research communications
R,3aR,7aR)-1-{(S)-1-[(2R,5S)-5-(3-hydroxypentan-3-yl)tetrahydrofuran-2-yl]ethyl}-7a-methyl-2,3,3a,4,5,6,7,7a-octahydro-1H-inden-4-one
of (1aDipartamento Química Orgínica, Facultade de Química, Universidade de Vigo, E-36310, Vigo, Spain, bDépartement de Chimie, Faculté des Sciences, Université de Nouakchott, Nouakchott, Mauritania, and cDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
*Correspondence e-mail: mlgayeastou@yahoo.fr
The title compound, C21H36O3, contains an oxolane ring, and six defined stereocentres and may serve as a useful synthon for the synthesis of calcitriol analogues. The configurations of the chiral C atoms of the side chain were unambiguously established in the In the crystal, C—H⋯O and extremely weak O—H⋯O hydrogen bonds arising from the sterically hindered alcohol group link the molecules into a three-dimensional network.
Keywords: crystal structure; calcitriol; vitamin D; hydrogen bonding.
CCDC reference: 1522774
1. Chemical context
The discovery of vitamin D3 (calcitriol) and its biological activity had a very important impact in the search for analogues of Vitamin D. In the structure of vitamin D, it is recognized that the side chain is the main site of metabolic degradation. Synthetic chemists have devoted considerable efforts to varying this chain in order to prepare analogues of vitamin D (Dai & Posner, 1994; Zhu et al., 1995; Posner & Kahraman, 2003) and study the degradation metabolisms of these new molecules. Our ongoing interest in the chemistry of and particularly in the synthesis of vitamin D analogues, has led us to develop several methods for the synthesis of these compounds (Fernández et al., 2016; Gándara et al., 2009). We have also looked at their biological activities which are reported in the literature (Maehr et al., 2004). Recently, we reported the synthesis of a new vitamin D2 analogue and the evaluation of its biological activity on colon cancer (Gándara et al., 2012). In a continuation of our work on the analogues of vitamin D, we synthesized two new molecules of cacitriol from an oxolane ring and its side chains (Martínez et al., 2013). In this study we present the structure of a new analog of calcitriol with six stereo centres.
2. Structural commentary
The molecular structure of the title compound is shown in Fig. 1: the compound crystallizes in the non-centrosymmetric P21 and the was unambiguously established. The molecule contains a cyclopentane ring trans-fused to a cyclohexanone ring. The lateral chain contains an oxolane ring. The cyclohexanone ring adopts a chair conformation, the cyclopentane ring is an envelope (flap atom = C5) and the heterocyclic ring is twisted about C13—O2. The configurations of the stereogenic centres are C5(R), C6(R), C9(R), C11(S), C13(R) and C16(S). All bond distances and angles are within their expected ranges. The Csp3—Csp2 bonds involving C1 [1.499 (3) and 1.500 (3) Å) are naturally slightly shorter than the Csp3—Csp3 bonds [1.514 (3)–1.549 (5) Å]. The C1=O1 bond length [1.208 (3) Å] is typical of a C=O double bond, confirming oxidation of the starting alcohol.
3. Supramolecular features
In the crystal, C2—H2B⋯O1=C hydrogen bonds (Table 1, Fig. 2) link the molecules into C(4) chains, which propagate parallel to [101]. The chains are linked through very weak C(2) O3—H3O⋯O3 hydrogen bonds, giving rise to a three-dimensional supramolecular architecture. The O—H⋯O hydrogen bond is very long, presumably due to of the –OH group.
4. Database survey
A survey of the Cambridge Structural Database (Version 5.38, last update Nov 2016; Groom et al., 2016) for the bicyclic moiety fragment (1S,3aR,7aR)-1-ethyl-7a-methyl-octahydroinden-4-one) of the title compound revealed just three matches, viz. EFEHEE (Pietraszek et al., 2013), LESNEE (Rivadulla et al., 2013) and ZEBZIP (Schwarz et al., 1995). In each case, the shared C—C bond of the [4.3.0]-bicyclic moiety presents a trans configuration, as does the structure reported here.
5. Synthesis and crystallization
To a solution of diol 2 (0.18 mmol) in CH2Cl2 (5 ml), pyridinium dichromate (PDC) (0.37 mmol) was added, and the mixture stirred at room temperature for 12 h, then the solvent was evaporated and the residue was chromatographed on sílica gel using (10% EtOAc/hexane) to afford ketone 1. The title compound was recrystallized as colourless blocks using a solvent mixture of hexane/ethyl ether (1:1).
Compound 1: white solid; m.p. 382–384 K. yield: 83%; Rf: 0.54 (30% EtOAc/hexane). [α]20D = +31.39° (c 1.0, CDCl3). 1H NMR (CDCl3, δ): 3.87 (1H, m, H-5′), 3.72 (1H, m, H-2′), 2.44 (1H, dd, J = 11.2, 7.4 Hz), 2.49–1.8 (6H, m), 1.79–1.65 (4H, m), 1.65–1.28 (8H, m), 1.27 (3H, d, J = 9.7 Hz), 0.95 (3H, d, J = 6.7 Hz, CH3-21), 0.88 (6H,q, J = 7.6 Hz, CH3-Et), 0.67 (3H, S, CH3-18). 13C NMR (CDCl3, δ): 211.91 (C=O), 82.17 (CH-2′), 80.67 (CH-5′), 74.96 (C-3′′), 61.49 (CH-14), 54.50, 50.25 (CH-17, CH-13), 41.01 (CH2), 38.97 (CH2), 38.12 (CH-20), 28.65 (CH2), 26.93 (CH2), 26.23 (CH2), 24.98 (CH2), 24.52 (CH2), 24.04 (CH2), 19.21 (CH2), 12.70 (CH3-21), 12.55 (CH3-18), 8.02 (CH3-Et), 7.52 (CH3-Et). IR (NaCl, cm−1): 3532, 2964, 2939, 2881, 2347, 1714, 1460, 1381, 1246, 1136,1077, 958, 837. MS (ESI+) [m/z, (%)]: 359.25 [(M + Na)+, (54)]; 319.26 [(M − OH)+,(100)]; 301.25 (15). HRMS (ESI+): calculated for C21H36NaO3, 359.25567 g mol−1; found: 359.2556 g mol−1.
6. Refinement
Crystal data, data collection and structure . The hydroxy H atom was located from a difference Fourier map and relocated to an idealized (O—H = 0.82Å) location. The other H atoms (CH, CH2 and CH3 groups) were placed geometrically and refined as riding atoms with Uiso(H) = 1.2Ueq(C) (1.5 for CH3 groups).
details are summarized in Table 2Supporting information
CCDC reference: 1522774
https://doi.org/10.1107/S2056989016020648/hb7644sup1.cif
contains datablocks I, shelx. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989016020648/hb7644Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989016020648/hb7644Isup3.cml
Data collection: APEX3 (Bruker, 2016); cell
SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL-2014/7 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL-2014/7 (Sheldrick, 2015b).C21H36O3 | F(000) = 372 |
Mr = 336.50 | Dx = 1.141 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54178 Å |
a = 9.4601 (3) Å | Cell parameters from 9988 reflections |
b = 6.3779 (2) Å | θ = 2.4–28.6° |
c = 16.7425 (4) Å | µ = 0.58 mm−1 |
β = 104.196 (1)° | T = 296 K |
V = 979.32 (5) Å3 | Block, colourless |
Z = 2 | 0.25 × 0.12 × 0.10 mm |
Bruker SMART APEX CCD diffractometer | 3679 independent reflections |
Radiation source: fine-focus sealed tube | 3594 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.036 |
φ and ω scans | θmax = 71.0°, θmin = 2.7° |
Absorption correction: multi-scan SADABS (Bruker, 2016) | h = −11→11 |
Tmin = 0.662, Tmax = 0.753 | k = −7→7 |
13069 measured reflections | l = −20→20 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.033 | w = 1/[σ2(Fo2) + (0.0549P)2 + 0.0933P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.097 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.14 e Å−3 |
3679 reflections | Δρmin = −0.14 e Å−3 |
222 parameters | Extinction correction: SHELXL-2014/7 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0034 (10) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack x determined using 1566 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.07 (7) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.9190 (2) | 0.6570 (3) | 0.46585 (10) | 0.0761 (5) | |
O2 | 0.41676 (15) | 0.5028 (2) | 0.80627 (9) | 0.0555 (4) | |
O3 | 0.44001 (17) | 0.3383 (4) | 0.97018 (11) | 0.0768 (5) | |
H3O | 0.480163 | 0.453143 | 0.975052 | 0.115* | |
C1 | 0.9416 (2) | 0.6116 (3) | 0.53792 (13) | 0.0552 (5) | |
C2 | 1.0862 (2) | 0.6426 (4) | 0.59799 (15) | 0.0651 (6) | |
H2A | 1.147857 | 0.727399 | 0.572289 | 0.078* | |
H2B | 1.133002 | 0.507331 | 0.611064 | 0.078* | |
C3 | 1.0739 (2) | 0.7482 (4) | 0.67748 (15) | 0.0630 (6) | |
H3A | 1.054571 | 0.896302 | 0.667028 | 0.076* | |
H3B | 1.166385 | 0.735483 | 0.717955 | 0.076* | |
C4 | 0.9536 (2) | 0.6548 (4) | 0.71321 (12) | 0.0523 (4) | |
H4A | 0.981399 | 0.514090 | 0.732883 | 0.063* | |
H4B | 0.943984 | 0.738532 | 0.759957 | 0.063* | |
C5 | 0.80678 (19) | 0.6465 (3) | 0.65022 (10) | 0.0412 (4) | |
C6 | 0.82896 (19) | 0.5162 (3) | 0.57614 (11) | 0.0456 (4) | |
H6 | 0.868329 | 0.380487 | 0.598623 | 0.055* | |
C7 | 0.6765 (2) | 0.4733 (4) | 0.52444 (13) | 0.0626 (6) | |
H7A | 0.673148 | 0.343325 | 0.493967 | 0.075* | |
H7B | 0.642601 | 0.586840 | 0.485945 | 0.075* | |
C8 | 0.5838 (2) | 0.4576 (4) | 0.58867 (12) | 0.0562 (5) | |
H8A | 0.502692 | 0.554932 | 0.575205 | 0.067* | |
H8B | 0.545476 | 0.316752 | 0.589496 | 0.067* | |
C9 | 0.68560 (18) | 0.5124 (3) | 0.67337 (10) | 0.0422 (4) | |
H9 | 0.731850 | 0.380868 | 0.696278 | 0.051* | |
C10 | 0.7521 (3) | 0.8691 (3) | 0.62341 (14) | 0.0589 (5) | |
H10A | 0.653632 | 0.862000 | 0.590462 | 0.088* | |
H10B | 0.813277 | 0.930699 | 0.591728 | 0.088* | |
H10C | 0.755209 | 0.953355 | 0.671323 | 0.088* | |
C11 | 0.6037 (2) | 0.5963 (3) | 0.73561 (12) | 0.0474 (4) | |
H11 | 0.553105 | 0.724547 | 0.712223 | 0.057* | |
C12 | 0.7015 (3) | 0.6528 (5) | 0.81908 (14) | 0.0695 (6) | |
H12A | 0.766322 | 0.538155 | 0.839097 | 0.104* | |
H12B | 0.642665 | 0.680515 | 0.857150 | 0.104* | |
H12C | 0.757405 | 0.775343 | 0.813787 | 0.104* | |
C13 | 0.4871 (2) | 0.4371 (3) | 0.74389 (13) | 0.0500 (4) | |
H13 | 0.413816 | 0.429521 | 0.691234 | 0.060* | |
C14 | 0.5382 (3) | 0.2155 (4) | 0.77004 (18) | 0.0672 (6) | |
H14A | 0.633369 | 0.217278 | 0.808473 | 0.081* | |
H14B | 0.543273 | 0.130859 | 0.722683 | 0.081* | |
C15 | 0.4227 (3) | 0.1314 (4) | 0.81102 (19) | 0.0726 (7) | |
H15A | 0.467379 | 0.066789 | 0.863599 | 0.087* | |
H15B | 0.361078 | 0.028941 | 0.776109 | 0.087* | |
C16 | 0.3342 (2) | 0.3267 (3) | 0.82279 (13) | 0.0532 (5) | |
H16 | 0.240605 | 0.323844 | 0.781623 | 0.064* | |
C17 | 0.0673 (3) | 0.1360 (5) | 0.86855 (17) | 0.0792 (8) | |
H17A | 0.077247 | 0.115555 | 0.813379 | 0.119* | |
H17B | 0.009832 | 0.259036 | 0.870492 | 0.119* | |
H17C | 0.020167 | 0.016174 | 0.885197 | 0.119* | |
C18 | 0.2170 (3) | 0.1631 (4) | 0.92637 (15) | 0.0613 (5) | |
H18A | 0.272883 | 0.036389 | 0.924591 | 0.074* | |
H18B | 0.205358 | 0.177567 | 0.982067 | 0.074* | |
C19 | 0.3051 (2) | 0.3499 (3) | 0.90802 (13) | 0.0506 (4) | |
C20 | 0.2324 (2) | 0.5598 (3) | 0.91465 (13) | 0.0543 (5) | |
H20A | 0.298507 | 0.670669 | 0.907616 | 0.065* | |
H20B | 0.145850 | 0.570583 | 0.869632 | 0.065* | |
C21 | 0.1888 (3) | 0.5971 (5) | 0.99509 (15) | 0.0750 (7) | |
H21A | 0.153005 | 0.737676 | 0.995988 | 0.113* | |
H21B | 0.272144 | 0.577529 | 1.040541 | 0.113* | |
H21C | 0.113814 | 0.499588 | 0.999528 | 0.113* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1052 (13) | 0.0728 (11) | 0.0592 (9) | −0.0108 (10) | 0.0371 (9) | 0.0039 (8) |
O2 | 0.0597 (8) | 0.0400 (7) | 0.0789 (9) | 0.0002 (6) | 0.0399 (7) | −0.0013 (6) |
O3 | 0.0565 (8) | 0.0872 (12) | 0.0808 (11) | 0.0013 (9) | 0.0058 (8) | 0.0121 (10) |
C1 | 0.0704 (12) | 0.0458 (10) | 0.0583 (11) | 0.0007 (9) | 0.0326 (10) | −0.0009 (9) |
C2 | 0.0582 (11) | 0.0691 (14) | 0.0773 (14) | −0.0098 (11) | 0.0346 (11) | 0.0008 (12) |
C3 | 0.0544 (11) | 0.0678 (14) | 0.0690 (13) | −0.0168 (10) | 0.0191 (10) | −0.0012 (10) |
C4 | 0.0473 (9) | 0.0599 (11) | 0.0501 (9) | −0.0094 (9) | 0.0129 (8) | −0.0010 (9) |
C5 | 0.0460 (8) | 0.0364 (9) | 0.0433 (8) | 0.0003 (7) | 0.0150 (7) | 0.0002 (7) |
C6 | 0.0499 (9) | 0.0429 (9) | 0.0469 (9) | 0.0016 (8) | 0.0177 (7) | −0.0020 (8) |
C7 | 0.0580 (11) | 0.0794 (16) | 0.0504 (10) | −0.0021 (11) | 0.0133 (9) | −0.0143 (10) |
C8 | 0.0446 (9) | 0.0656 (13) | 0.0573 (11) | −0.0028 (9) | 0.0106 (8) | −0.0132 (10) |
C9 | 0.0417 (8) | 0.0392 (9) | 0.0475 (9) | −0.0008 (7) | 0.0142 (7) | −0.0020 (7) |
C10 | 0.0729 (13) | 0.0402 (10) | 0.0700 (13) | 0.0075 (9) | 0.0299 (11) | 0.0051 (9) |
C11 | 0.0493 (9) | 0.0417 (9) | 0.0565 (10) | −0.0005 (7) | 0.0228 (8) | −0.0038 (8) |
C12 | 0.0716 (13) | 0.0848 (17) | 0.0594 (12) | −0.0226 (13) | 0.0300 (10) | −0.0189 (12) |
C13 | 0.0483 (9) | 0.0452 (10) | 0.0623 (11) | −0.0007 (8) | 0.0244 (8) | −0.0052 (8) |
C14 | 0.0746 (14) | 0.0435 (11) | 0.0989 (18) | 0.0047 (10) | 0.0503 (14) | 0.0000 (11) |
C15 | 0.0794 (15) | 0.0432 (11) | 0.1116 (19) | −0.0006 (11) | 0.0550 (15) | −0.0024 (12) |
C16 | 0.0538 (10) | 0.0430 (10) | 0.0695 (12) | −0.0031 (9) | 0.0277 (9) | −0.0007 (9) |
C17 | 0.0825 (16) | 0.0829 (18) | 0.0812 (15) | −0.0360 (14) | 0.0372 (13) | −0.0116 (14) |
C18 | 0.0705 (13) | 0.0470 (11) | 0.0751 (13) | −0.0012 (10) | 0.0345 (11) | 0.0064 (10) |
C19 | 0.0470 (9) | 0.0462 (10) | 0.0603 (11) | 0.0007 (8) | 0.0165 (8) | 0.0039 (8) |
C20 | 0.0638 (11) | 0.0476 (10) | 0.0560 (11) | 0.0007 (9) | 0.0233 (9) | 0.0001 (8) |
C21 | 0.1001 (18) | 0.0679 (15) | 0.0673 (14) | 0.0002 (13) | 0.0401 (14) | −0.0036 (12) |
O1—C1 | 1.208 (3) | C10—H10C | 0.9600 |
O2—C13 | 1.432 (2) | C11—C12 | 1.518 (3) |
O2—C16 | 1.433 (2) | C11—C13 | 1.531 (3) |
O3—C19 | 1.437 (2) | C11—H11 | 0.9800 |
O3—H3O | 0.8200 | C12—H12A | 0.9600 |
C1—C2 | 1.499 (3) | C12—H12B | 0.9600 |
C1—C6 | 1.500 (3) | C12—H12C | 0.9600 |
C2—C3 | 1.521 (3) | C13—C14 | 1.523 (3) |
C2—H2A | 0.9700 | C13—H13 | 0.9800 |
C2—H2B | 0.9700 | C14—C15 | 1.523 (3) |
C3—C4 | 1.530 (3) | C14—H14A | 0.9700 |
C3—H3A | 0.9700 | C14—H14B | 0.9700 |
C3—H3B | 0.9700 | C15—C16 | 1.540 (3) |
C4—C5 | 1.525 (2) | C15—H15A | 0.9700 |
C4—H4A | 0.9700 | C15—H15B | 0.9700 |
C4—H4B | 0.9700 | C16—C19 | 1.525 (3) |
C5—C10 | 1.540 (3) | C16—H16 | 0.9800 |
C5—C6 | 1.549 (2) | C17—C18 | 1.517 (4) |
C5—C9 | 1.553 (2) | C17—H17A | 0.9600 |
C6—C7 | 1.514 (3) | C17—H17B | 0.9600 |
C6—H6 | 0.9800 | C17—H17C | 0.9600 |
C7—C8 | 1.548 (3) | C18—C19 | 1.527 (3) |
C7—H7A | 0.9700 | C18—H18A | 0.9700 |
C7—H7B | 0.9700 | C18—H18B | 0.9700 |
C8—C9 | 1.546 (3) | C19—C20 | 1.521 (3) |
C8—H8A | 0.9700 | C20—C21 | 1.521 (3) |
C8—H8B | 0.9700 | C20—H20A | 0.9700 |
C9—C11 | 1.539 (2) | C20—H20B | 0.9700 |
C9—H9 | 0.9800 | C21—H21A | 0.9600 |
C10—H10A | 0.9600 | C21—H21B | 0.9600 |
C10—H10B | 0.9600 | C21—H21C | 0.9600 |
C13—O2—C16 | 106.49 (15) | C13—C11—H11 | 107.3 |
C19—O3—H3O | 109.5 | C9—C11—H11 | 107.3 |
O1—C1—C2 | 123.2 (2) | C11—C12—H12A | 109.5 |
O1—C1—C6 | 123.6 (2) | C11—C12—H12B | 109.5 |
C2—C1—C6 | 113.21 (17) | H12A—C12—H12B | 109.5 |
C1—C2—C3 | 113.09 (18) | C11—C12—H12C | 109.5 |
C1—C2—H2A | 109.0 | H12A—C12—H12C | 109.5 |
C3—C2—H2A | 109.0 | H12B—C12—H12C | 109.5 |
C1—C2—H2B | 109.0 | O2—C13—C14 | 103.51 (17) |
C3—C2—H2B | 109.0 | O2—C13—C11 | 110.25 (15) |
H2A—C2—H2B | 107.8 | C14—C13—C11 | 117.17 (17) |
C2—C3—C4 | 113.19 (18) | O2—C13—H13 | 108.5 |
C2—C3—H3A | 108.9 | C14—C13—H13 | 108.5 |
C4—C3—H3A | 108.9 | C11—C13—H13 | 108.5 |
C2—C3—H3B | 108.9 | C13—C14—C15 | 104.13 (17) |
C4—C3—H3B | 108.9 | C13—C14—H14A | 110.9 |
H3A—C3—H3B | 107.8 | C15—C14—H14A | 110.9 |
C5—C4—C3 | 112.45 (16) | C13—C14—H14B | 110.9 |
C5—C4—H4A | 109.1 | C15—C14—H14B | 110.9 |
C3—C4—H4A | 109.1 | H14A—C14—H14B | 108.9 |
C5—C4—H4B | 109.1 | C14—C15—C16 | 104.18 (18) |
C3—C4—H4B | 109.1 | C14—C15—H15A | 110.9 |
H4A—C4—H4B | 107.8 | C16—C15—H15A | 110.9 |
C4—C5—C10 | 110.68 (17) | C14—C15—H15B | 110.9 |
C4—C5—C6 | 107.05 (14) | C16—C15—H15B | 110.9 |
C10—C5—C6 | 111.29 (15) | H15A—C15—H15B | 108.9 |
C4—C5—C9 | 116.71 (14) | O2—C16—C19 | 109.67 (16) |
C10—C5—C9 | 111.36 (15) | O2—C16—C15 | 105.70 (15) |
C6—C5—C9 | 99.07 (14) | C19—C16—C15 | 115.24 (19) |
C1—C6—C7 | 120.41 (17) | O2—C16—H16 | 108.7 |
C1—C6—C5 | 111.94 (16) | C19—C16—H16 | 108.7 |
C7—C6—C5 | 104.92 (15) | C15—C16—H16 | 108.7 |
C1—C6—H6 | 106.2 | C18—C17—H17A | 109.5 |
C7—C6—H6 | 106.2 | C18—C17—H17B | 109.5 |
C5—C6—H6 | 106.2 | H17A—C17—H17B | 109.5 |
C6—C7—C8 | 103.70 (16) | C18—C17—H17C | 109.5 |
C6—C7—H7A | 111.0 | H17A—C17—H17C | 109.5 |
C8—C7—H7A | 111.0 | H17B—C17—H17C | 109.5 |
C6—C7—H7B | 111.0 | C17—C18—C19 | 115.5 (2) |
C8—C7—H7B | 111.0 | C17—C18—H18A | 108.4 |
H7A—C7—H7B | 109.0 | C19—C18—H18A | 108.4 |
C9—C8—C7 | 106.92 (16) | C17—C18—H18B | 108.4 |
C9—C8—H8A | 110.3 | C19—C18—H18B | 108.4 |
C7—C8—H8A | 110.3 | H18A—C18—H18B | 107.5 |
C9—C8—H8B | 110.3 | O3—C19—C20 | 109.23 (18) |
C7—C8—H8B | 110.3 | O3—C19—C16 | 109.91 (16) |
H8A—C8—H8B | 108.6 | C20—C19—C16 | 110.00 (16) |
C11—C9—C8 | 113.34 (14) | O3—C19—C18 | 104.20 (17) |
C11—C9—C5 | 120.18 (15) | C20—C19—C18 | 113.14 (16) |
C8—C9—C5 | 103.14 (14) | C16—C19—C18 | 110.19 (17) |
C11—C9—H9 | 106.4 | C21—C20—C19 | 115.33 (19) |
C8—C9—H9 | 106.4 | C21—C20—H20A | 108.4 |
C5—C9—H9 | 106.4 | C19—C20—H20A | 108.4 |
C5—C10—H10A | 109.5 | C21—C20—H20B | 108.4 |
C5—C10—H10B | 109.5 | C19—C20—H20B | 108.4 |
H10A—C10—H10B | 109.5 | H20A—C20—H20B | 107.5 |
C5—C10—H10C | 109.5 | C20—C21—H21A | 109.5 |
H10A—C10—H10C | 109.5 | C20—C21—H21B | 109.5 |
H10B—C10—H10C | 109.5 | H21A—C21—H21B | 109.5 |
C12—C11—C13 | 111.35 (17) | C20—C21—H21C | 109.5 |
C12—C11—C9 | 114.32 (16) | H21A—C21—H21C | 109.5 |
C13—C11—C9 | 108.95 (15) | H21B—C21—H21C | 109.5 |
C12—C11—H11 | 107.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3O···O3i | 0.82 | 2.67 | 3.4495 (9) | 161 |
C2—H2B···O1ii | 0.97 | 2.57 | 3.273 (3) | 130 |
Symmetry codes: (i) −x+1, y+1/2, −z+2; (ii) −x+2, y−1/2, −z+1. |
Acknowledgements
The work of the MS and X-ray divisions of the research support service of the University of Vigo (CACTI) is also gratefully acknowledged. Andrea Martínez thanks the University of Vigo for a PhD fellowship.
References
Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dai, H. & Posner, G. H. (1994). Synthesis, pp. 1383–1398. CrossRef Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fernández, C., Santalla, H., Garrido, F., Gómez, G. & Fall, Y. (2016). Tetrahedron Lett. 57, 2790–2792. Google Scholar
Gándara, Z., Pérez, M., Pérez-García, X., Gómez, G. & Fall, Y. (2009). Tetrahedron Lett. 50, 4874–4877. Google Scholar
Gándara, Z., Pérez, M., Salomón, D. G., Ferronato, M. J., Fermento, M. E., Curino, A. C., Facchinetti, M. M., Gómez, G. & Fall, Y. (2012). Bioorg. Med. Chem. Lett. 22, 6276–6279. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Maehr, H., Uskokovic, M. R., Reddy, G. S. & Adorini, L. (2004). J. Steroid Biochem. Mol. Biol. 89–90, 35–38. Web of Science CrossRef CAS Google Scholar
Martínez, A., Gándara, Z., González, M., Gómez, G. & Fall, Y. (2013). Tetrahedron Lett. 54, 3514–3517. Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pietraszek, A., Malińska, M., Chodyński, M., Krupa, M., Krajewski, K., Cmoch, P., Woźniak, K. & Kutner, A. (2013). Steroids, 78, 1003–1014. Web of Science CSD CrossRef CAS Google Scholar
Posner, G. H. & Kahraman, M. (2003). Eur. J. Org. Chem. pp. 3889–3895. Web of Science CrossRef Google Scholar
Rivadulla, M. L., Sene, M., González, M. & Covelo, B. (2013). Acta Cryst. E69, o218. CSD CrossRef IUCr Journals Google Scholar
Schwarz, K., Neef, G., Kirsch, G., Müller-Fahrnow, A. & Steinmeyer, A. (1995). Tetrahedron, 51, 9543–9550. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Zhu, G.-D. & Okamura, W. H. (1995). Chem. Rev. 95, 1877–1952. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.