research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

fac-Aceto­nitrile­tricarbon­yl(di­methyl­carbamodi­thio­ato-κ2S,S′)rhenium(I): crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aResearch Centre for Crystalline Materials, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, bOffice of the Provost, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia, and cDepartment of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 9 January 2017; accepted 15 January 2017; online 20 January 2017)

The title compound, [Re(C3H6NS2)(C2H3N)(CO)3], features an octa­hedrally coordinated ReI atom within a C3NS2 donor set defined by three carbonyl ligands in a facial arrangement, an aceto­nitrile N atom and two S atoms derived from a symmetrically coordinating di­thio­carbamate ligand. In the crystal, di­thio­carbamate-methyl-H⋯O(carbon­yl) inter­actions lead to supra­molecular chains along [36-1]; both di­thio­carbamate S atoms participate in intra­molecular methyl-H⋯S inter­actions. Further but weaker aceto­nitrile-C—H⋯O(carbonyl) inter­actions assemble mol­ecules in the ab plane. The nature of the supra­molecular assembly was also probed by a Hirshfeld surface analysis. Despite their weak nature, the C—H⋯O contacts are predominant on the Hirshfeld surface and, indeed, on those of related [Re(CO)3(C3H6NS2)L] structures.

1. Chemical context

The reaction between a secondary amine and carbon di­sulfide in the presence of an alkali metal hydroxide yields a class of ligands, the di­thio­carbamates, (−)S2CNRR′. These ligands have long attracted the attention of coordination chemists owing to their high affinity for heavy-atom centres drawn from trans­ition metals, main group elements as well as lanthanides and actinides. The motivation for their study ranges across various disciplines and in the present time focuses upon their development as drugs (Hogarth, 2012[Hogarth, G. (2012). Mini Rev. Med. Chem. 12, 1202-1215.]; Bertrand & Casini, 2014[Bertrand, B. & Casini, A. (2014). Dalton Trans. 43, 4209-4219.]), as chelating agents for the removal of toxic levels of metals in bio-remediation, etc. (Gallagher & Vo, 2015[Gallagher, W. P. & Vo, A. (2015). Org. Process Res. Dev. 19, 1369-1373.]), as imaging/radio-pharmaceutical agents (Berry et al., 2012[Berry, D. J., Torres Martin de Rosales, R., Charoenphun, P. & Blower, P. J. (2012). Mini Rev. Med. Chem. 12, 1174-1183.]) and as synthetic precursors for metal sulfide nanoparticles (Lewis et al., 2015[Lewis, E. A., McNaughter, P. D., Yin, Z. J., Chen, Y. Q., Brent, J. R., Saah, S. A., Raftery, J., Awudza, J. A. M., Malik, M. A., O'Brien, P. & Haigh, S. J. (2015). Chem. Mater. 27, 2127-2136.]; Knapp & Carmalt, 2016[Knapp, C. E. & Carmalt, C. J. (2016). Chem. Soc. Rev. 45, 1036-1064.]). In terms of crystal engin­eering endeavours, di­thio­carbamates are not nearly as well studied as carboxyl­ates. This partly arises as a result of the greater chelating ability of di­thio­carbamate by virtue of the significant contribution of the (2−)S2=CN(+)RRcanonical form to the electronic structure of the anion, i.e. with formal negative charges on each of the sulfur atoms. This has the consequence of reducing the Lewis acidity of the metal atom, often precluding additional donor atoms from entering the coord­ination sphere. Main group element di­thio­carbamate compounds are more likely to feature bridging ligands, often through secondary M⋯S inter­actions which may be mitigated by steric effects associated with the R,R′ groups or, in cases of organometallic derivatives, metal-bound substituents (Tiekink, 2006[Tiekink, E. R. T. (2006). CrystEngComm, 8, 104-118.]; Tiekink & Zukerman-Schpector, 2010[Tiekink, E. R. T. & Zukerman-Schpector, J. (2010). Coord. Chem. Rev. 254, 46-76.]). Another consequence of the tight chelating mode of the di­thio­carbamate ligands is the formation of aromatic MS2C chelate rings that can function as acceptors for C—H⋯ inter­actions, i.e. C—H⋯π(chelate) inter­actions (Tiekink & Zukerman-Schpector, 2011[Tiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623-6625.]; Jotani et al., 2016[Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403-413.]). As a result of the above, a very large number of crystal structure determin­ations have been reported in the literature, with the last systematic reviews published over a decade ago (Heard, 2005[Heard, P. J. (2005). Prog. Inorg. Chem. 53, 1-69.]; Hogarth, 2005[Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.]).

Reflecting the wealth of structural information on metal di­thio­carbamates, a search of the Cambridge Crystallographic Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for rhenium di­thio­carbamate structures reveals over 70 `hits'. One structure that attracted the attention of the authors was that of twofold symmetric, binuclear [(CO)3Re(S2CNEt2)]2, whereby each di­thio­carbamate ligand is μ2-tridentate, simultaneously chelating one ReI atom while bridging a second (Flörke, 2014[Flörke, U. (2014). Private communication (refcode KOGRIJ). CCDC, Cambridge, England.]). The unusual feature of the structure is that the di­thio­carbamate ligands lie to one side of the mol­ecule and might be described as being syn. This arrangement is the same as that found in analogous, isoelectronic PtIV complexes (Heard et al., 2000[Heard, P. J., Kite, K., Nielsen, J. S. & Tocher, D. A. (2000). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), but contradicts the observations seen in the overwhelming majority of the binary di­thio­carbamates of the zinc triad elements, a focus of present research, whereby binuclear mol­ecules with equal numbers of chelating and μ2-tridentate ligands lead to binuclear mol­ecules of the general formula, {M(S2CNRR')2}2 (Cox & Tiekink, 2009[Cox, M. J. & Tiekink, E. R. T. (2009). Z. Kristallogr. 214, 184-190.]; Tiekink, 2003[Tiekink, E. R. T. (2003). CrystEngComm, 5, 101-113.]; Tan et al., 2016[Tan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113-126.]; Jotani et al., 2016[Jotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403-413.]). This disparity lead to the attempted synthesis of the di­methyl­dithio­carbamate analogue of [(CO)3Re(S2CNEt2)]2, which when recrystallized from aceto­nitrile resulted in the isolation of mononuclear (CO)3Re(S2CNMe2)(N≡CMe), (I)[link]. Herein, the mol­ecular and crystal structures of (I)[link] are described along with a detailed analysis of the self-assembly via a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link] and selected geometric parameters are collected in Table 1[link]. The ReI atom is coordinated by three facially-orientated carbonyl ligands, two di­thio­carbamate-S atoms and an aceto­nitrile-N atom. The di­thio­carbamate ligand is chelating in a symmetric mode with the difference between the long and short Re—S bond lengths being less than 0.01 Å. This mode of coordination is reflected in the equivalence of the associated C—S bond lengths and a relatively short C1—N1 bond length, Table 1[link], all pointing to a significant contribution of the (2−)S2C=N(+)Me2 canonical form to the overall electronic structure of the di­thio­carbamate ligand. From the geometric data collected in Table 1[link], there is evidence that the shortest Re—CO bond length is formed by the carbonyl trans to the aceto­nitrile-N atom as opposed to those trans to the di­thio­carbamate-S atoms. However, the experimental errors do not allow definitive conclusions to be made. This point is discussed further in Database survey below.

Table 1
Selected geometric parameters (Å, °)

Re—S1 2.4956 (6) Re—C5 1.924 (2)
Re—S2 2.5034 (6) C1—S1 1.722 (2)
Re—N2 2.153 (2) C1—S2 1.727 (2)
Re—C4 1.909 (3) C1—N1 1.320 (3)
Re—C6 1.921 (3)    
       
S1—Re—C5 169.42 (7) N2—Re—C4 175.53 (9)
S2—Re—C6 168.98 (7)    
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.

3. Supra­molecular features

Based on the standard criteria in PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), the most specific directional inter­action between mol­ecules in (I)[link] is a di­thio­carbamate-methyl-H⋯O(carbon­yl) inter­action, Table 2[link]. These lead to linear supra­molecular chains along [36[\overline{1}]], Fig. 2[link]a. Further searching for inter­molecular inter­actions reveals that the two remaining carbonyl-O atoms participate in weak C—H⋯O inter­actions just below the sum of the van der Waals radii, each with an aceto­nitrile-C—H atom, Table 2[link]. The combination of these weak inter­actions leads to supra­molecular layers in the ab plane, Fig. 2[link]b. The two other potentially basic sites, namely the di­thio­carbamate-S atoms, form intra­molecular inter­actions with di­thio­carbamate-methyl-H atoms, Table 2[link]. The layers stack along the c axis as shown in Fig. 2[link]c, i.e. without directional inter­actions between them.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2B⋯O1i 0.98 2.59 3.260 (3) 126
C8—H8C⋯O2ii 0.98 2.69 3.332 (3) 123
C8—H8B⋯O3iii 0.98 2.69 3.244 (3) 116
C2—H2C⋯S1 0.98 2.49 3.030 (2) 114
C3—H3A⋯S2 0.98 2.64 3.035 (2) 105
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+2.
[Figure 2]
Figure 2
The mol­ecular packing in (I)[link]: (a) supra­molecular chain sustained by methyl-C—H⋯O(carbon­yl) inter­actions shown as orange dashed lines, (b) view of the supra­molecular layers in the ab plane with non-participating H atoms removed and (c) a view of the unit-cell contents in projection down the a axis.

4. Hirshfeld surface analysis

The protocols for the Hirshfeld surface analysis were as described recently (Yeo et al., 2016[Yeo, C. I., Tan, S. L. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1446-1452.]). In general, the Hirshfeld surface of (I)[link] features some close inter­action contacts as evidenced from the intense-red spots, Fig. 3[link]a, being indicative of dnorm contact distances shorter than the sum of van der Waals radii (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). The combination of the di and de, in inter­vals of 0.01 Å, resulted in the sparrow-like two-dimensional fingerprint plot. This has been decomposed into several close contacts as shown in Fig. 3[link]bf. Specifically, the intense-red spots resulting from O⋯H/H⋯O as well as C⋯O/O⋯C contacts give bat- and scarab-shaped fingerprint profiles with corresponding de + di contact distances tipped at ca 2.5 and 3.0 Å, respectively; Fig. 3[link]b and f. These contact distances are approximately 0.25 Å shorter than the sum of the respective van der Waals radii (Batsanov, 2001[Batsanov, S. S. (2001). Inorg. Mater., 37, 1031-1046.]) and constitute about 33.8 and 5.7%, respectively, of the overall Hirshfeld surface contacts for the mol­ecule. Other major contacts include C⋯H/H⋯C (14.8%), H⋯H (14.7%) and S⋯H/H⋯S (12.6%) which result in the pincer, bust sculpture and pincer forms of the respective decomposed fingerprint plots, despite the fact their contact distance are very close or equivalent to the sum of van der Waals radii with de + di values of 2.8, 2.4 and 2.9 Å, respectively; see Fig. 3[link]ce.

[Figure 3]
Figure 3
Hirshfeld dnorm surface and two-dimensional fingerprint plots for (I)[link]: (a) full plot, and those decomposed into (b) O⋯H/H⋯O, (c) C⋯H/H⋯C, (d) H⋯H, (e) S⋯H/H⋯S and (f) C⋯O/O⋯C contacts.

5. Database survey

A series of eight closely related structural analogues with the formula [Re(CO)3(S2CNMe2)L], where L = ammonia (NH3) (1), pyridine (py) (2), imidazole (Im) (3), pyrazole (pz) (4), tri­phenyl­phosphine (PPh3) (5), 1,3,5-tri­aza-7-phosphaadamantane (PTA) (6), t-butyl isocyanide (tBuNC) (7) and cyclo­hexyl isocyanide (CyNC) (8) have been reported previously (Herrick et al., 2009[Herrick, R. S., Ziegler, C. J., Sripothongnak, S., Barone, N., Costa, R., Cupelo, W. & Gambella, A. (2009). J. Organomet. Chem. 694, 3929-3934.]). The bond lengths about the ReI atom in 1–8 and (I)[link] are collated in Table 3[link]; the numbering schemes correspond to that shown in Fig. 1[link]. There are a few general observations that can be noted. Firstly, neither d(Re—S1) nor d(Re—S2) show major deviations in their respective bond lengths as evidenced from the mean difference of 0.005 Å for each. Despite the small differences, a trend is observed in that d(Re—S2) is generally longer than d(Re—S1). A consistent pattern is observed in the related d(Re—C5), i.e. trans to S1, and d(Re—C6), i.e. trans to S2, bond lengths for which the latter registers an average elongation of 0.005 Å. Secondly, the d(Re—L) bond lengths are found to consistently increase from C-donor ligands to N-donors, with a ca 0.10 Å or 5% increment, followed by P-donors with about a 0.26 Å or 12% increase, cf. the N-donor ligands. However, the observed trend deviates from expectation in that the d(ML) bond length is anti­cipated to increase in the order N < C < P-donor type ligand by approximately 2.6 and 27.4%, respectively, based on their calculated covalent bond radii. Further, it is observed that d(Re—C4), i.e. with C4 trans to L, is marginally longer than d(Re—C5) and d(Re—C6) by ca 0.01–0.02 Å. Finally, d(C4≡O1) is generally shorter, by about 0.01 Å, cf. d(C5≡O2) and d(C6≡O3), i.e. with C5 and C6 trans to the S1 and S2 atoms, respectively. These observations show the presence of strong π-backbonding prevailing in the C-donor type ligands that result in shorter Re—L and longer Re—C4 bonds as well as shorter C4≡O1 bond lengths when compared to the other structural analogues. Further, these trends are clearly reflected in the blue shift of the νCO vibrational band for L = C-type donor ligands, with an average Δν = 180 cm−1, compared with those for N- and P-type donors (Herrick et al., 2009[Herrick, R. S., Ziegler, C. J., Sripothongnak, S., Barone, N., Costa, R., Cupelo, W. & Gambella, A. (2009). J. Organomet. Chem. 694, 3929-3934.]). In the present study, ν(CO) for (I)[link] was observed at 1883 cm−1.

Table 3
Selected bonding parameters (Å) for (I)[link] and literature analogues [Re(CO)3(S2CNMe2)L].

L = ammonia (NH3) (1), pyridine (py) (2), imidazole (Im) (3), pyrazole (pz) (4), tri­phenyl­phosphine (PPh3) (5), 1,3,5-tri­aza-7-phosphaadamantane (PTA) (6), t-butyl isocyanide (tBuNC) (7) and cyclo­hexyl isocyanide (CyNC) (8) (Herrick et al., 2009[Herrick, R. S., Ziegler, C. J., Sripothongnak, S., Barone, N., Costa, R., Cupelo, W. & Gambella, A. (2009). J. Organomet. Chem. 694, 3929-3934.]).

L Re—S1 Re—S2 Re—C C≡O Re—C C≡O Re—C C≡O Re—L
      (trans to S1)   (trans to S2)   (trans to L)    
(1) 2.497 (2) 2.506 (2) 1.915 (7) 1.164 (8) 1.912 (6) 1.161 (7) 1.916 (7) 1.153 (9) 2.228 (5)
(2) 2.505 (2) 2.498 (1) 1.925 (6) 1.147 (7) 1.929 (5) 1.137 (7) 1.926 (5) 1.141 (7) 2.219 (4)
(3) 2.501 (2) 2.518 (3) 1.937 (7) 1.135 (8) 1.914 (7) 1.157 (9) 1.918 (7) 1.166 (8) 2.189 (6)
(4) 2.489 (4) 2.501 (4) 1.906 (14) 1.147 (17) 1.900 (14) 1.153 (17) 1.912 (13) 1.133 (16) 2.173 (10)
(5) 2.513 (3) 2.506 (3) 1.910 (10) 1.169 (13) 1.895 (10) 1.179 (12) 1.931 (10) 1.152 (12) 2.474 (3)
(6) 2.527 (5) 2.529 (4) 1.925 (15) 1.147 (19) 1.898 (16) 1.160 (20) 1.983 (18) 1.110 (20) 2.437 (5)
(7) 2.512 (3) 2.521 (2) 1.906 (7) 1.176 (9) 1.941 (8) 1.137 (9) 1.955 (8) 1.152 (9) 2.102 (7)
(8) 2.502 (2) 2.512 (2) 1.914 (9) 1.142 (12) 1.908 (10) 1.168 (12) 1.953 (9) 1.125 (11) 2.082 (9)
(I) 2.496 (1) 2.503 (1) 1.924 (2) 1.150 (3) 1.921 (3) 1.145 (3) 1.909 (3) 1.155 (3) 2.153 (2)

The mol­ecular packing in each of 1–8 was also studied through Hirshfeld surface analysis by calculating the relative composition of each inter­molecular close contact present in the structure using Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.]); Fig. 4[link]. Generally, the inter­molecular close contacts are dominated by O⋯H/H⋯O, H⋯H, followed by either C⋯H/H⋯C or S⋯H/H⋯S contacts, with the exceptional cases being for 5 and 6, with hydrogen-rich P-donor ligands, for which the dominance is in the order H⋯H > O⋯H/H⋯O > C⋯H/H⋯C > S⋯H/S⋯H. These results highlight the relative importance of the C—H⋯O contacts in these structures despite their relatively weak nature.

[Figure 4]
Figure 4
Percentage contributions of the different close contacts to the Hirshfeld surfaces of (I)[link] and 1–8.

6. Synthesis and crystallization

All chemicals and solvents were used as purchased without purification, and all reactions were carried out under ambient conditions. The melting point was determined using an Electrothermal digital melting point apparatus and was uncorrected. The IR spectra were obtained on a Perkin Elmer Spectrum 400 FT Mid-IR/Far-IR spectrophotometer from 4000 to 400 cm−1 (abbreviations: vs, very strong; s, strong). 1H NMR spectra were recorded at room temperature in DMSO-d6 solution on a Bruker AVANCE-400 MHz instrument.

Bromo­penta­carbonyl­rhenium(I) (0.25 mmol, 0.102 g) in acetone (10 ml) was added to sodium di­methyl­dithio­carbamate hydrate (0.25 mmol, 0.036 g) in acetone (10 ml). The resulting mixture was stirred and refluxed for 2 h. The filtrate was evaporated until a precipitate was obtained. The precipitate was recrystallized from its aceto­nitrile solution. Colourless blocks were obtained from the slow evaporation of the filtrate. Yield: 0.064 g, 60%; M.p. 478–479 K. IR (cm−1): 2009 (s), 1883 (vs). 1H NMR (in DMSO-d6): δ 3.21 (s, 6H, N–CH3), 2.07 (s, 3H, C–CH3).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.98 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set to 1.2Ueq(C). The maximum and minimum residual electron density peaks of 0.80 and 1.21 e Å−3 were located 0.87 and 0.91 Å, respectively, from the Re atom.

Table 4
Experimental details

Crystal data
Chemical formula [Re(C3H6NS2)(C2H3N)(CO)3]
Mr 431.49
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 5.7442 (1), 7.5022 (1), 14.6644 (2)
α, β, γ (°) 91.496 (1), 95.517 (1), 102.371 (1)
V3) 613.71 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 10.23
Crystal size (mm) 0.15 × 0.11 × 0.11
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an AtlasS2 detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.371, 0.503
No. of measured, independent and observed [I > 2σ(I)] reflections 32146, 3244, 3153
Rint 0.033
(sin θ/λ)max−1) 0.698
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.035, 1.09
No. of reflections 3244
No. of parameters 148
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.80, −1.21
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

fac-Acetonitriletricarbonyl(dimethylcarbamodithioato-κ2S,S')rhenium(I) top
Crystal data top
[Re(C3H6NS2)(C2H3N)(CO)3]Z = 2
Mr = 431.49F(000) = 404
Triclinic, P1Dx = 2.335 Mg m3
a = 5.7442 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.5022 (1) ÅCell parameters from 22533 reflections
c = 14.6644 (2) Åθ = 3.0–29.4°
α = 91.496 (1)°µ = 10.23 mm1
β = 95.517 (1)°T = 100 K
γ = 102.371 (1)°Block, colourless
V = 613.71 (2) Å30.15 × 0.11 × 0.11 mm
Data collection top
Agilent SuperNova Dual Source
diffractometer with an AtlasS2 detector
3244 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3153 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
ω scansθmax = 29.7°, θmin = 2.8°
Absorption correction: gaussian
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
h = 77
Tmin = 0.371, Tmax = 0.503k = 1010
32146 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.035 w = 1/[σ2(Fo2) + (0.0185P)2 + 0.3859P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.002
3244 reflectionsΔρmax = 0.80 e Å3
148 parametersΔρmin = 1.21 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re0.53372 (2)0.29366 (2)0.78801 (2)0.01195 (4)
S10.40857 (10)0.56377 (8)0.71937 (4)0.01596 (12)
S20.74400 (10)0.37175 (8)0.64780 (4)0.01389 (11)
O10.1152 (3)0.0231 (3)0.68068 (14)0.0259 (4)
O20.7673 (3)0.0198 (3)0.85255 (14)0.0258 (4)
O30.2514 (3)0.2703 (3)0.95601 (13)0.0267 (4)
N10.6870 (4)0.6973 (3)0.58960 (14)0.0156 (4)
N20.8304 (4)0.4965 (3)0.85327 (14)0.0151 (4)
C10.6222 (4)0.5632 (3)0.64470 (16)0.0132 (4)
C20.5732 (5)0.8540 (3)0.58562 (18)0.0203 (5)
H2A0.46910.84570.52800.031*
H2B0.69680.96720.58880.031*
H2C0.47730.85420.63740.031*
C30.8671 (4)0.6924 (3)0.52607 (17)0.0190 (5)
H3A0.98700.62890.55340.028*
H3B0.94560.81760.51370.028*
H3C0.78950.62770.46850.028*
C40.2721 (4)0.1247 (3)0.72181 (17)0.0174 (5)
C50.6800 (4)0.0972 (3)0.82800 (17)0.0169 (5)
C60.3585 (4)0.2794 (3)0.89373 (17)0.0176 (5)
C70.9880 (4)0.6097 (3)0.88229 (16)0.0155 (5)
C81.1894 (5)0.7539 (4)0.91890 (18)0.0211 (5)
H8A1.33950.71940.90750.032*
H8B1.18490.77200.98510.032*
H8C1.17950.86760.88880.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re0.00998 (5)0.01241 (5)0.01239 (5)0.00051 (4)0.00076 (3)0.00140 (3)
S10.0137 (3)0.0178 (3)0.0177 (3)0.0058 (2)0.0031 (2)0.0009 (2)
S20.0137 (3)0.0131 (3)0.0157 (3)0.0040 (2)0.0036 (2)0.0003 (2)
O10.0174 (9)0.0261 (10)0.0292 (10)0.0028 (8)0.0038 (8)0.0079 (8)
O20.0241 (10)0.0208 (9)0.0329 (11)0.0067 (8)0.0005 (8)0.0043 (8)
O30.0248 (10)0.0359 (11)0.0200 (9)0.0058 (9)0.0078 (8)0.0001 (8)
N10.0167 (10)0.0138 (9)0.0162 (10)0.0040 (8)0.0001 (8)0.0002 (8)
N20.0146 (10)0.0153 (10)0.0152 (10)0.0027 (8)0.0023 (8)0.0009 (8)
C10.0119 (10)0.0130 (10)0.0133 (11)0.0020 (9)0.0022 (8)0.0030 (8)
C20.0227 (12)0.0163 (11)0.0232 (13)0.0073 (10)0.0004 (10)0.0038 (10)
C30.0194 (12)0.0175 (12)0.0190 (12)0.0008 (10)0.0037 (10)0.0020 (10)
C40.0142 (11)0.0192 (12)0.0186 (12)0.0025 (10)0.0037 (9)0.0006 (10)
C50.0143 (11)0.0154 (11)0.0176 (12)0.0034 (9)0.0010 (9)0.0027 (9)
C60.0164 (11)0.0170 (11)0.0189 (12)0.0043 (10)0.0008 (9)0.0014 (9)
C70.0154 (11)0.0179 (11)0.0139 (11)0.0050 (10)0.0018 (9)0.0002 (9)
C80.0171 (12)0.0202 (12)0.0228 (13)0.0012 (10)0.0004 (10)0.0049 (10)
Geometric parameters (Å, º) top
Re—S12.4956 (6)N1—C31.463 (3)
Re—S22.5034 (6)N2—C71.140 (3)
Re—N22.153 (2)C2—H2A0.9800
Re—C41.909 (3)C2—H2B0.9800
Re—C61.921 (3)C2—H2C0.9800
Re—C51.924 (2)C3—H3A0.9800
C1—S11.722 (2)C3—H3B0.9800
C1—S21.727 (2)C3—H3C0.9800
O1—C41.155 (3)C7—C81.453 (3)
O2—C51.150 (3)C8—H8A0.9800
O3—C61.145 (3)C8—H8B0.9800
C1—N11.320 (3)C8—H8C0.9800
N1—C21.462 (3)
S1—Re—C5169.42 (7)S1—C1—S2114.23 (13)
S2—Re—C6168.98 (7)N1—C2—H2A109.5
N2—Re—C4175.53 (9)N1—C2—H2B109.5
C4—Re—C689.79 (10)H2A—C2—H2B109.5
C4—Re—C591.01 (10)N1—C2—H2C109.5
C6—Re—C591.30 (10)H2A—C2—H2C109.5
C6—Re—N293.43 (9)H2B—C2—H2C109.5
C5—Re—N292.03 (9)N1—C3—H3A109.5
C4—Re—S192.99 (8)N1—C3—H3B109.5
C6—Re—S198.50 (7)H3A—C3—H3B109.5
N2—Re—S183.47 (6)N1—C3—H3C109.5
C4—Re—S293.39 (7)H3A—C3—H3C109.5
C5—Re—S299.18 (7)H3B—C3—H3C109.5
N2—Re—S282.89 (5)O1—C4—Re179.1 (2)
S1—Re—S270.812 (19)O2—C5—Re179.5 (2)
C1—S1—Re87.05 (8)O3—C6—Re179.1 (2)
C1—S2—Re86.69 (8)N2—C7—C8179.7 (3)
C1—N1—C2121.6 (2)C7—C8—H8A109.5
C1—N1—C3121.8 (2)C7—C8—H8B109.5
C2—N1—C3116.5 (2)H8A—C8—H8B109.5
C7—N2—Re175.3 (2)C7—C8—H8C109.5
N1—C1—S1122.93 (18)H8A—C8—H8C109.5
N1—C1—S2122.84 (18)H8B—C8—H8C109.5
C2—N1—C1—S12.5 (3)Re—S1—C1—N1170.0 (2)
C3—N1—C1—S1179.31 (18)Re—S1—C1—S210.24 (11)
C2—N1—C1—S2177.28 (18)Re—S2—C1—N1170.0 (2)
C3—N1—C1—S20.5 (3)Re—S2—C1—S110.21 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.982.593.260 (3)126
C8—H8C···O2ii0.982.693.332 (3)123
C8—H8B···O3iii0.982.693.244 (3)116
C2—H2C···S10.982.493.030 (2)114
C3—H3A···S20.982.643.035 (2)105
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+2.
Selected bonding parameters (Å) for (I) and literature analogues [Re(CO)3(S2CNMe2)L]. top
L = ammonia (NH3) (1), pyridine (py) (2), imidazole (Im) (3), pyrazole (pz) (4), triphenylphosphine (PPh3) (5), 1,3,5-triaza-7-phosphaadamantane (PTA) (6), t-butyl isocyanide (tBuNC) (7) and cyclohexyl isocyanide (CyNC) (8) (Herrick et al., 2009).
LRe—S1Re—S2Re—CCORe—CCORe—CCORe—L
(trans to S1)(trans to S2)(trans to L)
(1)2.497 (2)2.506 (2)1.915 (7)1.164 (8)1.912 (6)1.161 (7)1.916 (7)1.153 (9)2.228 (5)
(2)2.505 (2)2.498 (1)1.925 (6)1.147 (7)1.929 (5)1.137 (7)1.926 (5)1.141 (7)2.219 (4)
(3)2.501 (2)2.518 (3)1.937 (7)1.135 (8)1.914 (7)1.157 (9)1.918 (7)1.166 (8)2.189 (6)
(4)2.489 (4)2.501 (4)1.906 (14)1.147 (17)1.900 (14)1.153 (17)1.912 (13)1.133 (16)2.173 (10)
(5)2.513 (3)2.506 (3)1.910 (10)1.169 (13)1.895 (10)1.179 (12)1.931 (10)1.152 (12)2.474 (3)
(6)2.527 (5)2.529 (4)1.925 (15)1.147 (19)1.898 (16)1.160 (20)1.983 (18)1.110 (20)2.437 (5)
(7)2.512 (3)2.521 (2)1.906 (7)1.176 (9)1.941 (8)1.137 (9)1.955 (8)1.152 (9)2.102 (7)
(8)2.502 (2)2.512 (2)1.914 (9)1.142 (12)1.908 (10)1.168 (12)1.953 (9)1.125 (11)2.082 (9)
(I)2.496 (1)2.503 (1)1.924 (2)1.150 (3)1.921 (3)1.145 (3)1.909 (3)1.155 (3)2.153 (2)
 

Footnotes

Additional correspondence author, e-mail: pheard@sunway.edu.my.

Acknowledgements

We thank Sunway University for support of biological and crystal engineering studies of metal di­thio­carbamates.

References

First citationBatsanov, S. S. (2001). Inorg. Mater., 37, 1031–1046.  Google Scholar
First citationBerry, D. J., Torres Martin de Rosales, R., Charoenphun, P. & Blower, P. J. (2012). Mini Rev. Med. Chem. 12, 1174–1183.  CAS Google Scholar
First citationBertrand, B. & Casini, A. (2014). Dalton Trans. 43, 4209–4219.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCox, M. J. & Tiekink, E. R. T. (2009). Z. Kristallogr. 214, 184–190.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlörke, U. (2014). Private communication (refcode KOGRIJ). CCDC, Cambridge, England.  Google Scholar
First citationGallagher, W. P. & Vo, A. (2015). Org. Process Res. Dev. 19, 1369–1373.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHeard, P. J. (2005). Prog. Inorg. Chem. 53, 1–69.  Web of Science CrossRef CAS Google Scholar
First citationHeard, P. J., Kite, K., Nielsen, J. S. & Tocher, D. A. (2000). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  Web of Science CSD CrossRef Google Scholar
First citationHerrick, R. S., Ziegler, C. J., Sripothongnak, S., Barone, N., Costa, R., Cupelo, W. & Gambella, A. (2009). J. Organomet. Chem. 694, 3929–3934.  CSD CrossRef CAS Google Scholar
First citationHogarth, G. (2005). Prog. Inorg. Chem. 53, 71–561.  Web of Science CrossRef CAS Google Scholar
First citationHogarth, G. (2012). Mini Rev. Med. Chem. 12, 1202–1215.  CrossRef CAS Google Scholar
First citationJotani, M. M., Tan, Y. S. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 403–413.  CAS Google Scholar
First citationKnapp, C. E. & Carmalt, C. J. (2016). Chem. Soc. Rev. 45, 1036–1064.  CrossRef CAS Google Scholar
First citationLewis, E. A., McNaughter, P. D., Yin, Z. J., Chen, Y. Q., Brent, J. R., Saah, S. A., Raftery, J., Awudza, J. A. M., Malik, M. A., O'Brien, P. & Haigh, S. J. (2015). Chem. Mater. 27, 2127–2136.  CSD CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, Y. S., Halim, S. N. A. & Tiekink, E. R. T. (2016). Z. Kristallogr. 231, 113–126.  CAS Google Scholar
First citationTiekink, E. R. T. (2003). CrystEngComm, 5, 101–113.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. (2006). CrystEngComm, 8, 104–118.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2010). Coord. Chem. Rev. 254, 46–76.  Web of Science CrossRef CAS Google Scholar
First citationTiekink, E. R. T. & Zukerman-Schpector, J. (2011). Chem. Commun. 47, 6623–6625.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. The University of Western Australia.  Google Scholar
First citationYeo, C. I., Tan, S. L. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1446–1452.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds