research communications
Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris(hydroxymethyl)propane
aDepartamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba-PR, Brazil, and bSchool of Chemistry, University of East Anglia, University Plain, Norwich NR4 7TJ, UK
*Correspondence e-mail: jaisa@quimica.ufpr.br, d.l.hughes@uea.ac.uk
Two new mononuclear cationic complexes in which the TbIII ion is bis-chelated by the tripodal alcohol 1,1,1-tris(hydroxymethyl)propane (H3LEt, C6H14O3) were prepared from Tb(NO3)3·5H2O and had their crystal and molecular structures solved by single-crystal X-ray after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris(hydroxymethyl)propane]terbium(III) nitrate dimethoxyethane hemisolvate, [Tb(NO3)2(H3LEt)2]NO3·0.5C4H10O2, 1, in which the lanthanide ion is 10-coordinate and adopts an s-bicapped square-antiprismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-molecule of dimethoxyethane (completed by a crystallographic twofold rotation axis) is also present. In product aquanitratobis[1,1,1-tris(hydroxymethyl)propane]terbium(III) dinitrate, [Tb(NO3)(H3LEt)2(H2O)](NO3)2, 2, one bidentate nitrate ion and one water molecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic No free water molecule was found in either of the crystal structures and, only in the case of 1, dimethoxyethane acts as a crystallizing solvent. In both molecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2, the methyl group of one of the H3LEt ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and intermolecular, are found in the crystal structures due to the number of different donor and acceptor groups present.
Keywords: crystal structure; lanthanide; terbium(III); nitrate; mononuclear; tripodal alcohol.
1. Chemical context
Our interest in developing synthetic routes for the synthesis of mono- or polynuclear complexes containing lanthanide(III) ions is based on the possibility that these compounds behave as single-ion (SIM) or single-molecule (SMM) magnets (Benelli & Gatteschi, 2015; Gatteschi et al., 2006; Frost et al., 2016; Meng et al., 2016). In such chemical species, it is usually possible to exploit the strong the relatively high-spin angular momentum and the large magnetic anisotropy presented by lanthanides to maximize the energy barrier for the reversal of the magnetization (Luzon & Sessoli, 2012; Vieru et al., 2016; Sessoli & Powell, 2009) and therefore increase the technological applicability of these materials.
With this objective in mind, our first steps were the synthesis and characterization of complexes containing LnIII ions that could be used as building blocks for polynuclear 3d–4f block metal aggregates. The first report of a heterometallic complex of this type that showed SMM behaviour described the tetranuclear molecule [{CuIILTbIII(Hfac)2}2] [H3L = 1-(2-hydroxybenzamido)-2-(2-hydroxy-3-methoxy-benzylideneamino)ethane and Hfac = hexafluoroacetylacetone], obtained by self-assembly (Osa et al., 2004). Magnetic studies of the product revealed ferromagnetic exchange and slow relaxation of the magnetization at low temperatures, with a barrier Δ/kB of 21 K (14.7 cm−1).
After this report, many other heterometallic complexes containing 3d and 4f ions with different structures and nuclearities were characterized as single-molecule magnets (Liu et al., 2015). In 2014, a trinuclear complex of dysprosium(III) and iron(II) presented the largest barrier reported to date for this type of system. The molecule, formulated as [FeII2DyIIIL2(H2O)]ClO4·2H2O, L = 2,2′,2′′-{[nitrilotris(ethane-2,1-diyl)]tris(azanediyl)methylene}tris(4-chlorophenol), and also synthesized in a self-assembly reaction, presents two iron(II) ions in different coordination environments (octahedral and distorted trigonal prismatic) bound to a dysprosium(III) ion in quasi-D5h symmetry, which is pointed out by the authors as fundamental for the observed SMM behaviour and for the impressive barrier of 459 K (319 cm−1) (Liu et al., 2014). This value, although lower than the record figures reported for lanthanide-containing SIM compounds (Liu et al., 2016), still reveals the potential of mixed 3d–4f metal complexes to behave as quantum magnets.
Despite these good results, most of the experimental procedures employed for the preparation of these polynuclear compounds involve self-assembly reactions, which often compete with the rational design of the desired molecules. Many efforts have been directed recently to the development of synthetic routes that allow for greater predictability of the formed products, both structural and with respect to their magnetic properties, employing simple and elegant experimental procedures that include modular synthesis approaches (Kahn, 1997; Stumpf et al., 1993).
In this context, the present work involved reactions between the tripodal alcohol H3LEt [1,1,1-tris(hydroxymethyl)propane] and Tb(NO3)3·5H2O that generated the new, cationic complexes [Tb(H3LEt)2(NO3)2](NO3)·0.5glyme (product 1) and [Tb(H3LEt)2(NO3)(H2O)](NO3)2 (product 2). In both cases, the coordination environment of the lanthanide ion is similar to that observed in the central unit (core) of star-shaped heterometallic SMMs of general formula [M3M′(LEt)2(dpm)3] (M and M′ = transition metal(III) ions; LEt = EtC(CH2O)33− tripodal alkoxide and Hdpm = dipivaloylmethane) (Accorsi et al., 2006; Totaro et al., 2013; Westrup et al., 2014; Gregoli et al., 2009). Complexes 1 and 2 were characterized by elemental and X-ray together with vibrational (infrared) spectroscopy. These products are potential building blocks to be subsequently combined, in stoichiometric proportions, with other 3d and 4f starting materials to give heterometallic products with potentially interesting magnetic properties.
2. Structural commentary
The crystals of product 1 contain the mononuclear complex [Tb(H3LEt)2(NO3)2](NO3)·0.5glyme (Fig. 1), in which the terbium(III) ion is 10-coordinate, being connected to six hydroxyl groups of the tripodal alcohol molecules and to two bidentate nitrate ions. There is also one nitrate ion (acting as a counter-ion); a solvating dimethoxyethane (glyme) molecule is shared between two units of the cationic complex. The complete gylme molecule is completed by a crystallographic twofold rotation axis.
The geometric arrangement of the oxygen donor atoms about the metal atom in 1 is closer to a distorted s-bicapped square antiprism, Fig. 2, than to an s-bicapped dodecahedron (Rohrbaugh & Jacobson, 1974). The choice of the bicapped square-antiprismatic coordination sphere is mainly based on the angles between the coordinating oxygen atoms presented in Table 1, which are closer to the expected 90° values of the square planes in the former (Fig. 2) than to the alternating ca 77 and 100° angles in the latter (Rohrbaugh & Jacobson, 1974).
|
The mean square planes represented in Fig. 2 form a dihedral angle of 5.58° in the complex cation of 1. The capping atoms, O1 and O5, both belong to the bidentate NO3− ligands and form the two longest Tb—O bonds in the structure of 1, 2.5697 (13) and 2.5874 (14) Å, respectively. Because of the typically small bite angles of the chelating nitrate ions, 49.50 (4)° for O2—Tb1—O1 and 50.12 (4)° for O4—Tb1—O5, the Tb—O1 and Tb—O5 bonds are significantly bent towards O2 and O4, respectively, creating additional structural distortion.
The average Tb—O bond involving the bidentate nitrate ligands in 1 [2.549 Å, and Table 2] is shorter than that described by Delangle and co-workers for the lanthanum(III) cation [La(H3L1)2(NO3)2]+, H3L1 = cis,cis-1,3,5-trihydroxycyclohexane; average = 2.681 Å; Delangle et al., 2001]. This agrees with the smaller effective ionic radius of the TbIII ion as compared to that of LaIII (for example 1.095 versus 1.216 Å for nine-coordination respectively; Shannon, 1976). The effective ionic radius for 10-coordinate terbium(III) is not available in the literature. The mean Tb—O bond to the tripodal H3LEt ligands is 2.404 Å, again significantly shorter than in the lanthanum(III)–cyclic triol analogue mentioned above (average = 2.542 Å). The lack of other reported lanthanide complexes with a bis(tripodal alcohol)-bis(bidentate nitrate) coordination environment similar to that found in 1 restricts further comparisons.
|
The slow mixing of a hexane layer into the same reaction mixture that gave product 1 afforded another set of colourless crystals, product 2, in high yield (see Synthesis and crystallization). As for 1, crystals of 2 were practically insoluble at room temperature in hexane, toluene, thf, glyme and acetonitrile, but soluble in the last three solvents after heating at ca 323 K.
Single-crystal X-ray 2 revealed again a mononuclear complex, this time of formula [Tb(H3LEt)2(NO3)(H2O)](NO3)2 (Fig. 3), in which the of the metal atom is nine. In this case, the terbium(III) atom is coordinated by six hydroxyl groups of the tripodal a bidentate nitrate ion and one water molecule probably coming from the Tb(NO3)3·5H2O starting material. Two distinct non-coordinating nitrate anions complete the charge balance in the product.
ofThe geometry adopted by the metal atom in 2 is close to a tri-capped trigonal prism, as reported for complexes [Ln(H3L1)2(NO3)(H2O)](NO3)2 (Ln = HoIII, EuIII and YbIII; H3L1 = cis,cis-1,3,5-trihydroxycyclohexane; Husson et al., 1999; Delangle et al., 2001). The two triangular faces, defined by O10–O12–O14 and O1–O22–O24, are nearly parallel, with a dihedral angle of 5.14° between the normals to the mean planes. The three rectangular faces, in turn, formed by O1–O12–O14–O22, O1–O10–O12–O24 and O10–O14–O22–O24, are capped by O13, O2 and O23, respectively. In these rectangular faces, the longer O⋯O distance is on average 3.345 Å, while the shorter is 2.961 Å (mean value). The alternative geometry of a monocapped square antiprism, as described for [Y(H3LMe)2(NO3)(H2O)](NO3)2 (Chen et al., 1997), appears less suitable to characterize 2 because of a much less regular placement of the coordinating oxygen atoms in the two square planes, O10–O12–O13–O23 and O1–O2–O22–O24, that are typical of this polyhedral arrangement.
The coordination of the TbIII atom by the two tripodal ligands in both 1 and 2 is very similar. In the [M3M′(LEt)2(dpm)3] complexes (M and M′ = d-block metals), as above (Accorsi et al., 2006; Totaro et al., 2013; Westrup et al., 2014; Gregoli et al., 2009), the central metal is six-coordinate and the two tripodal ligands are inverted about that atom in an approximately octahedral arrangement; here, the CB⋯M ⋯CB′ angle is close to 180° (where CB and CB′ are the bridgehead carbon atoms in the tripodal ligand). In our complexes 1 and 2, with 10- and 9-coordinate atoms, the tripodal ligands are tilted apart, with C11—Tb1—C21 angles of 129.7 and 135.5°, respectively; this arrangement allows more space for the extra ligands in the coordination sphere. In both 1 and 2, all the extra ligands, nitrate ions and water molecules, lie on the plane that bisects the tripodal ligands; the number of extra coordinating atoms determines the distribution in the bisecting plane and overall geometrical patterns, as described above.
According to Table 2, the metal–oxygen distances involving the H3LEt ligands in 1 and 2 vary from 2.3583 (13) to 2.4749 (14) (complex 1) and from 2.3545 (9) to 2.4344 (9) Å (complex 2), these ranges being slightly larger than those reported for the Ln3+ complexes of the trihydroxycyclohexane ligands (Delangle et al., 2001). This probably arises from the different flexibilities of H3LEt and the cyclic used in the syntheses, which allow for distortions of the lanthanide coordination environments. Also, the more crowded environment of the 10-coordinated metal ion in 1 as compared to 2 probably causes the larger observed variation.
The Tb—O bond lengths involving the nitrate ions in 2 are intermediate when compared to the analogous complexes of EuIII, HoIII and YbIII (Delangle et al., 2001; Husson et al., 1999) (Table 3). This is in agreement with the gradual decrease of the effective ionic radii of these ions (1.120, 1.095, 1.072 and 1.042 Å for EuIII, TbIII, HoIII and YbIII, respectively, in 9-coordinate environments; Shannon, 1976). The same pattern is observed for the average metal–oxygen bond of the water molecule (Table 3).
It has been demonstrated (Delangle et al., 2001) that the formation of Ln(H3L)2 complexes (Ln = LaIII, PrIII, NdIII, EuIII and YbIII; L = cis,cis-1,3,5- or cis,cis-1,2,3-trihydroxycyclohexane) in solution is strongly dependent on the metal:ligand ratio and on the chemical nature of the metal ion, its ionic radius, the polarity of the solvent and the nature of the counter-ion, either nitrate or triflate.
In the present work, the reaction between hydrated terbium(III) nitrate and H3LEt led to the isolation of two distinct products, 1 and 2, from the same reaction mixture, with modification only of the crystallization conditions. Product 2, [Tb(H3LEt)2(NO3)(H2O)](NO3)2, was obtained in higher yield and after a shorter time interval (24 h) than the more symmetrical 1, [Tb(H3LEt)2(NO3)2](NO3)·0.5glyme. The preparation of 2 is also easier to reproduce than that of 1; the former appears to be favoured by addition of a less (hexane) to the reaction mixture. The isolation of 1, on the other hand, seems to be subjected to a very subtle control of the crystallization conditions, and this is probably the reason why there are fewer reports of similar, anhydrous Ln(H3L)2 products in the literature. The presence of solvating glyme in the crystals of 1 suggests that the use of other solvents with different stereo requirements could be a strategy to help the crystallization of this water-free complex.
3. Supramolecular features
The three hydroxyl groups in both complexes are all donor groups to hydrogen bonds. The acceptor atoms are oxygen atoms of nitrate ions and, in complex 1, an oxygen atom of the glyme molecule (Fig. 4). In complex 2, the water ligand forms two hydrogen bonds to two non-coordinating nitrate ions (Fig. 5). Thus, in both compounds, all the ions and the glyme molecule are linked in an extensive three-dimensional hydrogen-bonded network.
In both complexes, there are also some intermolecular C—H⋯O interactions, which may be described as `weak hydrogen bonds'. These are included in Tables 4 and 5 with the stronger O—H⋯O bonds.
|
|
4. Database survey
Delangle and co-workers (Delangle et al., 2001; Husson et al., 1999) reported the preparation of a variety of mononuclear complexes of various lanthanide(III) ions, specifically LaIII, PrIII, NdIII, HoIII, EuIII and YbIII, with the trialcohols cis,cis-1,3,5-trihydroxycyclohexane (H3L1) and cis,cis-1,2,3-trihydroxycyclohexane(H3L2) as models for the coordination of In those compounds, as in 1 and 2, the metal atoms are coordinated to two trialcohol molecules and bidentate/monodentate O-donor anions (nitrate or triflate), or to these anions and water molecules.
Monosaccharide-derived polyols have also been used as chelating ligands for lanthanide(III) ions. LnCl3 and Ln(NO3)3 (Ln = LaIII, TbIII and SmIII) were shown to form chain-like complexes with D-galactitol in which the alditol provides three hydroxyl groups to coordinate one metal ion and three other hydroxyl groups to coordinate another; in all cases, there are two alditol molecules bound to each lanthanide (Su et al., 2002; Yu et al., 2011). Other authors have employed erythritol, whose molecule functions as two bidentate ligands or as a three-hydroxyl donor to a variety of lanthanide(III) chlorides (Ce, Pr, Nd, Eu, Gd and Tb; Yang et al., 2012; Yang, Xie et al., 2005; Yang, Xu et al., 2005). These studies describe several possible binding modes of these polyols to lanthanide ions.
As far as tripodal alcohol ligands are concerned, mononuclear yttrium(III) complexes of 1,1,1-tris(hydroxymethyl)propane (H3LEt) and 1,1,1-tris(hydroxymethyl)ethane (H3LMe), as well as of the aminopolyalcohol (HOCH2)3CN(CH2CH2OH)2, H5LN(EtOH)2, were described by Chen and co-workers while investigating chelate complexes for radiotherapeutic applications (Chen et al., 1997). In two of the reported products, those prepared from H3LMe and H5LN(EtOH)2, the coordination sphere of the eight-coordinate yttrium atom contains chloride instead of nitrate ligands. A more recent study (Xu et al., 2015), in its turn, describes a dysprosium(III) complex with H3LEt that is isostructural to product 2 (present work) and has been employed to investigate possible biomedical applications of the binding of rare earth metal ions to the apoferritin protein.
5. Synthesis and crystallization
All experimental operations were performed under N2(g) (99.999%, Praxair) or under vacuum of 10−3 Torr, using Schlenk and glove-box techniques. Solvents (dimethoxyethane and hexane) were purified according to procedures described in the literature (Perrin & Armarego, 1997). Terbium(III) nitrate pentahydrate and 1,1,1-tris(hydroxymethyl)propane (H3LEt) were purchased from Aldrich; the latter was dissolved in thf/toluene (1:1), crystallized at 153 K, isolated by filtration and stored under N2 at room temperature prior to use. Elemental analysis (C, H and N) were performed under argon by MEDAC Laboratories Ltd. (Chobham, Surrey, UK), using a Thermal Scientific Flash EA 1112 Series Elemental Analyzer. Infrared spectra (FTIR, Nujol mulls) were obtained on a BIORAD FTS 3500GX instrument in the range of 400-4000 cm−1.
5.1. Synthesis of [Tb(H3LEt)2(NO3)(H2O)](NO3)2·0.5glyme (product 1)
A solution containing 1.91 g (4.39 mmol) of Tb(NO3)3·5H2O in 50 ml of dimethoxyethane (glyme) received the addition of 1.11 g (8.27 mmol) of solid 1,1,1-tris(hydroxymethyl)propane to form a colourless solution that was refluxed for 15 min. After this period of time, the heating was turned off and a 32 ml of the reaction mixture was withdrawn for the isolation of product 2 (described below). The remaining 18 ml were cooled down to 153 K for four days, without forming any solid. The solution was then dried under vacuum and the resulting solid was almost completely redissolved in 7.5 ml of glyme. A fine suspension was obtained which, after seven days at 153 K, gave colourless crystals that were isolated and dried under vacuum (complex 1). Yield: 360 mg, 0.547 mmol (12.5% based on the total amount of terbium employed in the reaction). If the yield was extrapolated to the total volume of the reaction mixture (50 ml) instead of the 18 ml effectively employed for crystallization, it could reach 34.7%. Elemental analysis: calculated for [Tb(H3LEt)2(NO3)2](NO3)·0.5glyme (C14H33N3O16Tb) C 25.54, H 5.05, N 6.38%. Found C 25.34, H 5.08, N 6.60%. FTIR (Nujol mull, cm−1, s = strong, m = medium, w = weak, sh = shoulder): 3359m, 3220m ν(O—H); 1050sh, 1020s, 942s, mainly ν(C—O); 1271s νa(NO2), 1041s νs(NO2).
5.2. Isolation of [Tb(H3LEt)2(NO3)(H2O)](NO3)2 (product 2)
The 32 ml 1 above received the careful addition of a hexane layer (20 ml) at room temperature, and was allowed to stand for 24 h. During this period it was possible to observe the formation of a large number of colourless crystals, which were isolated by filtration and dried under vacuum (complex 2). Yield: 1.36 g, 2.15 mmol (49.1% based on the total amount of terbium employed in the reaction). If the yield was extrapolated to the total volume of the reaction mixture (50 ml) instead of 32 ml actually employed for crystallization of 2, this yield could reach 76.7%). Elemental analysis: calculated for C12H30N3O16Tb C 22.83, H 4.79, N 6.66%. Found C 22.69, H 4.84, N 6.78. FTIR (Nujol mull, cm−1): 3475m, 3350s, 3184s ν(O—H); 1620w δ(O—H), 1050s, 1035s, 949s, mainly ν(C—O); 1278s νa(NO2), 1037s νs(NO2).
of the reaction mixture described in the synthesis of6. Refinement
Crystal data, data collection and structure 1 and 2 are summarized in Table 6.
details for both complexes
|
Disorder was noted in both structures: in compound 1, the methylene groups in the three CH2OH groups in one tripodal ligand were each found to be disordered over two sets of sites, with an occupancy ratio of 0.911 (7) : 0.089 (7), whereas in 2, the disorder is in a terminal methyl group, which is disordered over two orientations, with an occupancy ratio of 0.827 (4) : 0.173 (4).
All the hydroxyl and water hydrogen atoms were located clearly in difference maps and were refined freely and satisfactorily. All the remaining hydrogen atoms were set in idealized positions and refined as riding on the parent carbon atoms.
