni1—N42.103 (2)C34—C35A1.410 (6)
Ni1—N22.1093 (19)C34—C33A1.412 (6)
N1—C51.336 (3)C34—C33B1.416 (16)
N1—C11.346 (3)C34—C401.440 (3)
N2—C61.340 (3)N7A—C38A1.137 (5)
N2—C101.343 (3)C31A—C36A1.405 (9)
N3—C111.339 (3)C31A—C32A1.422 (8)
N3—C151.348 (3)C31A—C37A1.527 (7)
N4—C201.334 (3)C32A—C33A1.39 (2)
N4—C161.344 (3)C32A—H32A0.9500
N5—C251.338 (3)C33A—H33A0.9500
N5—C211.350 (3)C35A—C36A1.375 (6)
N6—C301.338 (3)C35A—H35A0.9500
N6—C261.344 (3)C36A—H36A0.9500
C1—C21.385 (3)C37A—C39A1.477 (6)
C1—C61.484 (3)C37A—C38A1.485 (4)
C2—C31.388 (4)C37A—C37Ai1.653 (11)
C2—H20.9500N7B—C38B1.123 (15)
C3—C41.367 (4)C31B—C32B1.33 (2)
C3—H30.9500C31B—C37B1.39 (3)
C4—C51.390 (4)C31B—C36B1.39 (3)
C4—H40.9500C32B—C33B1.32 (8)
C5—H50.9500C32B—H32B0.9500
C6—C71.391 (3)C33B—H33B0.9500
C7—C81.380 (4)C35B—C36B1.368 (16)
C7—H70.9500C35B—H35B0.9500
C8—C91.375 (4)C36B—H36B0.9500
C8—H80.9500C37B—C39B1.404 (19)
C9—C101.374 (4)C37B—C38B1.490 (11)
C9—H90.9500C40—C411.398 (3)
C10—H100.9500C40—C421.411 (3)
C11—C121.392 (3)N11—C471.146 (3)
C11—C161.487 (3)N12—C481.140 (3)
C12—C131.382 (4)C43—C441.416 (3)
C12—H120.9500C43—C461.418 (4)
C13—C141.372 (4)C43—C451.421 (3)
C13—H130.9500C44—C45ii1.352 (4)
C14—C151.378 (4)C44—H440.9500
C14—H140.9500C45—C44ii1.352 (4)
C15—H150.9500C45—H450.9500
C16—C171.386 (4)C46—C471.412 (4)
C17—C181.377 (4)C46—C481.424 (4)
C17—H170.9500N13—C531.151 (3)
C18—C191.360 (4)N14—C541.143 (4)
C18—H180.9500C49—C521.415 (4)
C19—C201.388 (4)C49—C501.417 (4)
C19—H190.9500C49—C511.421 (3)
C20—H200.9500C50—C51iii1.359 (4)
C21—C221.378 (3)C50—H500.9500
C21—C261.488 (3)C51—C50iii1.359 (4)
C22—C231.382 (4)C51—H510.9500
C22—H220.9500C52—C531.412 (4)
C23—C241.371 (4)C52—C541.422 (4)
C23—H230.9500
H1A—O1A—H1B106.7 (17)C24—C23—H23120.3
H1C—O1B—H1D105.8 (17)C22—C23—H23120.3
H2A—O2A—H2B104.4 (16)C23—C24—C25118.6 (2)
H2C—O2B—H2D104.3C23—C24—H24120.7
H3A—O3A—H3B103.5 (17)C25—C24—H24120.7
H3C—O3B—H3D103.8 (17)N5—C25—C24123.0 (2)
N6—Ni1—N578.69 (8)N5—C25—H25118.5
N6—Ni1—N1169.09 (7)C24—C25—H25118.5
N5—Ni1—N196.11 (7)N6—C26—C27121.8 (2)
N6—Ni1—N396.17 (8)N6—C26—C21115.2 (2)
N5—Ni1—N393.51 (8)C27—C26—C21123.1 (2)
N1—Ni1—N393.69 (7)C26—C27—C28118.3 (3)
N6—Ni1—N496.76 (8)C26—C27—H27120.8
N5—Ni1—N4170.39 (7)C28—C27—H27120.8
N1—Ni1—N489.75 (8)C29—C28—C27119.7 (3)
N3—Ni1—N478.47 (7)C29—C28—H28120.1
N6—Ni1—N292.20 (8)C27—C28—H28120.1
N5—Ni1—N294.96 (8)C28—C29—C30118.8 (3)
N1—Ni1—N278.61 (7)C28—C29—H29120.6
N3—Ni1—N2169.11 (8)C30—C29—H29120.6
N4—Ni1—N293.66 (8)N6—C30—C29122.4 (3)
C5—N1—C1118.4 (2)N6—C30—H30118.8
C5—N1—Ni1126.90 (17)C29—C30—H30118.8
C1—N1—Ni1114.74 (14)C35A—C34—C33A116.5 (11)
C6—N2—C10118.3 (2)C35B—C34—C33B116 (3)
C6—N2—Ni1113.74 (14)C35B—C34—C40117.9 (15)
C10—N2—Ni1127.01 (18)C35A—C34—C40123.0 (5)
C11—N3—C15118.2 (2)C33A—C34—C40120.3 (9)
C11—N3—Ni1114.60 (15)C33B—C34—C40124 (3)
C15—N3—Ni1126.56 (17)C36A—C31A—C32A117.3 (7)
C20—N4—C16118.7 (2)C36A—C31A—C37A120.8 (5)
C20—N4—Ni1126.95 (18)C32A—C31A—C37A121.8 (6)
C16—N4—Ni1114.24 (15)C33A—C32A—C31A121.3 (9)
C25—N5—C21117.9 (2)C33A—C32A—H32A119.4
C25—N5—Ni1126.20 (17)C31A—C32A—H32A119.4
C21—N5—Ni1115.10 (15)C32A—C33A—C34121.1 (15)
C30—N6—C26118.9 (2)C32A—C33A—H33A119.4
C30—N6—Ni1125.19 (18)C34—C33A—H33A119.4
C26—N6—Ni1114.65 (15)C36A—C35A—C34123.1 (9)
N1—C1—C2121.8 (2)C36A—C35A—H35A118.5
N1—C1—C6115.7 (2)C34—C35A—H35A118.5
C2—C1—C6122.5 (2)C35A—C36A—C31A120.6 (9)
C1—C2—C3119.0 (2)C35A—C36A—H36A119.7
C1—C2—H2120.5C31A—C36A—H36A119.7
C3—C2—H2120.5C39A—C37A—C38A107.7 (4)
C4—C3—C2119.5 (3)C39A—C37A—C31A110.8 (4)
C4—C3—H3120.3C38A—C37A—C31A111.4 (3)
C2—C3—H3120.3C39A—C37A—C37Ai105.6 (4)
C3—C4—C5118.4 (2)C38A—C37A—C37Ai107.4 (3)
C3—C4—H4120.8C31A—C37A—C37Ai113.6 (3)
C5—C4—H4120.8N7A—C38A—C37A175.9 (4)
N1—C5—C4123.0 (2)N8—C39A—C37A176.7 (8)
N1—C5—H5118.5C32B—C31B—C37B120 (2)
C4—C5—H5118.5C32B—C31B—C36B121 (3)
N2—C6—C7121.7 (2)C37B—C31B—C36B119 (2)
N2—C6—C1115.8 (2)C33B—C32B—C31B121 (3)
C7—C6—C1122.4 (2)C33B—C32B—H32B119.6
C8—C7—C6118.9 (3)C31B—C32B—H32B119.6
C8—C7—H7120.6C32B—C33B—C34122 (5)
C6—C7—H7120.6C32B—C33B—H33B119.0
C9—C8—C7119.4 (3)C34—C33B—H33B119.0
C9—C8—H8120.3C36B—C35B—C34119 (3)
C7—C8—H8120.3C36B—C35B—H35B120.7
C10—C9—C8118.5 (2)C34—C35B—H35B120.7
C10—C9—H9120.8C35B—C36B—C31B120 (3)
C8—C9—H9120.8C35B—C36B—H36B119.9
N2—C10—C9123.1 (3)C31B—C36B—H36B119.9
N2—C10—H10118.5C31B—C37B—C39B119.6 (16)
C9—C10—H10118.5C31B—C37B—C38B125.5 (11)
N3—C11—C12122.1 (2)C39B—C37B—C38B114.3 (15)
N3—C11—C16115.6 (2)N7B—C38B—C37B174.0 (15)
C12—C11—C16122.4 (2)N8—C39B—C37B175.2 (19)
C13—C12—C11118.6 (3)C41—C40—C42116.2 (2)
C13—C12—H12120.7C41—C40—C34122.5 (2)
C11—C12—H12120.7C42—C40—C34121.2 (2)
C14—C13—C12119.6 (3)N9—C41—C40178.1 (4)
C14—C13—H13120.2N10—C42—C40179.3 (3)
C12—C13—H13120.2C44—C43—C46122.2 (2)
C13—C14—C15118.7 (3)C44—C43—C45117.0 (2)
C13—C14—H14120.6C46—C43—C45120.8 (2)
C15—C14—H14120.6C45ii—C44—C43121.7 (2)
N3—C15—C14122.7 (3)C45ii—C44—H44119.2
N3—C15—H15118.6C43—C44—H44119.2
C14—C15—H15118.6C44ii—C45—C43121.3 (2)
N4—C16—C17121.5 (2)C44ii—C45—H45119.3
N4—C16—C11115.9 (2)C43—C45—H45119.3
C17—C16—C11122.6 (2)C47—C46—C43121.2 (2)
C18—C17—C16118.7 (3)C47—C46—C48116.7 (2)
C18—C17—H17120.6C43—C46—C48122.0 (2)
C16—C17—H17120.6N11—C47—C46178.8 (3)
C19—C18—C17120.2 (3)N12—C48—C46178.9 (3)
C19—C18—H18119.9C52—C49—C50121.7 (2)
C17—C18—H18119.9C52—C49—C51121.2 (2)
C18—C19—C20118.3 (3)C50—C49—C51117.1 (3)
C18—C19—H19120.8C51iii—C50—C49121.4 (2)
C20—C19—H19120.8C51iii—C50—H50119.3
N4—C20—C19122.5 (3)C49—C50—H50119.3
N4—C20—H20118.7C50iii—C51—C49121.6 (2)
C19—C20—H20118.7C50iii—C51—H51119.2
N5—C21—C22122.1 (2)C49—C51—H51119.2
N5—C21—C26114.3 (2)C53—C52—C49122.6 (2)
C22—C21—C26123.6 (2)C53—C52—C54116.3 (3)
C21—C22—C23119.1 (2)C49—C52—C54121.1 (2)
C21—C22—H22120.5N13—C53—C52179.8 (3)
C23—C22—H22120.5N14—C54—C52179.2 (3)
C24—C23—C22119.3 (3)
C5—N1—C1—C21.3 (4)Ni1—N6—C26—C2114.8 (2)
Ni1—N1—C1—C2178.1 (2)N5—C21—C26—N616.4 (3)
C5—N1—C1—C6179.8 (2)C22—C21—C26—N6162.5 (2)
Ni1—N1—C1—C60.8 (3)N5—C21—C26—C27163.0 (2)
N1—C1—C2—C30.2 (4)C22—C21—C26—C2718.1 (4)
C6—C1—C2—C3179.0 (2)N6—C26—C27—C282.1 (4)
C1—C2—C3—C40.9 (4)C21—C26—C27—C28178.5 (2)
C2—C3—C4—C50.7 (4)C26—C27—C28—C290.7 (4)
C1—N1—C5—C41.5 (4)C27—C28—C29—C302.4 (4)
Ni1—N1—C5—C4177.81 (19)C26—N6—C30—C291.3 (4)
C3—C4—C5—N10.4 (4)Ni1—N6—C30—C29165.05 (19)
C10—N2—C6—C73.5 (4)C28—C29—C30—N61.5 (4)
Ni1—N2—C6—C7166.0 (2)C36A—C31A—C32A—C33A3.8 (8)
C10—N2—C6—C1177.2 (2)C37A—C31A—C32A—C33A173.1 (7)
Ni1—N2—C6—C113.3 (3)C31A—C32A—C33A—C342.9 (13)
N1—C1—C6—N29.6 (3)C35A—C34—C33A—C32A0.5 (14)
C2—C1—C6—N2169.3 (2)C40—C34—C33A—C32A174.6 (7)
N1—C1—C6—C7169.7 (2)C33A—C34—C35A—C36A1.0 (13)
C2—C1—C6—C711.4 (4)C40—C34—C35A—C36A173.0 (6)
N2—C6—C7—C80.9 (4)C34—C35A—C36A—C31A0.1 (11)
C1—C6—C7—C8179.8 (3)C32A—C31A—C36A—C35A2.3 (7)
C6—C7—C8—C92.4 (5)C37A—C31A—C36A—C35A174.7 (6)
C7—C8—C9—C103.0 (5)C36A—C31A—C37A—C39A21.1 (6)
C6—N2—C10—C92.8 (4)C32A—C31A—C37A—C39A162.1 (5)
Ni1—N2—C10—C9165.1 (2)C36A—C31A—C37A—C38A140.9 (4)
C8—C9—C10—N20.4 (5)C32A—C31A—C37A—C38A42.3 (5)
C15—N3—C11—C123.0 (4)C36A—C31A—C37A—C37Ai97.6 (5)
Ni1—N3—C11—C12168.3 (2)C32A—C31A—C37A—C37Ai79.2 (5)
C15—N3—C11—C16177.6 (2)C37B—C31B—C32B—C33B177 (3)
Ni1—N3—C11—C1611.1 (3)C36B—C31B—C32B—C33B2 (3)
N3—C11—C12—C130.1 (4)C31B—C32B—C33B—C346 (5)
C16—C11—C12—C13179.5 (3)C35B—C34—C33B—C32B14 (5)
C11—C12—C13—C142.8 (5)C40—C34—C33B—C32B179 (2)
C12—C13—C14—C152.8 (5)C33B—C34—C35B—C36B15 (5)
C11—N3—C15—C143.0 (4)C40—C34—C35B—C36B179 (2)
Ni1—N3—C15—C14167.2 (2)C34—C35B—C36B—C31B8 (4)
C13—C14—C15—N30.1 (4)C32B—C31B—C36B—C35B1 (2)
C20—N4—C16—C170.1 (4)C37B—C31B—C36B—C35B178 (2)
Ni1—N4—C16—C17177.2 (2)C32B—C31B—C37B—C39B179.1 (18)
C20—N4—C16—C11179.1 (2)C36B—C31B—C37B—C39B2 (2)
Ni1—N4—C16—C113.6 (3)C32B—C31B—C37B—C38B8.8 (19)
N3—C11—C16—N45.0 (3)C36B—C31B—C37B—C38B172.0 (14)
C12—C11—C16—N4174.4 (2)C35B—C34—C40—C41179 (2)
N3—C11—C16—C17174.2 (2)C35A—C34—C40—C41169.8 (6)
C12—C11—C16—C176.4 (4)C33A—C34—C40—C413.9 (8)
N4—C16—C17—C181.3 (4)C33B—C34—C40—C4114 (2)
C11—C16—C17—C18177.9 (2)C35B—C34—C40—C426 (2)
C16—C17—C18—C191.4 (5)C35A—C34—C40—C425.4 (7)
C17—C18—C19—C200.4 (5)C33A—C34—C40—C42179.2 (7)
C16—N4—C20—C191.0 (4)C33B—C34—C40—C42171 (2)
Ni1—N4—C20—C19177.8 (2)C46—C43—C44—C45ii178.4 (3)
C18—C19—C20—N40.8 (4)C45—C43—C44—C45ii0.0 (4)
C25—N5—C21—C221.5 (3)C44—C43—C45—C44ii0.0 (4)
Ni1—N5—C21—C22169.07 (18)C46—C43—C45—C44ii178.4 (3)
C25—N5—C21—C26179.6 (2)C44—C43—C46—C47179.7 (2)
Ni1—N5—C21—C269.9 (2)C45—C43—C46—C471.4 (4)
N5—C21—C22—C231.0 (4)C44—C43—C46—C482.4 (4)
C26—C21—C22—C23179.8 (2)C45—C43—C46—C48175.9 (2)
C21—C22—C23—C240.5 (4)C52—C49—C50—C51iii179.5 (3)
C22—C23—C24—C251.4 (4)C51—C49—C50—C51iii0.6 (4)
C21—N5—C25—C240.5 (4)C52—C49—C51—C50iii179.5 (3)
Ni1—N5—C25—C24168.87 (19)C50—C49—C51—C50iii0.6 (4)
C23—C24—C25—N50.9 (4)C50—C49—C52—C531.1 (4)
C30—N6—C26—C273.1 (3)C51—C49—C52—C53179.9 (2)
Ni1—N6—C26—C27164.63 (18)C50—C49—C52—C54178.3 (3)
C30—N6—C26—C21177.5 (2)C51—C49—C52—C540.6 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N14iii0.84 (1)2.60 (2)3.438 (8)174 (8)
O1A—H1B···N10iv0.84 (1)2.14 (2)2.933 (5)159 (5)
O1B—H1C···N10iv0.84 (1)2.11 (2)2.865 (5)150 (4)
O2A—H2A···N9v0.85 (1)2.22 (1)3.068 (4)178 (4)
O2A—H2B···N13vi0.85 (1)2.15 (1)2.993 (4)173 (4)
O2B—H2C···N13vi0.852.052.803 (16)147
O3A—H3A···O2A0.85 (1)2.09 (2)2.71 (2)130 (3)
O3A—H3B···O1A0.85 (1)2.09 (2)2.85 (2)147 (5)
O3A—H3B···O1B0.85 (1)2.39 (4)3.20 (2)160 (6)
O3B—H3C···O1B0.85 (1)1.99 (2)2.84 (2)170 (9)
O3B—H3D···O2A0.85 (1)2.10 (2)2.864 (16)148 (5)
C4—H4···N11vii0.952.583.350 (3)138
C5—H5···N30.952.673.213 (3)117
C7—H7···O1Bv0.952.533.418 (7)156
C10—H10···N60.952.633.168 (3)116
C12—H12···O2Bvii0.952.443.30 (2)150
C15—H15···N50.952.653.188 (3)117
C15—H15···N12viii0.952.683.369 (4)130
C20—H20···N20.952.693.227 (3)116
C22—H22···O3B0.952.483.366 (15)155
C25—H25···N8viii0.952.493.184 (3)130
C27—H27···O3A0.952.553.43 (2)155
C27—H27···O3B0.952.333.276 (18)172
C29—H29···N80.952.673.432 (3)137
C29—H29···N11iii0.952.693.295 (4)123
C30—H30···N11iii0.952.633.279 (4)126
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x, y+1, z+2; (vi) x1, y+1, z; (vii) x, y+1, z+1; (viii) x1, y, z.
 

Acknowledgements

This work was supported by the Slovak grant agencies VEGA 1/0075/13 and APVV-14-0078.

References

First citationAlonso, C., Ballester, L., Gutiérrez, A., Perpiñán, M. F., Sánchez, A. E. & Azcondo, M. T. (2005). Eur. J. Inorg. Chem. pp. 486–495.  Web of Science CSD CrossRef Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBallester, L., Gil, A. M., Gutiérrez, A., Perpiñán, M. F., Azcondo, M. T., Sánchez, A. E., Marzin, C., Tarrago, G. & Bellitto, C. (2002). Chem. Eur. J. 8, 2539–2548.  CrossRef PubMed CAS Google Scholar
First citationBallester, L., Gutiérrez, A., Perpiñán, M. F., Amador, U., Azcondo, M. T., Sánchez, A. E. & Bellito, C. (1997). Inorg. Chem. 36, 6390–6396.  Web of Science CSD CrossRef CAS Google Scholar
First citationBallester, L., Gutiérrez, A., Perpiñán, M. F. & Azcondo, M. T. (1999). Coord. Chem. Rev. 190–192, 447–470.  CrossRef CAS Google Scholar
First citationBallesteros-Rivas, M., Ota, A., Reinheimer, E., Prosvirin, A., Valdés-Martinez, J. & Dunbar, K. R. (2011). Angew. Chem. Int. Ed. 50, 9703–9707.  CAS Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDong, V., Endres, H., Keller, H. J., Moroni, W. & Nöthe, D. (1977). Acta Cryst. B33, 2428–2431.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHoffmann, S. K., Corvan, P. J., Singh, P., Sethulekshmi, C. N., Metzger, R. M. & Hatfield, W. E. (1983). J. Am. Chem. Soc. 105, 4608–4617.  CSD CrossRef CAS Web of Science Google Scholar
First citationKorzeniak, T., Mathonière, C., Kaiba, A., Guionneau, P., Koziel, M. & Sieklucka, B. (2008). Inorg. Chim. Acta, 361, 3500–3504.  Web of Science CSD CrossRef CAS Google Scholar
First citationKubota, H., Takahashi, Y., Harada, J. & Inabe, T. (2014). Cryst. Growth Des. 14, 5575–5584.  CSD CrossRef CAS Google Scholar
First citationMadalan, A. M., Roesky, H. W., Andruh, M., Noltmeyer, M. & Stanica, N. (2002). Chem. Commun. 15, 1638–1639.  Web of Science CSD CrossRef Google Scholar
First citationNafady, A., O'Mullane, A. P. & Bond, A. M. (2014). Coord. Chem. Rev. 268, 101–142.  Web of Science CrossRef CAS Google Scholar
First citationNishijo, J. & Enomoto, M. (2015). Inorg. Chim. Acta, 437, 59–63.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShimomura, S., Higuchi, M., Matsuda, R., Yoneda, K., Hijikata, Y., Kubota, Y., Mita, Y., Kim, J., Takata, M. & Kitagawa, S. (2010). Nature Chem. 2, 633–637.  Web of Science CSD CrossRef CAS Google Scholar
First citationStarodub, V. A. & Starodub, T. N. (2014). Russ. Chem. Rev. 83, 391–438.  Web of Science CrossRef Google Scholar
First citationVasylets, G. Y., Starodub, V. A., Barszcz, B., Graja, A., Medviediev, V. V., Shiskin, O. V. & Bukrinev, A. S. (2014). Synth. Met. 191, 89–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, H., Heintz, R. A., Dunbar, K. R. & Rogers, R. D. (1996). J. Am. Chem. Soc. 118, 12844–12845.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds