research communications
κO)(1,4,7,10-tetraazacyclododecane-κ4N)copper(II) perchlorate
of (perchlorato-aDepartment of Chemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487-0336, USA
*Correspondence e-mail: etpapish@ua.edu
The 4)(C8H20N4)]ClO4, is reported. The CuII ion exhibits a square-pyramidal geometry and is coordinated by the four N atoms of the neutral 1,4,7,10-tetraazacyclododecane (cyclen) ligand and an O atom from one perchlorate anion, with the second perchlorate ion hydrogen-bonded to one of the amine N atoms of the cyclen ligand. Additional N—H⋯O hydrogen bonds between the amine H atoms and the coordinating and non-coordinating perchlorate groups create a three-dimensional network structure. Crystals were grown from a concentrated methanol solution at ambient temperature, resulting in no co-crystallization of solvent.
of the title salt, [Cu(ClOKeywords: crystal structure; copper(II); cyclen; perchlorate.
CCDC reference: 1521075
1. Chemical context
Azamacrocycle ligands, including 1,4,7,10-tetraazacyclododecane (cyclen), are of significant importance in research due to their ability to form stable metal complexes, allowing for their use in a wide range of applications. Some of these complexes have been studied for their use as chemical sensors, contrast agents in MRI and PET, antimicrobial agents and as biomimetic catalysts (De León-Rodríguez et al., 2010; Yoo et al., 2005). Copper–cyclen complexes have been studied extensively for their ability to perform catalytic DNA cleavage and peptide hydrolysis (Zhang et al., 2016; Li et al. 2014; Hormann et al., 2015). Although the synthesis of a similar CuII complex has been reported previously, no of the complex, [Cu(1,4,7,10-tetraazacyclododecane)](ClO4)2, has previously been published (Kruppa et al., 2006).
2. Structural commentary
In the title complex (Fig. 1), the copper(II) ion coordinated by the four nitrogen atoms of the cyclen ligand and one oxygen atom of a perchlorate ligand. The five-coordinate cupric ion shows a nearly ideal square-pyramidal geometry (τ5 = 0.049; Addison et al., 1984). The Cu—N bond lengths range from 2.004 (1) to 2.015 (1) Å, which are typical values. The CuII ion exhibits a tetragonal distortion that leads to a longer apical bond with Cu1—O1 = 2.266 (1) Å, which is 0.12 Å longer than the average Cu—O distance (Clay et al., 1979; Rohde & Merzweiler, 2010). The average N—Cu—O bond angle is 103.8 (8)°. Three hydrogen bonds are present within the with two extending from O2 and O3 of the bound perchlorate anion to N1—H1 and N2—H2, respectively. The third hydrogen bond extends from N2—H2 to O8 of the unbound anion; the numerical details are given in Table 1.
3. Supramolecular features
The a axis (Fig. 2), creating a dimer. These hydrogen bonds (N3—H3⋯O1, N3—H3⋯O4, N4—H4⋯O5) have an average N⋯O distance of 3.16 Å (Fig. 3). The complexes assemble in rows parallel to the b axis (Fig. 4) due in part to weak electrostatic interactions between the bound perchlorate anion and a neighboring cyclen ligand. A hydrogen bond between the cyclen ligand and a neighboring perchlorate anion (N1—H1⋯O3) allows the building units to assemble parallel to the a axis (Fig. 5).
exhibits three unique symmetry elements: an inversion center, a twofold screw axis and a glide plane. The complex cations of two asymmetric units hydrogen-bond across an inversion center, which is clearly visible when viewed along the4. Database survey
A database survey resulted in several similar Cu–cyclen complexes with five-coordinate copper(II). Four structures chosen for further analysis contained a copper(II) ion coordinated by either five nitrogen atoms or four nitrogen atoms and one oxygen atom (Rohde & Merzweiler, 2010; Sarma et al., 2010; Péréz-Toro et al., 2015; Guo et al., 2008). Where applicable, the complexes have similar Cu—O bond lengths to that of the title complex, with only slight deviations. The title complex and surveyed complexes have similar Cu—N distances with a standard deviation of 0.018 Å.
5. Synthesis and crystallization
The title complex was synthesized by a modified method as reported by Kruppa et al. (2006). Under a nitrogen atmosphere, 1,4,7,10-tetraazacyclododecane (247 mg, 1.4 mmol) and copper(II) perchlorate hexahydrate (527 mg, 1.4 mmol) were separately dissolved in 2.8 mL anhydrous methanol each and combined. The resulting purple solution formed a precipitate. The reaction mixture was heated to reflux for 30 min then filtered. The filtrate was evaporated to dryness to yield a purple amorphous solid. X-ray quality crystals were grown by dissolving the solid in a minimum amount of methanol followed by slow evaporation at ambient temperature. The title complex [Cu(cyclen)](ClO4)2 was isolated as purple crystals in 84% yield (1.2 mmol, 526 mg). IR [ATR, ν (cm−1)]: 3281, 2939, 1478, 1072, 617. MS (MALDI–TOF, MeOH): m/z = 334.2 [Cu(cyclen)2+ + ClO4−]−.
6. Refinement
Crystal data, data collection and structure . H atoms attached to carbon were positioned geometrically and constrained to ride on their parent atoms. The H atoms attached to nitrogen were located in a difference map and restrained to have comparable bond lengths. Uiso(H) values were set to 1.2Ueq(C/N).
details are summarized in Table 2
|
Supporting information
CCDC reference: 1521075
https://doi.org/10.1107/S2056989016019563/zl2687sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016019563/zl2687Isup2.hkl
Data collection: APEX2 (Bruker, 2013); cell
SAINT-Plus (Bruker, 2013); data reduction: SAINT-Plus (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011).[Cu(ClO4)(C8H20N4)]ClO4 | F(000) = 892 |
Mr = 434.72 | Dx = 1.801 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9387 (2) Å | Cell parameters from 9899 reflections |
b = 15.0607 (4) Å | θ = 2.3–35.9° |
c = 11.9235 (3) Å | µ = 1.74 mm−1 |
β = 92.949 (1)° | T = 173 K |
V = 1603.05 (7) Å3 | Block, purple |
Z = 4 | 0.23 × 0.21 × 0.18 mm |
Bruker SMART APEXII CCD diffractometer | 6655 reflections with I > 2σ(I) |
Radiation source: fine focus sealed tube | Rint = 0.021 |
phi and ω scans | θmax = 36.2°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2014) | h = −14→13 |
Tmin = 0.667, Tmax = 0.747 | k = −24→24 |
43306 measured reflections | l = −19→12 |
7519 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0357P)2 + 0.4526P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.003 |
7519 reflections | Δρmax = 0.60 e Å−3 |
221 parameters | Δρmin = −0.44 e Å−3 |
6 restraints | Extinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0025 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.42855 (13) | 0.41595 (9) | 0.83806 (10) | 0.0315 (2) | |
H1A | 0.5240 | 0.4277 | 0.8813 | 0.038* | |
H1B | 0.4043 | 0.3521 | 0.8450 | 0.038* | |
C2 | 0.30439 (15) | 0.47211 (10) | 0.88238 (9) | 0.0341 (2) | |
H2A | 0.2850 | 0.4540 | 0.9601 | 0.041* | |
H2B | 0.3344 | 0.5354 | 0.8835 | 0.041* | |
C3 | 0.07219 (14) | 0.38402 (9) | 0.83922 (11) | 0.0330 (2) | |
H3A | 0.0198 | 0.3977 | 0.9083 | 0.040* | |
H3B | 0.1353 | 0.3308 | 0.8533 | 0.040* | |
C4 | −0.04050 (12) | 0.36717 (8) | 0.74254 (13) | 0.0353 (3) | |
H4A | −0.0945 | 0.3110 | 0.7554 | 0.042* | |
H4B | −0.1148 | 0.4160 | 0.7378 | 0.042* | |
C5 | 0.08786 (13) | 0.27094 (7) | 0.60632 (10) | 0.0297 (2) | |
H5A | 0.0006 | 0.2334 | 0.5836 | 0.036* | |
H5B | 0.1415 | 0.2431 | 0.6720 | 0.036* | |
C6 | 0.19107 (16) | 0.27947 (8) | 0.51035 (10) | 0.0345 (2) | |
H6A | 0.2356 | 0.2209 | 0.4943 | 0.041* | |
H6B | 0.1335 | 0.2998 | 0.4420 | 0.041* | |
C7 | 0.44486 (13) | 0.30541 (7) | 0.60226 (11) | 0.0302 (2) | |
H7A | 0.5046 | 0.2707 | 0.5500 | 0.036* | |
H7B | 0.4126 | 0.2651 | 0.6620 | 0.036* | |
C8 | 0.53867 (12) | 0.38048 (8) | 0.65356 (12) | 0.0315 (2) | |
H8A | 0.6201 | 0.3558 | 0.7037 | 0.038* | |
H8B | 0.5847 | 0.4147 | 0.5934 | 0.038* | |
H1 | 0.4734 (19) | 0.4937 (9) | 0.7172 (14) | 0.038* | |
H2 | 0.1146 (18) | 0.5097 (10) | 0.8063 (14) | 0.038* | |
H3 | −0.0155 (19) | 0.3802 (12) | 0.5781 (13) | 0.038* | |
H4 | 0.3389 (19) | 0.3719 (11) | 0.4820 (12) | 0.038* | |
N1 | 0.44205 (10) | 0.43993 (6) | 0.71871 (8) | 0.02310 (15) | |
N2 | 0.16614 (10) | 0.46012 (7) | 0.80849 (8) | 0.02595 (16) | |
N3 | 0.03746 (11) | 0.36146 (6) | 0.63546 (9) | 0.02866 (19) | |
N4 | 0.31208 (12) | 0.34444 (6) | 0.54087 (8) | 0.02774 (18) | |
O1 | 0.19181 (10) | 0.55583 (5) | 0.55695 (6) | 0.02513 (14) | |
O2 | 0.40695 (9) | 0.63197 (6) | 0.62923 (8) | 0.03461 (19) | |
O3 | 0.17927 (13) | 0.64843 (8) | 0.71488 (9) | 0.0461 (3) | |
O4 | 0.21084 (11) | 0.71021 (6) | 0.53609 (9) | 0.0388 (2) | |
O5 | 0.24547 (13) | 0.44353 (6) | 0.31635 (7) | 0.0375 (2) | |
O6 | 0.36978 (11) | 0.40926 (8) | 0.15317 (8) | 0.0381 (2) | |
O7 | 0.21333 (13) | 0.30342 (6) | 0.23229 (9) | 0.0411 (2) | |
O8 | 0.10864 (11) | 0.42926 (7) | 0.14227 (8) | 0.0380 (2) | |
Cl1 | 0.24776 (3) | 0.63777 (2) | 0.61025 (2) | 0.02082 (4) | |
Cl2 | 0.23354 (3) | 0.39588 (2) | 0.21099 (2) | 0.02216 (5) | |
Cu1 | 0.23119 (2) | 0.42802 (2) | 0.65438 (2) | 0.01773 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0265 (5) | 0.0390 (6) | 0.0278 (5) | −0.0022 (4) | −0.0100 (4) | 0.0095 (4) |
C2 | 0.0368 (6) | 0.0465 (7) | 0.0184 (4) | −0.0037 (5) | −0.0038 (4) | −0.0015 (4) |
C3 | 0.0296 (5) | 0.0328 (5) | 0.0375 (6) | 0.0004 (4) | 0.0110 (4) | 0.0077 (4) |
C4 | 0.0176 (4) | 0.0285 (5) | 0.0600 (8) | −0.0005 (4) | 0.0049 (5) | 0.0049 (5) |
C5 | 0.0299 (5) | 0.0191 (4) | 0.0386 (5) | −0.0049 (3) | −0.0117 (4) | 0.0052 (4) |
C6 | 0.0523 (7) | 0.0237 (5) | 0.0266 (5) | −0.0087 (5) | −0.0064 (5) | −0.0022 (4) |
C7 | 0.0307 (5) | 0.0206 (4) | 0.0402 (6) | 0.0008 (4) | 0.0099 (4) | 0.0013 (4) |
C8 | 0.0199 (4) | 0.0252 (5) | 0.0501 (7) | −0.0006 (3) | 0.0081 (4) | 0.0014 (4) |
N1 | 0.0190 (3) | 0.0217 (3) | 0.0282 (4) | −0.0023 (3) | −0.0021 (3) | 0.0033 (3) |
N2 | 0.0241 (4) | 0.0280 (4) | 0.0259 (4) | 0.0011 (3) | 0.0030 (3) | 0.0013 (3) |
N3 | 0.0236 (4) | 0.0208 (4) | 0.0400 (5) | −0.0022 (3) | −0.0134 (3) | 0.0065 (3) |
N4 | 0.0403 (5) | 0.0208 (4) | 0.0224 (4) | −0.0040 (3) | 0.0032 (3) | 0.0018 (3) |
O1 | 0.0361 (4) | 0.0155 (3) | 0.0227 (3) | −0.0025 (3) | −0.0091 (3) | −0.0012 (2) |
O2 | 0.0213 (4) | 0.0348 (4) | 0.0466 (5) | −0.0019 (3) | −0.0095 (3) | 0.0080 (4) |
O3 | 0.0542 (6) | 0.0452 (6) | 0.0408 (5) | −0.0136 (5) | 0.0192 (4) | −0.0216 (4) |
O4 | 0.0420 (5) | 0.0181 (3) | 0.0538 (5) | −0.0016 (3) | −0.0219 (4) | 0.0084 (3) |
O5 | 0.0614 (6) | 0.0281 (4) | 0.0222 (3) | 0.0054 (4) | −0.0054 (4) | −0.0058 (3) |
O6 | 0.0258 (4) | 0.0516 (6) | 0.0371 (4) | −0.0021 (4) | 0.0033 (3) | 0.0019 (4) |
O7 | 0.0536 (6) | 0.0203 (4) | 0.0493 (5) | −0.0032 (4) | 0.0031 (5) | −0.0015 (4) |
O8 | 0.0302 (4) | 0.0538 (6) | 0.0295 (4) | 0.0164 (4) | −0.0042 (3) | −0.0005 (4) |
Cl1 | 0.02111 (9) | 0.01695 (8) | 0.02384 (9) | −0.00122 (7) | −0.00426 (7) | −0.00201 (7) |
Cl2 | 0.02481 (10) | 0.02058 (9) | 0.02081 (9) | 0.00237 (7) | −0.00149 (7) | −0.00166 (7) |
Cu1 | 0.01806 (5) | 0.01641 (5) | 0.01824 (5) | −0.00136 (3) | −0.00382 (4) | 0.00267 (3) |
C1—N1 | 1.4791 (14) | C7—H7A | 0.9900 |
C1—C2 | 1.5122 (19) | C7—H7B | 0.9900 |
C1—H1A | 0.9900 | C8—N1 | 1.4901 (15) |
C1—H1B | 0.9900 | C8—H8A | 0.9900 |
C2—N2 | 1.4913 (15) | C8—H8B | 0.9900 |
C2—H2A | 0.9900 | N1—Cu1 | 2.0061 (9) |
C2—H2B | 0.9900 | N1—H1 | 0.858 (14) |
C3—N2 | 1.4781 (16) | N2—Cu1 | 2.0145 (9) |
C3—C4 | 1.513 (2) | N2—H2 | 0.876 (14) |
C3—H3A | 0.9900 | N3—Cu1 | 2.0036 (9) |
C3—H3B | 0.9900 | N3—H3 | 0.859 (13) |
C4—N3 | 1.4881 (18) | N4—Cu1 | 2.0099 (10) |
C4—H4A | 0.9900 | N4—H4 | 0.859 (13) |
C4—H4B | 0.9900 | O1—Cl1 | 1.4644 (7) |
C5—N3 | 1.4826 (15) | O1—Cu1 | 2.2664 (7) |
C5—C6 | 1.5118 (19) | O2—Cl1 | 1.4320 (8) |
C5—H5A | 0.9900 | O3—Cl1 | 1.4267 (10) |
C5—H5B | 0.9900 | O4—Cl1 | 1.4321 (9) |
C6—N4 | 1.4898 (15) | O5—Cl2 | 1.4459 (9) |
C6—H6A | 0.9900 | O6—Cl2 | 1.4441 (10) |
C6—H6B | 0.9900 | O7—Cl2 | 1.4285 (9) |
C7—N4 | 1.4835 (16) | O8—Cl2 | 1.4409 (9) |
C7—C8 | 1.5174 (17) | ||
N1—C1—C2 | 107.30 (9) | C1—N1—C8 | 115.66 (9) |
N1—C1—H1A | 110.3 | C1—N1—Cu1 | 102.97 (7) |
C2—C1—H1A | 110.3 | C8—N1—Cu1 | 107.77 (7) |
N1—C1—H1B | 110.3 | C1—N1—H1 | 107.1 (11) |
C2—C1—H1B | 110.3 | C8—N1—H1 | 110.9 (12) |
H1A—C1—H1B | 108.5 | Cu1—N1—H1 | 112.2 (11) |
N2—C2—C1 | 109.06 (9) | C3—N2—C2 | 114.31 (10) |
N2—C2—H2A | 109.9 | C3—N2—Cu1 | 103.55 (7) |
C1—C2—H2A | 109.9 | C2—N2—Cu1 | 107.38 (7) |
N2—C2—H2B | 109.9 | C3—N2—H2 | 111.3 (12) |
C1—C2—H2B | 109.9 | C2—N2—H2 | 109.4 (12) |
H2A—C2—H2B | 108.3 | Cu1—N2—H2 | 110.7 (11) |
N2—C3—C4 | 107.81 (10) | C5—N3—C4 | 114.55 (9) |
N2—C3—H3A | 110.1 | C5—N3—Cu1 | 102.42 (7) |
C4—C3—H3A | 110.1 | C4—N3—Cu1 | 108.34 (7) |
N2—C3—H3B | 110.1 | C5—N3—H3 | 106.1 (12) |
C4—C3—H3B | 110.1 | C4—N3—H3 | 113.6 (12) |
H3A—C3—H3B | 108.5 | Cu1—N3—H3 | 111.3 (12) |
N3—C4—C3 | 109.92 (9) | C7—N4—C6 | 114.37 (9) |
N3—C4—H4A | 109.7 | C7—N4—Cu1 | 102.84 (7) |
C3—C4—H4A | 109.7 | C6—N4—Cu1 | 107.10 (8) |
N3—C4—H4B | 109.7 | C7—N4—H4 | 110.1 (12) |
C3—C4—H4B | 109.7 | C6—N4—H4 | 110.2 (12) |
H4A—C4—H4B | 108.2 | Cu1—N4—H4 | 112.0 (12) |
N3—C5—C6 | 107.69 (9) | Cl1—O1—Cu1 | 116.92 (4) |
N3—C5—H5A | 110.2 | O3—Cl1—O2 | 109.65 (7) |
C6—C5—H5A | 110.2 | O3—Cl1—O4 | 111.02 (7) |
N3—C5—H5B | 110.2 | O2—Cl1—O4 | 109.85 (6) |
C6—C5—H5B | 110.2 | O3—Cl1—O1 | 108.78 (6) |
H5A—C5—H5B | 108.5 | O2—Cl1—O1 | 109.36 (5) |
N4—C6—C5 | 109.55 (9) | O4—Cl1—O1 | 108.14 (5) |
N4—C6—H6A | 109.8 | O7—Cl2—O8 | 109.87 (7) |
C5—C6—H6A | 109.8 | O7—Cl2—O6 | 109.78 (7) |
N4—C6—H6B | 109.8 | O8—Cl2—O6 | 109.12 (6) |
C5—C6—H6B | 109.8 | O7—Cl2—O5 | 109.49 (6) |
H6A—C6—H6B | 108.2 | O8—Cl2—O5 | 109.95 (6) |
N4—C7—C8 | 108.37 (9) | O6—Cl2—O5 | 108.61 (6) |
N4—C7—H7A | 110.0 | N3—Cu1—N1 | 151.33 (4) |
C8—C7—H7A | 110.0 | N3—Cu1—N4 | 87.11 (4) |
N4—C7—H7B | 110.0 | N1—Cu1—N4 | 87.14 (4) |
C8—C7—H7B | 110.0 | N3—Cu1—N2 | 86.24 (4) |
H7A—C7—H7B | 108.4 | N1—Cu1—N2 | 86.52 (4) |
N1—C8—C7 | 109.56 (9) | N4—Cu1—N2 | 153.54 (4) |
N1—C8—H8A | 109.8 | N3—Cu1—O1 | 104.87 (3) |
C7—C8—H8A | 109.8 | N1—Cu1—O1 | 103.78 (3) |
N1—C8—H8B | 109.8 | N4—Cu1—O1 | 103.79 (3) |
C7—C8—H8B | 109.8 | N2—Cu1—O1 | 102.66 (3) |
H8A—C8—H8B | 108.2 | ||
N1—C1—C2—N2 | 54.05 (13) | C6—C5—N3—C4 | −168.48 (9) |
N2—C3—C4—N3 | 50.52 (13) | C6—C5—N3—Cu1 | −51.42 (9) |
N3—C5—C6—N4 | 53.24 (12) | C3—C4—N3—C5 | 89.53 (11) |
N4—C7—C8—N1 | 51.48 (13) | C3—C4—N3—Cu1 | −24.09 (11) |
C2—C1—N1—C8 | −169.09 (9) | C8—C7—N4—C6 | −165.51 (10) |
C2—C1—N1—Cu1 | −51.82 (10) | C8—C7—N4—Cu1 | −49.77 (10) |
C7—C8—N1—C1 | 89.34 (12) | C5—C6—N4—C7 | 87.24 (12) |
C7—C8—N1—Cu1 | −25.21 (11) | C5—C6—N4—Cu1 | −26.00 (11) |
C4—C3—N2—C2 | −166.49 (10) | Cu1—O1—Cl1—O3 | −58.89 (8) |
C4—C3—N2—Cu1 | −50.00 (10) | Cu1—O1—Cl1—O2 | 60.85 (7) |
C1—C2—N2—C3 | 87.01 (12) | Cu1—O1—Cl1—O4 | −179.55 (6) |
C1—C2—N2—Cu1 | −27.24 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O6i | 0.86 (1) | 2.50 (2) | 3.171 (1) | 135 (1) |
N1—H1···O2 | 0.86 (1) | 2.39 (1) | 3.093 (1) | 139 (1) |
N2—H2···O8ii | 0.88 (2) | 2.31 (2) | 3.050 (1) | 142 (1) |
N2—H2···O3 | 0.88 (2) | 2.44 (2) | 3.052 (2) | 127 (1) |
N3—H3···O1ii | 0.86 (2) | 2.40 (1) | 3.245 (1) | 169 (2) |
N3—H3···O4ii | 0.86 (2) | 2.55 (2) | 3.132 (1) | 126 (1) |
N4—H4···O5 | 0.86 (2) | 2.36 (1) | 3.096 (1) | 143 (1) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1. |
Acknowledgements
Special thanks to The University of Alabama Department of Chemistry for funding and facilities. We also thank the Undergraduate Creativity and Research Academy (UCRA) at UA, the Research Grants Committee (RGC) at UA, and acknowledge the NSF EPSCoR Track 2 Seed Grant to ETP (PI N. Hammer, grant No. OIA-1539035) for generous financial support.
References
Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Google Scholar
Bruker (2013). SAINT-Plus and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clay, R., Murray-Rust, P. & Murray-Rust, J. (1979). Acta Cryst. B35, 1894–1895. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
De León-Rodríguez, L. M., Viswanathan, S. & Sherry, A. D. (2010). Contrast Media Mol. Imaging, 5, 121–125. Google Scholar
Guo, J.-F., Yeung, W.-F., Gao, S., Lee, G.-H., Peng, S.-M., Lam, M. H.-W. & Lau, T.-C. (2008). Eur. J. Inorg. Chem. pp. 158–163. Web of Science CSD CrossRef Google Scholar
Hormann, J., van der Meer, M., Sarkar, B. & Kulak, N. (2015). Eur. J. Inorg. Chem. pp. 4722–4730. CSD CrossRef Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
Kruppa, M., Frank, D., Leffler-Schuster, H. & König, B. (2006). Inorg. Chim. Acta, 359, 1159–1168. CrossRef CAS Google Scholar
Li, S., Chen, J.-X., Xiang, Q.-X., Zhang, L.-Q., Zhou, C.-H., Xie, J.-Q., Yu, L. & Li, F.-Z. (2014). Eur. J. Med. Chem. 84, 677–686. CrossRef CAS Google Scholar
Pérez-Toro, I., Domínguez-Martín, A., Choquesillo-Lazarte, D., Vílchez-Rodríguez, E., González-Pérez, J. M., Castiñeiras, A. & Niclós-Gutiérrez, J. (2015). J. Inorg. Biochem. 148, 84–92. Google Scholar
Rohde, D. & Merzweiler, K. (2010). Acta Cryst. E66, m894. CSD CrossRef IUCr Journals Google Scholar
Sarma, M., Chatterjee, T. & Das, S. K. (2010). Inorg. Chem. Commun. 13, 1114–1117. CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2014). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Yoo, S. H., Lee, B. J., Kim, H. & Suh, J. (2005). J. Am. Chem. Soc. 127, 9593–9602. CrossRef CAS Google Scholar
Zhang, X., Liu, X., Phillips, D. L. & Zhao, C. (2016). ACS Catal. 6, 248–257. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.