Supporting information
https://doi.org/10.1107/S2056989017001116/hb7653sup1.cif
contains datablocks Compound-1, Compound-2, global. DOI:Structure factors: contains datablock Compound-1. DOI: https://doi.org/10.1107/S2056989017001116/hb7653Compound-1sup2.hkl
Structure factors: contains datablock Compound-2. DOI: https://doi.org/10.1107/S2056989017001116/hb7653Compound-2sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989017001116/hb7653Compound-1sup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989017001116/hb7653Compound-2sup5.cdx
For both compounds, data collection: APEX3 (Bruker, 2015); cell
SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP (Johnson, 1976) and ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia, 2012).[Tb(NO3)2(C6H14O3)2]NO3·0.5C4H10O2 | F(000) = 2648 |
Mr = 658.35 | Dx = 1.856 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 20.1864 (13) Å | Cell parameters from 9404 reflections |
b = 10.2997 (6) Å | θ = 3.1–28.2° |
c = 23.832 (2) Å | µ = 3.08 mm−1 |
β = 108.004 (3)° | T = 100 K |
V = 4712.4 (6) Å3 | Fragment, colourless |
Z = 8 | 0.14 × 0.11 × 0.09 mm |
Bruker D8 VENTURE/PHOTON100 CMOS diffractometer | 5889 independent reflections |
Radiation source: fine-focus sealed tube | 5031 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.071 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 28.4°, θmin = 2.7° |
φ and ω scans | h = −26→26 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −13→13 |
Tmin = 0.694, Tmax = 0.746 | l = −31→31 |
172878 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | Hydrogen site location: mixed |
wR(F2) = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.015P)2 + 5.6056P] where P = (Fo2 + 2Fc2)/3 |
5889 reflections | (Δ/σ)max = 0.001 |
344 parameters | Δρmax = 0.77 e Å−3 |
0 restraints | Δρmin = −0.54 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Tb1 | 0.41961 (2) | 0.52548 (2) | 0.68945 (2) | 0.00881 (3) | |
C11 | 0.39871 (10) | 0.29809 (17) | 0.56884 (8) | 0.0118 (4) | |
C12 | 0.46190 (10) | 0.38204 (19) | 0.57107 (9) | 0.0160 (4) | |
H12A | 0.5040 | 0.3266 | 0.5811 | 0.019* | |
H12B | 0.4555 | 0.4198 | 0.5315 | 0.019* | |
O12 | 0.47253 (7) | 0.48486 (14) | 0.61340 (6) | 0.0149 (3) | |
C13 | 0.33152 (10) | 0.37790 (18) | 0.55500 (8) | 0.0140 (4) | |
H13A | 0.3195 | 0.4096 | 0.5139 | 0.017* | |
H13B | 0.2933 | 0.3203 | 0.5576 | 0.017* | |
O13 | 0.33531 (7) | 0.48753 (14) | 0.59343 (6) | 0.0131 (3) | |
C14 | 0.41005 (10) | 0.21802 (18) | 0.62473 (8) | 0.0136 (4) | |
H14A | 0.3753 | 0.1471 | 0.6172 | 0.016* | |
H14B | 0.4570 | 0.1784 | 0.6361 | 0.016* | |
O14 | 0.40358 (7) | 0.29827 (13) | 0.67214 (6) | 0.0129 (3) | |
C15 | 0.38567 (10) | 0.20335 (19) | 0.51616 (8) | 0.0169 (4) | |
H15A | 0.3415 | 0.1567 | 0.5119 | 0.020* | |
H15B | 0.3790 | 0.2553 | 0.4799 | 0.020* | |
C16 | 0.44210 (11) | 0.1029 (2) | 0.51961 (10) | 0.0239 (5) | |
H16A | 0.4283 | 0.0486 | 0.4841 | 0.036* | |
H16B | 0.4860 | 0.1471 | 0.5224 | 0.036* | |
H16C | 0.4483 | 0.0483 | 0.5545 | 0.036* | |
C21 | 0.34085 (9) | 0.52402 (18) | 0.80793 (8) | 0.0116 (3) | |
C22 | 0.29008 (11) | 0.4608 (3) | 0.75328 (9) | 0.0142 (6) | 0.911 (7) |
H22A | 0.2903 | 0.3655 | 0.7588 | 0.017* | 0.911 (7) |
H22B | 0.2423 | 0.4928 | 0.7481 | 0.017* | 0.911 (7) |
C23 | 0.40750 (13) | 0.4457 (3) | 0.83121 (10) | 0.0131 (6) | 0.911 (7) |
H23A | 0.4426 | 0.4973 | 0.8611 | 0.016* | 0.911 (7) |
H23B | 0.3980 | 0.3658 | 0.8505 | 0.016* | 0.911 (7) |
C24 | 0.35697 (14) | 0.6637 (2) | 0.79430 (12) | 0.0152 (6) | 0.911 (7) |
H24A | 0.3141 | 0.7049 | 0.7684 | 0.018* | 0.911 (7) |
H24B | 0.3727 | 0.7140 | 0.8315 | 0.018* | 0.911 (7) |
O22 | 0.30941 (7) | 0.49039 (13) | 0.70161 (6) | 0.0129 (3) | |
O23 | 0.43465 (7) | 0.41116 (14) | 0.78392 (6) | 0.0128 (3) | |
O24 | 0.41020 (7) | 0.66656 (14) | 0.76566 (6) | 0.0140 (3) | |
C25 | 0.30551 (10) | 0.5344 (2) | 0.85686 (8) | 0.0165 (4) | |
H25A | 0.3404 | 0.5677 | 0.8930 | 0.020* | |
H25B | 0.2679 | 0.5999 | 0.8444 | 0.020* | |
C26 | 0.27454 (10) | 0.4102 (2) | 0.87266 (9) | 0.0207 (4) | |
H26A | 0.2537 | 0.4284 | 0.9039 | 0.031* | |
H26B | 0.2386 | 0.3773 | 0.8377 | 0.031* | |
H26C | 0.3113 | 0.3450 | 0.8865 | 0.031* | |
C27 | 0.2836 (12) | 0.521 (3) | 0.7509 (10) | 0.015 (6)* | 0.089 (7) |
H27A | 0.2488 | 0.4550 | 0.7530 | 0.018* | 0.089 (7) |
H27B | 0.2601 | 0.6065 | 0.7439 | 0.018* | 0.089 (7) |
C28 | 0.3854 (14) | 0.399 (3) | 0.8212 (11) | 0.011 (6)* | 0.089 (7) |
H28A | 0.4119 | 0.3927 | 0.8636 | 0.013* | 0.089 (7) |
H28B | 0.3556 | 0.3206 | 0.8096 | 0.013* | 0.089 (7) |
C29 | 0.387 (2) | 0.647 (3) | 0.8196 (16) | 0.032 (8)* | 0.089 (7) |
H29A | 0.3594 | 0.7234 | 0.8254 | 0.039* | 0.089 (7) |
H29B | 0.4273 | 0.6362 | 0.8553 | 0.039* | 0.089 (7) |
N2 | 0.39273 (9) | 0.79057 (15) | 0.63712 (7) | 0.0162 (3) | |
O4 | 0.45380 (7) | 0.74010 (12) | 0.65838 (6) | 0.0164 (3) | |
O5 | 0.34311 (7) | 0.72241 (13) | 0.64212 (6) | 0.0190 (3) | |
O6 | 0.38490 (8) | 0.89771 (13) | 0.61430 (6) | 0.0255 (3) | |
N1 | 0.57343 (8) | 0.50126 (15) | 0.75057 (7) | 0.0130 (3) | |
O1 | 0.53526 (7) | 0.40279 (12) | 0.73137 (6) | 0.0148 (3) | |
O2 | 0.54149 (7) | 0.60919 (12) | 0.74203 (6) | 0.0162 (3) | |
O3 | 0.63542 (7) | 0.49260 (14) | 0.77547 (6) | 0.0230 (3) | |
N3 | 0.13781 (8) | 0.45279 (15) | 0.62056 (7) | 0.0161 (3) | |
O7 | 0.13714 (8) | 0.54895 (15) | 0.65113 (7) | 0.0290 (4) | |
O8 | 0.19346 (7) | 0.41340 (15) | 0.61347 (7) | 0.0259 (3) | |
O9 | 0.08179 (7) | 0.39286 (14) | 0.59578 (7) | 0.0259 (3) | |
C31 | 0.27954 (11) | 0.7871 (2) | 0.48781 (10) | 0.0258 (5) | |
H31A | 0.2616 | 0.7785 | 0.4443 | 0.031* | |
H31B | 0.3048 | 0.8707 | 0.4972 | 0.031* | |
O32 | 0.32611 (10) | 0.68347 (15) | 0.51152 (7) | 0.0355 (4) | |
C33 | 0.38661 (16) | 0.6912 (3) | 0.49237 (13) | 0.0530 (9) | |
H33A | 0.4180 | 0.6188 | 0.5092 | 0.079* | |
H33B | 0.3726 | 0.6864 | 0.4492 | 0.079* | |
H33C | 0.4107 | 0.7735 | 0.5055 | 0.079* | |
H12O | 0.5042 (13) | 0.518 (2) | 0.6139 (11) | 0.019 (6)* | |
H13O | 0.3300 (12) | 0.544 (2) | 0.5736 (11) | 0.021 (7)* | |
H14O | 0.4146 (12) | 0.255 (2) | 0.6983 (11) | 0.026 (7)* | |
H22O | 0.2797 (13) | 0.473 (2) | 0.6760 (11) | 0.022 (7)* | |
H23O | 0.4631 (12) | 0.371 (2) | 0.7967 (10) | 0.013 (6)* | |
H24O | 0.4214 (13) | 0.735 (3) | 0.7651 (11) | 0.030 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.00815 (4) | 0.00833 (4) | 0.01016 (4) | −0.00074 (4) | 0.00313 (3) | −0.00065 (4) |
C11 | 0.0138 (9) | 0.0102 (9) | 0.0119 (9) | −0.0002 (7) | 0.0047 (7) | −0.0012 (7) |
C12 | 0.0169 (10) | 0.0159 (10) | 0.0182 (10) | −0.0023 (8) | 0.0101 (8) | −0.0046 (8) |
O12 | 0.0120 (7) | 0.0175 (7) | 0.0177 (7) | −0.0066 (6) | 0.0084 (6) | −0.0060 (6) |
C13 | 0.0147 (9) | 0.0129 (9) | 0.0124 (9) | −0.0012 (7) | 0.0011 (7) | −0.0019 (7) |
O13 | 0.0141 (7) | 0.0121 (7) | 0.0125 (7) | 0.0023 (5) | 0.0032 (5) | 0.0014 (6) |
C14 | 0.0192 (10) | 0.0099 (9) | 0.0114 (9) | 0.0007 (7) | 0.0041 (8) | −0.0029 (7) |
O14 | 0.0190 (7) | 0.0103 (7) | 0.0103 (7) | 0.0005 (5) | 0.0057 (6) | 0.0005 (5) |
C15 | 0.0221 (10) | 0.0155 (10) | 0.0124 (9) | −0.0016 (8) | 0.0042 (8) | −0.0032 (7) |
C16 | 0.0303 (12) | 0.0196 (11) | 0.0241 (11) | 0.0009 (9) | 0.0118 (10) | −0.0079 (9) |
C21 | 0.0110 (8) | 0.0124 (8) | 0.0128 (9) | 0.0010 (7) | 0.0055 (7) | 0.0006 (8) |
C22 | 0.0124 (10) | 0.0181 (16) | 0.0134 (11) | −0.0013 (9) | 0.0061 (8) | 0.0014 (9) |
C23 | 0.0127 (11) | 0.0166 (14) | 0.0120 (11) | 0.0006 (10) | 0.0068 (9) | 0.0002 (9) |
C24 | 0.0184 (13) | 0.0124 (11) | 0.0193 (14) | 0.0000 (9) | 0.0123 (11) | −0.0014 (9) |
O22 | 0.0095 (6) | 0.0187 (7) | 0.0100 (6) | −0.0025 (5) | 0.0023 (5) | −0.0001 (5) |
O23 | 0.0121 (7) | 0.0145 (7) | 0.0130 (7) | 0.0068 (6) | 0.0054 (6) | 0.0023 (6) |
O24 | 0.0177 (7) | 0.0089 (7) | 0.0183 (7) | −0.0036 (6) | 0.0097 (6) | −0.0017 (5) |
C25 | 0.0159 (9) | 0.0225 (10) | 0.0133 (9) | 0.0032 (8) | 0.0078 (7) | −0.0008 (8) |
C26 | 0.0161 (10) | 0.0303 (12) | 0.0174 (10) | 0.0005 (9) | 0.0073 (8) | 0.0066 (9) |
N2 | 0.0232 (9) | 0.0114 (8) | 0.0118 (8) | −0.0009 (7) | 0.0022 (7) | −0.0012 (6) |
O4 | 0.0175 (7) | 0.0123 (7) | 0.0202 (7) | −0.0008 (5) | 0.0070 (6) | 0.0003 (5) |
O5 | 0.0174 (7) | 0.0143 (7) | 0.0224 (7) | −0.0022 (6) | 0.0019 (6) | 0.0012 (6) |
O6 | 0.0418 (10) | 0.0099 (7) | 0.0229 (8) | 0.0022 (6) | 0.0071 (7) | 0.0055 (6) |
N1 | 0.0133 (8) | 0.0153 (9) | 0.0110 (7) | 0.0010 (6) | 0.0047 (6) | 0.0014 (6) |
O1 | 0.0137 (7) | 0.0100 (7) | 0.0217 (7) | −0.0011 (5) | 0.0070 (6) | −0.0012 (5) |
O2 | 0.0142 (7) | 0.0118 (7) | 0.0208 (7) | 0.0016 (5) | 0.0025 (6) | −0.0004 (5) |
O3 | 0.0102 (7) | 0.0329 (9) | 0.0228 (8) | 0.0021 (6) | 0.0005 (6) | 0.0012 (6) |
N3 | 0.0134 (8) | 0.0182 (9) | 0.0159 (8) | 0.0013 (6) | 0.0034 (7) | −0.0021 (6) |
O7 | 0.0255 (8) | 0.0269 (9) | 0.0339 (9) | 0.0024 (6) | 0.0080 (7) | −0.0160 (7) |
O8 | 0.0113 (7) | 0.0347 (9) | 0.0321 (9) | 0.0014 (6) | 0.0073 (6) | −0.0159 (7) |
O9 | 0.0124 (7) | 0.0275 (8) | 0.0363 (9) | −0.0021 (6) | 0.0053 (7) | −0.0127 (7) |
C31 | 0.0334 (13) | 0.0159 (10) | 0.0204 (11) | −0.0028 (9) | −0.0029 (9) | 0.0044 (8) |
O32 | 0.0599 (12) | 0.0252 (9) | 0.0351 (9) | 0.0212 (8) | 0.0351 (9) | 0.0164 (7) |
C33 | 0.080 (2) | 0.0396 (16) | 0.065 (2) | 0.0328 (15) | 0.0601 (18) | 0.0299 (14) |
Tb1—O22 | 2.3583 (13) | C23—O23 | 1.442 (2) |
Tb1—O24 | 2.3790 (13) | C23—H23A | 0.9900 |
Tb1—O14 | 2.3810 (13) | C23—H23B | 0.9900 |
Tb1—O12 | 2.4078 (13) | C24—O24 | 1.440 (2) |
Tb1—O13 | 2.4245 (13) | C24—H24A | 0.9900 |
Tb1—O23 | 2.4749 (14) | C24—H24B | 0.9900 |
Tb1—O4 | 2.4953 (13) | O22—C27 | 1.46 (2) |
Tb1—O2 | 2.5418 (13) | O22—H22O | 0.73 (2) |
Tb1—O1 | 2.5697 (13) | O23—C28 | 1.53 (2) |
Tb1—O5 | 2.5874 (14) | O23—H23O | 0.69 (2) |
C11—C14 | 1.523 (2) | O24—C29 | 1.52 (3) |
C11—C12 | 1.528 (3) | O24—H24O | 0.74 (3) |
C11—C13 | 1.532 (3) | C25—C26 | 1.521 (3) |
C11—C15 | 1.547 (3) | C25—H25A | 0.9900 |
C12—O12 | 1.432 (2) | C25—H25B | 0.9900 |
C12—H12A | 0.9900 | C26—H26A | 0.9800 |
C12—H12B | 0.9900 | C26—H26B | 0.9800 |
O12—H12O | 0.72 (2) | C26—H26C | 0.9800 |
C13—O13 | 1.441 (2) | C27—H27A | 0.9900 |
C13—H13A | 0.9900 | C27—H27B | 0.9900 |
C13—H13B | 0.9900 | C28—H28A | 0.9900 |
O13—H13O | 0.74 (2) | C28—H28B | 0.9900 |
C14—O14 | 1.438 (2) | C29—H29A | 0.9900 |
C14—H14A | 0.9900 | C29—H29B | 0.9900 |
C14—H14B | 0.9900 | N2—O6 | 1.219 (2) |
O14—H14O | 0.74 (2) | N2—O5 | 1.259 (2) |
C15—C16 | 1.522 (3) | N2—O4 | 1.289 (2) |
C15—H15A | 0.9900 | N1—O3 | 1.211 (2) |
C15—H15B | 0.9900 | N1—O2 | 1.2696 (19) |
C16—H16A | 0.9800 | N1—O1 | 1.270 (2) |
C16—H16B | 0.9800 | N3—O7 | 1.232 (2) |
C16—H16C | 0.9800 | N3—O8 | 1.254 (2) |
C21—C27 | 1.49 (2) | N3—O9 | 1.263 (2) |
C21—C23 | 1.519 (3) | C31—O32 | 1.419 (3) |
C21—C24 | 1.532 (3) | C31—C31i | 1.479 (5) |
C21—C22 | 1.532 (3) | C31—H31A | 0.9900 |
C21—C29 | 1.54 (3) | C31—H31B | 0.9900 |
C21—C25 | 1.547 (2) | O32—C33 | 1.432 (3) |
C21—C28 | 1.55 (2) | C33—H33A | 0.9800 |
C22—O22 | 1.435 (2) | C33—H33B | 0.9800 |
C22—H22A | 0.9900 | C33—H33C | 0.9800 |
C22—H22B | 0.9900 | ||
O22—Tb1—O24 | 72.47 (5) | C24—C21—C25 | 105.80 (15) |
O22—Tb1—O14 | 77.75 (5) | C22—C21—C25 | 109.09 (15) |
O24—Tb1—O14 | 133.94 (5) | C29—C21—C25 | 101.4 (11) |
O22—Tb1—O12 | 136.11 (5) | C27—C21—C28 | 114.0 (14) |
O24—Tb1—O12 | 147.08 (5) | C29—C21—C28 | 111.8 (16) |
O14—Tb1—O12 | 76.53 (5) | C25—C21—C28 | 106.2 (9) |
O22—Tb1—O13 | 71.20 (5) | O22—C22—C21 | 110.57 (16) |
O24—Tb1—O13 | 128.37 (5) | O22—C22—H22A | 109.5 |
O14—Tb1—O13 | 70.11 (5) | C21—C22—H22A | 109.5 |
O12—Tb1—O13 | 66.85 (5) | O22—C22—H22B | 109.5 |
O22—Tb1—O23 | 70.76 (5) | C21—C22—H22B | 109.5 |
O24—Tb1—O23 | 67.19 (5) | H22A—C22—H22B | 108.1 |
O14—Tb1—O23 | 70.24 (5) | O23—C23—C21 | 110.69 (16) |
O12—Tb1—O23 | 130.08 (5) | O23—C23—H23A | 109.5 |
O13—Tb1—O23 | 129.41 (5) | C21—C23—H23A | 109.5 |
O22—Tb1—O4 | 122.01 (4) | O23—C23—H23B | 109.5 |
O24—Tb1—O4 | 77.30 (5) | C21—C23—H23B | 109.5 |
O14—Tb1—O4 | 148.71 (4) | H23A—C23—H23B | 108.1 |
O12—Tb1—O4 | 72.71 (5) | O24—C24—C21 | 111.00 (16) |
O13—Tb1—O4 | 92.32 (5) | O24—C24—H24A | 109.4 |
O23—Tb1—O4 | 136.38 (5) | C21—C24—H24A | 109.4 |
O22—Tb1—O2 | 142.88 (5) | O24—C24—H24B | 109.4 |
O24—Tb1—O2 | 73.14 (4) | C21—C24—H24B | 109.4 |
O14—Tb1—O2 | 118.55 (4) | H24A—C24—H24B | 108.0 |
O12—Tb1—O2 | 80.97 (5) | C22—O22—Tb1 | 130.93 (12) |
O13—Tb1—O2 | 144.10 (5) | C27—O22—Tb1 | 130.6 (10) |
O23—Tb1—O2 | 83.39 (4) | C22—O22—H22O | 107.2 (19) |
O4—Tb1—O2 | 62.06 (4) | C27—O22—H22O | 109 (2) |
O22—Tb1—O1 | 130.92 (4) | Tb1—O22—H22O | 119.6 (19) |
O24—Tb1—O1 | 106.31 (4) | C23—O23—Tb1 | 128.64 (12) |
O14—Tb1—O1 | 69.06 (4) | C28—O23—Tb1 | 130.5 (9) |
O12—Tb1—O1 | 69.27 (4) | C23—O23—H23O | 105.3 (19) |
O13—Tb1—O1 | 125.17 (4) | C28—O23—H23O | 107 (2) |
O23—Tb1—O1 | 64.60 (4) | Tb1—O23—H23O | 122.2 (19) |
O4—Tb1—O1 | 104.45 (4) | C24—O24—Tb1 | 126.61 (12) |
O2—Tb1—O1 | 49.50 (4) | C29—O24—Tb1 | 133.5 (12) |
O22—Tb1—O5 | 73.45 (4) | C24—O24—H24O | 108 (2) |
O24—Tb1—O5 | 71.11 (5) | C29—O24—H24O | 108 (2) |
O14—Tb1—O5 | 131.61 (5) | Tb1—O24—H24O | 118 (2) |
O12—Tb1—O5 | 98.74 (5) | C26—C25—C21 | 116.65 (16) |
O13—Tb1—O5 | 64.19 (5) | C26—C25—H25A | 108.1 |
O23—Tb1—O5 | 131.18 (4) | C21—C25—H25A | 108.1 |
O4—Tb1—O5 | 50.12 (4) | C26—C25—H25B | 108.1 |
O2—Tb1—O5 | 107.78 (4) | C21—C25—H25B | 108.1 |
O1—Tb1—O5 | 154.57 (4) | H25A—C25—H25B | 107.3 |
C14—C11—C12 | 112.20 (16) | C25—C26—H26A | 109.5 |
C14—C11—C13 | 111.26 (15) | C25—C26—H26B | 109.5 |
C12—C11—C13 | 112.19 (15) | H26A—C26—H26B | 109.5 |
C14—C11—C15 | 108.07 (15) | C25—C26—H26C | 109.5 |
C12—C11—C15 | 108.42 (15) | H26A—C26—H26C | 109.5 |
C13—C11—C15 | 104.27 (15) | H26B—C26—H26C | 109.5 |
O12—C12—C11 | 112.61 (15) | O22—C27—C21 | 111.7 (16) |
O12—C12—H12A | 109.1 | O22—C27—H27A | 109.3 |
C11—C12—H12A | 109.1 | C21—C27—H27A | 109.3 |
O12—C12—H12B | 109.1 | O22—C27—H27B | 109.3 |
C11—C12—H12B | 109.1 | C21—C27—H27B | 109.3 |
H12A—C12—H12B | 107.8 | H27A—C27—H27B | 107.9 |
C12—O12—Tb1 | 130.84 (11) | O23—C28—C21 | 104.6 (15) |
C12—O12—H12O | 107.4 (19) | O23—C28—H28A | 110.8 |
Tb1—O12—H12O | 120.2 (19) | C21—C28—H28A | 110.8 |
O13—C13—C11 | 114.46 (15) | O23—C28—H28B | 110.8 |
O13—C13—H13A | 108.6 | C21—C28—H28B | 110.8 |
C11—C13—H13A | 108.6 | H28A—C28—H28B | 108.9 |
O13—C13—H13B | 108.6 | O24—C29—C21 | 106.4 (19) |
C11—C13—H13B | 108.6 | O24—C29—H29A | 110.5 |
H13A—C13—H13B | 107.6 | C21—C29—H29A | 110.5 |
C13—O13—Tb1 | 127.60 (11) | O24—C29—H29B | 110.5 |
C13—O13—H13O | 104.1 (19) | C21—C29—H29B | 110.5 |
Tb1—O13—H13O | 113.5 (19) | H29A—C29—H29B | 108.6 |
O14—C14—C11 | 110.51 (15) | O6—N2—O5 | 123.36 (17) |
O14—C14—H14A | 109.5 | O6—N2—O4 | 121.15 (16) |
C11—C14—H14A | 109.5 | O5—N2—O4 | 115.50 (15) |
O14—C14—H14B | 109.5 | N2—O4—Tb1 | 98.93 (10) |
C11—C14—H14B | 109.5 | N2—O5—Tb1 | 95.35 (10) |
H14A—C14—H14B | 108.1 | O3—N1—O2 | 122.66 (16) |
C14—O14—Tb1 | 131.34 (11) | O3—N1—O1 | 122.51 (16) |
C14—O14—H14O | 103.8 (19) | O2—N1—O1 | 114.82 (15) |
Tb1—O14—H14O | 117 (2) | N1—O1—Tb1 | 97.15 (10) |
C16—C15—C11 | 116.62 (16) | N1—O2—Tb1 | 98.53 (10) |
C16—C15—H15A | 108.1 | O7—N3—O8 | 120.91 (16) |
C11—C15—H15A | 108.1 | O7—N3—O9 | 119.83 (16) |
C16—C15—H15B | 108.1 | O8—N3—O9 | 119.26 (16) |
C11—C15—H15B | 108.1 | O32—C31—C31i | 111.02 (16) |
H15A—C15—H15B | 107.3 | O32—C31—H31A | 109.4 |
C15—C16—H16A | 109.5 | C31i—C31—H31A | 109.4 |
C15—C16—H16B | 109.5 | O32—C31—H31B | 109.4 |
H16A—C16—H16B | 109.5 | C31i—C31—H31B | 109.4 |
C15—C16—H16C | 109.5 | H31A—C31—H31B | 108.0 |
H16A—C16—H16C | 109.5 | C31—O32—C33 | 110.89 (17) |
H16B—C16—H16C | 109.5 | O32—C33—H33A | 109.5 |
C23—C21—C24 | 110.75 (17) | O32—C33—H33B | 109.5 |
C23—C21—C22 | 111.65 (17) | H33A—C33—H33B | 109.5 |
C24—C21—C22 | 110.43 (17) | O32—C33—H33C | 109.5 |
C27—C21—C29 | 115.7 (16) | H33A—C33—H33C | 109.5 |
C27—C21—C25 | 106.3 (9) | H33B—C33—H33C | 109.5 |
C23—C21—C25 | 108.92 (15) | ||
C14—C11—C12—O12 | −68.7 (2) | C27—C21—C25—C26 | 77.9 (14) |
C13—C11—C12—O12 | 57.4 (2) | C23—C21—C25—C26 | −69.4 (2) |
C15—C11—C12—O12 | 172.01 (15) | C24—C21—C25—C26 | 171.49 (18) |
C11—C12—O12—Tb1 | 10.5 (2) | C22—C21—C25—C26 | 52.7 (2) |
C14—C11—C13—O13 | 73.16 (19) | C29—C21—C25—C26 | −160.8 (16) |
C12—C11—C13—O13 | −53.5 (2) | C28—C21—C25—C26 | −43.9 (12) |
C15—C11—C13—O13 | −170.58 (15) | Tb1—O22—C27—C21 | −27 (3) |
C11—C13—O13—Tb1 | −18.1 (2) | C29—C21—C27—O22 | 78 (2) |
C12—C11—C14—O14 | 76.17 (19) | C25—C21—C27—O22 | −170.9 (15) |
C13—C11—C14—O14 | −50.5 (2) | C28—C21—C27—O22 | −54 (2) |
C15—C11—C14—O14 | −164.36 (15) | Tb1—O23—C28—C21 | −29 (2) |
C11—C14—O14—Tb1 | −25.1 (2) | C27—C21—C28—O23 | 78.9 (19) |
C14—C11—C15—C16 | −57.1 (2) | C29—C21—C28—O23 | −54.7 (19) |
C12—C11—C15—C16 | 64.8 (2) | C25—C21—C28—O23 | −164.4 (12) |
C13—C11—C15—C16 | −175.52 (17) | Tb1—O24—C29—C21 | −21 (3) |
C23—C21—C22—O22 | −80.2 (2) | C27—C21—C29—O24 | −52 (2) |
C24—C21—C22—O22 | 43.5 (2) | C25—C21—C29—O24 | −166.2 (17) |
C25—C21—C22—O22 | 159.38 (18) | C28—C21—C29—O24 | 81 (2) |
C24—C21—C23—O23 | −75.7 (2) | O6—N2—O4—Tb1 | −177.24 (14) |
C22—C21—C23—O23 | 47.8 (2) | O5—N2—O4—Tb1 | 3.28 (16) |
C25—C21—C23—O23 | 168.37 (19) | O6—N2—O5—Tb1 | 177.39 (15) |
C23—C21—C24—O24 | 42.0 (2) | O4—N2—O5—Tb1 | −3.14 (15) |
C22—C21—C24—O24 | −82.2 (2) | O3—N1—O1—Tb1 | 179.72 (15) |
C25—C21—C24—O24 | 159.84 (18) | O2—N1—O1—Tb1 | 0.20 (15) |
C21—C22—O22—Tb1 | 32.0 (3) | O3—N1—O2—Tb1 | −179.72 (15) |
C21—C23—O23—Tb1 | 26.9 (3) | O1—N1—O2—Tb1 | −0.21 (15) |
C21—C24—O24—Tb1 | 42.4 (3) | C31i—C31—O32—C33 | −174.3 (2) |
Symmetry code: (i) −x+1/2, y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O12—H12O···O9ii | 0.72 (2) | 1.98 (2) | 2.683 (2) | 167 (3) |
O13—H13O···O32 | 0.74 (2) | 2.04 (2) | 2.774 (2) | 170 (3) |
O14—H14O···O2iii | 0.74 (2) | 2.07 (3) | 2.7935 (19) | 165 (3) |
O22—H22O···O8 | 0.73 (2) | 2.01 (3) | 2.735 (2) | 172 (3) |
O23—H23O···O4iii | 0.69 (2) | 2.16 (2) | 2.8550 (19) | 175 (2) |
O24—H24O···O1iv | 0.74 (3) | 1.93 (3) | 2.6624 (19) | 171 (3) |
C22—H22B···O3v | 0.99 | 2.44 | 3.358 (3) | 153 |
C24—H24B···O7vi | 0.99 | 2.49 | 3.220 (3) | 130 |
C29—H29A···O7vi | 0.99 | 2.41 | 3.27 (3) | 146 |
Symmetry codes: (ii) x+1/2, −y+1, z; (iii) −x+1, y−1/2, −z+3/2; (iv) −x+1, y+1/2, −z+3/2; (v) x−1/2, −y+1, z; (vi) −x+1/2, −y+3/2, −z+3/2. |
[Tb(NO3)(C6H14O3)2(H2O)](NO3)2 | F(000) = 1264 |
Mr = 631.31 | Dx = 1.858 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 9.1440 (6) Å | Cell parameters from 9581 reflections |
b = 12.7870 (7) Å | θ = 3.1–28.3° |
c = 19.7151 (12) Å | µ = 3.22 mm−1 |
β = 101.796 (2)° | T = 100 K |
V = 2256.5 (2) Å3 | Block, colourless |
Z = 4 | 0.36 × 0.19 × 0.18 mm |
Bruker D8 VENTURE/PHOTON100 CMOS diffractometer | 5629 independent reflections |
Radiation source: fine-focus sealed tube | 5542 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 28.4°, θmin = 3.6° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2014) | k = −17→17 |
Tmin = 0.636, Tmax = 0.746 | l = −26→26 |
244328 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.012 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.029 | w = 1/[σ2(Fo2) + (0.0128P)2 + 1.457P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max = 0.001 |
5629 reflections | Δρmax = 0.74 e Å−3 |
326 parameters | Δρmin = −0.26 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Tb1 | 0.15357 (2) | 0.39026 (2) | 0.37356 (2) | 0.00991 (2) | |
C11 | 0.20317 (14) | 0.11240 (9) | 0.41042 (7) | 0.0134 (2) | |
C12 | 0.05513 (15) | 0.14541 (10) | 0.42837 (7) | 0.0170 (2) | |
H12A | −0.0282 | 0.1120 | 0.3955 | 0.020* | |
H12B | 0.0516 | 0.1206 | 0.4756 | 0.020* | |
O12 | 0.03581 (10) | 0.25678 (7) | 0.42542 (5) | 0.01517 (17) | |
C13 | 0.19968 (16) | 0.12622 (10) | 0.33317 (7) | 0.0168 (2) | |
H13A | 0.3014 | 0.1158 | 0.3243 | 0.020* | |
H13B | 0.1335 | 0.0726 | 0.3067 | 0.020* | |
O13 | 0.14671 (11) | 0.22883 (7) | 0.30972 (5) | 0.01632 (18) | |
C14 | 0.33441 (14) | 0.17092 (10) | 0.45474 (7) | 0.0159 (2) | |
H14A | 0.3238 | 0.1703 | 0.5037 | 0.019* | |
H14B | 0.4288 | 0.1347 | 0.4521 | 0.019* | |
O14 | 0.34140 (11) | 0.27755 (7) | 0.43195 (5) | 0.01548 (18) | |
C15 | 0.22392 (16) | −0.00526 (10) | 0.42866 (7) | 0.0191 (3) | |
H15A | 0.2419 | −0.0124 | 0.4797 | 0.023* | 0.827 (4) |
H15B | 0.1291 | −0.0418 | 0.4093 | 0.023* | 0.827 (4) |
H15C | 0.2488 | −0.0122 | 0.4797 | 0.023* | 0.173 (4) |
H15D | 0.3105 | −0.0315 | 0.4106 | 0.023* | 0.173 (4) |
C16 | 0.3507 (2) | −0.06169 (13) | 0.40298 (9) | 0.0230 (4) | 0.827 (4) |
H16A | 0.3537 | −0.1352 | 0.4173 | 0.034* | 0.827 (4) |
H16B | 0.3331 | −0.0577 | 0.3523 | 0.034* | 0.827 (4) |
H16C | 0.4462 | −0.0282 | 0.4229 | 0.034* | 0.827 (4) |
C17 | 0.0871 (9) | −0.0763 (6) | 0.4002 (4) | 0.0184 (19)* | 0.173 (4) |
H17A | 0.1111 | −0.1488 | 0.4144 | 0.028* | 0.173 (4) |
H17B | 0.0011 | −0.0528 | 0.4188 | 0.028* | 0.173 (4) |
H17C | 0.0629 | −0.0722 | 0.3495 | 0.028* | 0.173 (4) |
C21 | 0.36977 (14) | 0.59444 (10) | 0.30982 (7) | 0.0141 (2) | |
C22 | 0.32638 (15) | 0.51321 (10) | 0.25283 (6) | 0.0157 (2) | |
H22A | 0.2465 | 0.5419 | 0.2159 | 0.019* | |
H22B | 0.4139 | 0.4975 | 0.2321 | 0.019* | |
O22 | 0.27453 (11) | 0.41792 (7) | 0.27942 (5) | 0.01562 (17) | |
C23 | 0.46779 (14) | 0.54531 (10) | 0.37450 (7) | 0.0158 (2) | |
H23A | 0.5405 | 0.4972 | 0.3600 | 0.019* | |
H23B | 0.5249 | 0.6013 | 0.4030 | 0.019* | |
O23 | 0.38207 (10) | 0.48831 (7) | 0.41624 (5) | 0.01434 (17) | |
C24 | 0.23305 (14) | 0.64798 (10) | 0.32772 (7) | 0.0157 (2) | |
H24A | 0.2650 | 0.6928 | 0.3690 | 0.019* | |
H24B | 0.1856 | 0.6933 | 0.2887 | 0.019* | |
O24 | 0.12570 (11) | 0.57223 (7) | 0.34145 (5) | 0.01533 (17) | |
C25 | 0.46674 (15) | 0.67891 (11) | 0.28378 (7) | 0.0194 (3) | |
H25A | 0.4749 | 0.7398 | 0.3154 | 0.023* | |
H25B | 0.5686 | 0.6503 | 0.2872 | 0.023* | |
C26 | 0.41016 (18) | 0.71744 (12) | 0.20979 (8) | 0.0256 (3) | |
H26A | 0.4789 | 0.7703 | 0.1984 | 0.038* | |
H26B | 0.4046 | 0.6585 | 0.1776 | 0.038* | |
H26C | 0.3106 | 0.7482 | 0.2058 | 0.038* | |
N1 | −0.15472 (12) | 0.43478 (8) | 0.30929 (6) | 0.0147 (2) | |
O1 | −0.06405 (11) | 0.39309 (7) | 0.27587 (5) | 0.01717 (18) | |
O2 | −0.10340 (10) | 0.45124 (7) | 0.37367 (5) | 0.01666 (18) | |
O3 | −0.28209 (11) | 0.45781 (8) | 0.28147 (5) | 0.0226 (2) | |
N2 | 0.72651 (12) | 0.29286 (8) | 0.48389 (5) | 0.01374 (19) | |
O4 | 0.70888 (11) | 0.20729 (8) | 0.45553 (5) | 0.0224 (2) | |
O5 | 0.85643 (10) | 0.32966 (7) | 0.50584 (5) | 0.01657 (18) | |
O6 | 0.61580 (10) | 0.34701 (8) | 0.49253 (5) | 0.0213 (2) | |
N3 | 0.18037 (13) | 0.24790 (9) | 0.13412 (6) | 0.0163 (2) | |
O7 | 0.19294 (13) | 0.21012 (8) | 0.07818 (5) | 0.0253 (2) | |
O8 | 0.10941 (12) | 0.19955 (8) | 0.17319 (5) | 0.0226 (2) | |
O9 | 0.24079 (15) | 0.33293 (9) | 0.15397 (6) | 0.0319 (3) | |
O10 | 0.15368 (11) | 0.45418 (8) | 0.48688 (5) | 0.01625 (18) | |
H1OA | 0.160 (2) | 0.4204 (17) | 0.5185 (11) | 0.032 (5)* | |
H1OB | 0.148 (2) | 0.5141 (18) | 0.4948 (11) | 0.036 (6)* | |
H12O | −0.017 (2) | 0.2727 (15) | 0.4478 (10) | 0.028 (5)* | |
H13O | 0.131 (2) | 0.2279 (15) | 0.2698 (11) | 0.027 (5)* | |
H14O | 0.416 (2) | 0.2983 (16) | 0.4460 (10) | 0.030 (5)* | |
H22O | 0.255 (2) | 0.3813 (16) | 0.2486 (12) | 0.034 (6)* | |
H23O | 0.371 (2) | 0.5220 (16) | 0.4430 (10) | 0.026 (5)* | |
H24O | 0.058 (2) | 0.6003 (15) | 0.3462 (10) | 0.023 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Tb1 | 0.01123 (3) | 0.00934 (3) | 0.00935 (3) | 0.00074 (2) | 0.00253 (2) | −0.00031 (2) |
C11 | 0.0172 (6) | 0.0099 (5) | 0.0137 (6) | 0.0001 (4) | 0.0042 (4) | −0.0001 (4) |
C12 | 0.0188 (6) | 0.0110 (6) | 0.0231 (6) | −0.0014 (5) | 0.0088 (5) | 0.0006 (5) |
O12 | 0.0168 (4) | 0.0119 (4) | 0.0195 (4) | 0.0010 (3) | 0.0102 (4) | −0.0010 (3) |
C13 | 0.0243 (6) | 0.0118 (5) | 0.0148 (6) | 0.0030 (5) | 0.0053 (5) | −0.0012 (4) |
O13 | 0.0262 (5) | 0.0123 (4) | 0.0100 (4) | 0.0026 (4) | 0.0026 (4) | −0.0008 (3) |
C14 | 0.0176 (6) | 0.0114 (5) | 0.0175 (6) | 0.0017 (5) | 0.0007 (5) | 0.0019 (5) |
O14 | 0.0128 (4) | 0.0110 (4) | 0.0206 (5) | −0.0008 (3) | −0.0014 (3) | 0.0007 (3) |
C15 | 0.0251 (7) | 0.0113 (6) | 0.0213 (6) | 0.0012 (5) | 0.0052 (5) | 0.0018 (5) |
C16 | 0.0315 (9) | 0.0147 (8) | 0.0227 (8) | 0.0072 (6) | 0.0054 (7) | 0.0015 (6) |
C21 | 0.0153 (6) | 0.0127 (5) | 0.0155 (6) | −0.0008 (4) | 0.0058 (4) | −0.0002 (4) |
C22 | 0.0202 (6) | 0.0136 (6) | 0.0146 (5) | −0.0023 (5) | 0.0067 (5) | 0.0007 (4) |
O22 | 0.0215 (5) | 0.0119 (4) | 0.0154 (4) | −0.0024 (4) | 0.0082 (4) | −0.0030 (4) |
C23 | 0.0136 (5) | 0.0176 (6) | 0.0170 (6) | −0.0018 (5) | 0.0050 (4) | −0.0002 (5) |
O23 | 0.0160 (4) | 0.0138 (4) | 0.0135 (4) | −0.0010 (3) | 0.0039 (3) | −0.0010 (3) |
C24 | 0.0176 (6) | 0.0111 (5) | 0.0199 (6) | −0.0003 (4) | 0.0072 (5) | 0.0008 (5) |
O24 | 0.0139 (4) | 0.0117 (4) | 0.0223 (5) | 0.0020 (3) | 0.0081 (4) | 0.0011 (3) |
C25 | 0.0215 (6) | 0.0156 (6) | 0.0235 (6) | −0.0038 (5) | 0.0101 (5) | 0.0002 (5) |
C26 | 0.0306 (7) | 0.0204 (7) | 0.0286 (7) | −0.0004 (6) | 0.0126 (6) | 0.0078 (6) |
N1 | 0.0141 (5) | 0.0139 (5) | 0.0162 (5) | 0.0002 (4) | 0.0036 (4) | 0.0037 (4) |
O1 | 0.0157 (4) | 0.0220 (5) | 0.0142 (4) | 0.0024 (3) | 0.0037 (3) | −0.0023 (3) |
O2 | 0.0181 (4) | 0.0202 (5) | 0.0123 (4) | 0.0027 (4) | 0.0046 (3) | 0.0013 (3) |
O3 | 0.0132 (4) | 0.0289 (5) | 0.0247 (5) | 0.0042 (4) | 0.0014 (4) | 0.0064 (4) |
N2 | 0.0149 (5) | 0.0149 (5) | 0.0119 (5) | 0.0005 (4) | 0.0037 (4) | 0.0002 (4) |
O4 | 0.0239 (5) | 0.0153 (4) | 0.0289 (5) | −0.0022 (4) | 0.0075 (4) | −0.0079 (4) |
O5 | 0.0128 (4) | 0.0182 (4) | 0.0193 (4) | −0.0013 (3) | 0.0046 (3) | −0.0026 (4) |
O6 | 0.0125 (4) | 0.0218 (5) | 0.0287 (5) | 0.0025 (4) | 0.0023 (4) | −0.0096 (4) |
N3 | 0.0200 (5) | 0.0160 (5) | 0.0130 (5) | −0.0023 (4) | 0.0036 (4) | −0.0019 (4) |
O7 | 0.0388 (6) | 0.0249 (5) | 0.0143 (4) | −0.0077 (4) | 0.0104 (4) | −0.0073 (4) |
O8 | 0.0263 (5) | 0.0272 (5) | 0.0158 (4) | −0.0126 (4) | 0.0079 (4) | −0.0039 (4) |
O9 | 0.0526 (7) | 0.0215 (5) | 0.0251 (5) | −0.0174 (5) | 0.0161 (5) | −0.0096 (4) |
O10 | 0.0251 (5) | 0.0129 (4) | 0.0114 (4) | 0.0005 (4) | 0.0054 (4) | −0.0003 (4) |
Tb1—O14 | 2.3545 (9) | C17—H17B | 0.9800 |
Tb1—O12 | 2.3597 (9) | C17—H17C | 0.9800 |
Tb1—O22 | 2.3734 (9) | C21—C22 | 1.5220 (17) |
Tb1—O10 | 2.3786 (9) | C21—C24 | 1.5286 (17) |
Tb1—O24 | 2.4112 (9) | C21—C23 | 1.5353 (18) |
Tb1—O13 | 2.4119 (9) | C21—C25 | 1.5499 (17) |
Tb1—O23 | 2.4344 (9) | C22—O22 | 1.4443 (15) |
Tb1—O1 | 2.4706 (10) | C22—H22A | 0.9900 |
Tb1—O2 | 2.4762 (9) | C22—H22B | 0.9900 |
C11—C13 | 1.5269 (18) | O22—H22O | 0.76 (2) |
C11—C12 | 1.5271 (18) | C23—O23 | 1.4444 (15) |
C11—C14 | 1.5281 (17) | C23—H23A | 0.9900 |
C11—C15 | 1.5497 (17) | C23—H23B | 0.9900 |
C12—O12 | 1.4347 (15) | O23—H23O | 0.71 (2) |
C12—H12A | 0.9900 | C24—O24 | 1.4436 (15) |
C12—H12B | 0.9900 | C24—H24A | 0.9900 |
O12—H12O | 0.74 (2) | C24—H24B | 0.9900 |
C13—O13 | 1.4417 (15) | O24—H24O | 0.73 (2) |
C13—H13A | 0.9900 | C25—C26 | 1.526 (2) |
C13—H13B | 0.9900 | C25—H25A | 0.9900 |
O13—H13O | 0.77 (2) | C25—H25B | 0.9900 |
C14—O14 | 1.4412 (15) | C26—H26A | 0.9800 |
C14—H14A | 0.9900 | C26—H26B | 0.9800 |
C14—H14B | 0.9900 | C26—H26C | 0.9800 |
O14—H14O | 0.73 (2) | N1—O3 | 1.2177 (14) |
C15—C16 | 1.537 (2) | N1—O1 | 1.2764 (14) |
C15—C17 | 1.555 (8) | N1—O2 | 1.2775 (14) |
C15—H15A | 0.9900 | N2—O4 | 1.2244 (15) |
C15—H15B | 0.9900 | N2—O6 | 1.2664 (14) |
C15—H15C | 0.9900 | N2—O5 | 1.2689 (14) |
C15—H15D | 0.9900 | N3—O7 | 1.2308 (14) |
C16—H16A | 0.9800 | N3—O9 | 1.2458 (15) |
C16—H16B | 0.9800 | N3—O8 | 1.2652 (14) |
C16—H16C | 0.9800 | O10—H1OA | 0.75 (2) |
C17—H17A | 0.9800 | O10—H1OB | 0.79 (2) |
O14—Tb1—O12 | 72.38 (3) | C11—C15—H15D | 108.4 |
O14—Tb1—O22 | 93.64 (3) | C17—C15—H15D | 108.4 |
O12—Tb1—O22 | 140.67 (3) | H15C—C15—H15D | 107.4 |
O14—Tb1—O10 | 83.74 (3) | C15—C16—H16A | 109.5 |
O12—Tb1—O10 | 75.77 (3) | C15—C16—H16B | 109.5 |
O22—Tb1—O10 | 140.58 (3) | H16A—C16—H16B | 109.5 |
O14—Tb1—O24 | 138.28 (3) | C15—C16—H16C | 109.5 |
O12—Tb1—O24 | 141.14 (3) | H16A—C16—H16C | 109.5 |
O22—Tb1—O24 | 72.06 (3) | H16B—C16—H16C | 109.5 |
O10—Tb1—O24 | 83.96 (3) | C15—C17—H17A | 109.5 |
O14—Tb1—O13 | 70.72 (3) | C15—C17—H17B | 109.5 |
O12—Tb1—O13 | 68.99 (3) | H17A—C17—H17B | 109.5 |
O22—Tb1—O13 | 71.69 (3) | C15—C17—H17C | 109.5 |
O10—Tb1—O13 | 141.19 (3) | H17A—C17—H17C | 109.5 |
O24—Tb1—O13 | 134.33 (3) | H17B—C17—H17C | 109.5 |
O14—Tb1—O23 | 69.97 (3) | C22—C21—C24 | 111.96 (11) |
O12—Tb1—O23 | 131.17 (3) | C22—C21—C23 | 110.72 (10) |
O22—Tb1—O23 | 71.90 (3) | C24—C21—C23 | 110.95 (10) |
O10—Tb1—O23 | 70.30 (3) | C22—C21—C25 | 108.15 (10) |
O24—Tb1—O23 | 68.34 (3) | C24—C21—C25 | 108.34 (10) |
O13—Tb1—O23 | 123.37 (3) | C23—C21—C25 | 106.50 (10) |
O14—Tb1—O1 | 141.34 (3) | O22—C22—C21 | 111.30 (10) |
O12—Tb1—O1 | 88.98 (3) | O22—C22—H22A | 109.4 |
O22—Tb1—O1 | 79.51 (3) | C21—C22—H22A | 109.4 |
O10—Tb1—O1 | 124.95 (3) | O22—C22—H22B | 109.4 |
O24—Tb1—O1 | 75.88 (3) | C21—C22—H22B | 109.4 |
O13—Tb1—O1 | 71.02 (3) | H22A—C22—H22B | 108.0 |
O23—Tb1—O1 | 139.42 (3) | C22—O22—Tb1 | 130.51 (7) |
O14—Tb1—O2 | 142.17 (3) | C22—O22—H22O | 105.7 (16) |
O12—Tb1—O2 | 73.16 (3) | Tb1—O22—H22O | 117.7 (16) |
O22—Tb1—O2 | 123.21 (3) | O23—C23—C21 | 112.77 (10) |
O10—Tb1—O2 | 73.09 (3) | O23—C23—H23A | 109.0 |
O24—Tb1—O2 | 69.33 (3) | C21—C23—H23A | 109.0 |
O13—Tb1—O2 | 110.27 (3) | O23—C23—H23B | 109.0 |
O23—Tb1—O2 | 125.81 (3) | C21—C23—H23B | 109.0 |
O1—Tb1—O2 | 51.89 (3) | H23A—C23—H23B | 107.8 |
C13—C11—C12 | 111.13 (11) | C23—O23—Tb1 | 126.18 (7) |
C13—C11—C14 | 111.57 (10) | C23—O23—H23O | 107.4 (16) |
C12—C11—C14 | 111.21 (10) | Tb1—O23—H23O | 109.0 (16) |
C13—C11—C15 | 108.69 (10) | O24—C24—C21 | 111.24 (10) |
C12—C11—C15 | 106.67 (10) | O24—C24—H24A | 109.4 |
C14—C11—C15 | 107.34 (10) | C21—C24—H24A | 109.4 |
O12—C12—C11 | 111.87 (10) | O24—C24—H24B | 109.4 |
O12—C12—H12A | 109.2 | C21—C24—H24B | 109.4 |
C11—C12—H12A | 109.2 | H24A—C24—H24B | 108.0 |
O12—C12—H12B | 109.2 | C24—O24—Tb1 | 131.10 (8) |
C11—C12—H12B | 109.2 | C24—O24—H24O | 108.4 (15) |
H12A—C12—H12B | 107.9 | Tb1—O24—H24O | 118.9 (15) |
C12—O12—Tb1 | 132.24 (8) | C26—C25—C21 | 115.88 (12) |
C12—O12—H12O | 109.7 (15) | C26—C25—H25A | 108.3 |
Tb1—O12—H12O | 117.7 (15) | C21—C25—H25A | 108.3 |
O13—C13—C11 | 111.25 (10) | C26—C25—H25B | 108.3 |
O13—C13—H13A | 109.4 | C21—C25—H25B | 108.3 |
C11—C13—H13A | 109.4 | H25A—C25—H25B | 107.4 |
O13—C13—H13B | 109.4 | C25—C26—H26A | 109.5 |
C11—C13—H13B | 109.4 | C25—C26—H26B | 109.5 |
H13A—C13—H13B | 108.0 | H26A—C26—H26B | 109.5 |
C13—O13—Tb1 | 129.81 (7) | C25—C26—H26C | 109.5 |
C13—O13—H13O | 107.0 (15) | H26A—C26—H26C | 109.5 |
Tb1—O13—H13O | 121.7 (15) | H26B—C26—H26C | 109.5 |
O14—C14—C11 | 111.38 (10) | O3—N1—O1 | 122.06 (11) |
O14—C14—H14A | 109.4 | O3—N1—O2 | 122.07 (11) |
C11—C14—H14A | 109.4 | O1—N1—O2 | 115.87 (10) |
O14—C14—H14B | 109.4 | O3—N1—Tb1 | 177.09 (9) |
C11—C14—H14B | 109.4 | O1—N1—Tb1 | 57.85 (6) |
H14A—C14—H14B | 108.0 | O2—N1—Tb1 | 58.10 (6) |
C14—O14—Tb1 | 131.09 (8) | N1—O1—Tb1 | 96.21 (7) |
C14—O14—H14O | 108.8 (16) | N1—O2—Tb1 | 95.92 (7) |
Tb1—O14—H14O | 119.6 (16) | O4—N2—O6 | 121.06 (11) |
C16—C15—C11 | 116.37 (12) | O4—N2—O5 | 120.92 (11) |
C11—C15—C17 | 115.6 (3) | O6—N2—O5 | 118.02 (10) |
C16—C15—H15A | 108.2 | O7—N3—O9 | 120.49 (11) |
C11—C15—H15A | 108.2 | O7—N3—O8 | 120.47 (11) |
C16—C15—H15B | 108.2 | O9—N3—O8 | 119.01 (11) |
C11—C15—H15B | 108.2 | Tb1—O10—H1OA | 124.7 (16) |
H15A—C15—H15B | 107.3 | Tb1—O10—H1OB | 122.4 (15) |
C11—C15—H15C | 108.4 | H1OA—O10—H1OB | 113 (2) |
C17—C15—H15C | 108.4 | ||
C13—C11—C12—O12 | −72.04 (13) | C23—C21—C22—O22 | 46.85 (14) |
C14—C11—C12—O12 | 52.90 (14) | C25—C21—C22—O22 | 163.18 (10) |
C15—C11—C12—O12 | 169.64 (10) | C21—C22—O22—Tb1 | 29.13 (15) |
C11—C12—O12—Tb1 | 17.38 (16) | C22—C21—C23—O23 | −79.94 (13) |
C12—C11—C13—O13 | 49.60 (14) | C24—C21—C23—O23 | 45.02 (14) |
C14—C11—C13—O13 | −75.14 (13) | C25—C21—C23—O23 | 162.72 (10) |
C15—C11—C13—O13 | 166.69 (11) | C21—C23—O23—Tb1 | 33.74 (14) |
C11—C13—O13—Tb1 | 25.43 (15) | C22—C21—C24—O24 | 51.36 (14) |
C13—C11—C14—O14 | 49.60 (14) | C23—C21—C24—O24 | −72.89 (13) |
C12—C11—C14—O14 | −75.10 (13) | C25—C21—C24—O24 | 170.54 (10) |
C15—C11—C14—O14 | 168.57 (10) | C21—C24—O24—Tb1 | 20.64 (15) |
C11—C14—O14—Tb1 | 26.41 (15) | C22—C21—C25—C26 | 44.73 (15) |
C13—C11—C15—C16 | 49.30 (16) | C24—C21—C25—C26 | −76.83 (14) |
C12—C11—C15—C16 | 169.20 (12) | C23—C21—C25—C26 | 163.76 (11) |
C14—C11—C15—C16 | −71.51 (15) | O3—N1—O1—Tb1 | 176.57 (10) |
C13—C11—C15—C17 | −70.7 (3) | O2—N1—O1—Tb1 | −3.17 (11) |
C12—C11—C15—C17 | 49.2 (3) | O3—N1—O2—Tb1 | −176.58 (10) |
C14—C11—C15—C17 | 168.5 (3) | O1—N1—O2—Tb1 | 3.16 (11) |
C24—C21—C22—O22 | −77.54 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H1OA···O7i | 0.75 (2) | 2.03 (2) | 2.7420 (14) | 159 (2) |
O10—H1OB···O5ii | 0.79 (2) | 2.00 (2) | 2.7703 (14) | 167 (2) |
O13—H13O···O8 | 0.77 (2) | 1.91 (2) | 2.6695 (14) | 169 (2) |
O12—H12O···O5iii | 0.74 (2) | 1.93 (2) | 2.6713 (13) | 174 (2) |
O14—H14O···O6 | 0.73 (2) | 1.97 (2) | 2.6992 (14) | 174 (2) |
O23—H23O···O6ii | 0.71 (2) | 2.09 (2) | 2.7669 (14) | 161 (2) |
O22—H22O···O9 | 0.76 (2) | 1.94 (2) | 2.6609 (14) | 157 (2) |
O24—H24O···O8iv | 0.73 (2) | 1.97 (2) | 2.6650 (14) | 158 (2) |
C14—H14A···O7i | 0.99 | 2.58 | 3.3462 (17) | 135 |
C23—H23A···O3v | 0.99 | 2.51 | 3.4003 (16) | 149 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) −x, y+1/2, −z+1/2; (v) x+1, y, z. |
O24···O22···O13 | 101.47 | O2···O23···O14 | 86.82 |
O22···O13···O4 | 83.25 | O23···O14···O12 | 100.40 |
O13···O4···O24 | 81.56 | O14···O12···O2 | 86.34 |
O4···O24···O22 | 93.06 | O12···O2···O23 | 84.98 |
Complex 1 | Complex 2 | ||
Tb1—O1 | 2.5697 (13) | Tb1—O1 | 2.4706 (10) |
Tb1—O2 | 2.5418 (13) | Tb1—O2 | 2.4762 (9) |
Tb1—O4 | 2.4953 (13) | Tb1—O10 | 2.3786 (9) |
Tb1—O5 | 2.5874 (14) | ||
Tb1—O12 | 2.4078 (13) | Tb1—O12 | 2.3597 (9) |
Tb1—O13 | 2.4245 (14) | Tb1—O13 | 2.4119 (9) |
Tb1—O14 | 2.3810 (14) | Tb1—O14 | 2.3545 (9) |
Tb1—O22 | 2.3583 (13) | Tb1—O22 | 2.3734 (9) |
Tb1—O23 | 2.4749 (14) | Tb1—O23 | 2.4344 (9) |
Tb1—O24 | 2.3790 (13) | Tb1—O24 | 2.4112 (9) |
O12—Tb1—O13 | 66.85 (5) | O12—Tb1—O13 | 68.99 (3) |
O14—Tb1—O12 | 76.53 (5) | O14—Tb1—O12 | 72.38 (3) |
O22—Tb1—O12 | 136.11 (5) | O12—Tb1—O22 | 140.67 (3) |
O12—Tb1—O23 | 130.08 (5) | O12—Tb1—O23 | 131.17 (3) |
O24—Tb1—O12 | 147.08 (5) | O12—Tb1—O24 | 141.14 (3) |
O14—Tb1—O13 | 70.11 (5) | O14—Tb1—O13 | 70.72 (3) |
O22—Tb1—O13 | 71.20 (5) | O22—Tb1—O13 | 71.69 (3) |
O13—Tb1—O23 | 129.41 (5) | O13—Tb1—O23 | 123.37 (3) |
O24—Tb1—O13 | 128.37 (5) | O24—Tb1—O13 | 134.33 (3) |
O22—Tb1—O14 | 77.75 (5) | O14—Tb1—O22 | 93.64 (3) |
O14—Tb1—O23 | 70.24 (5) | O14—Tb1—O23 | 69.97 (3) |
O24—Tb1—O14 | 133.94 (5) | O14—Tb1—O24 | 138.28 (3) |
O22—Tb1—O23 | 70.76 (5) | O22—Tb1—O23 | 71.90 (3) |
O22—Tb1—O24 | 72.47 (5) | O22—Tb1—O24 | 72.06 (3) |
O24—Tb1—O23 | 67.19 (5) | O24—Tb1—O23 | 68.34 (3) |
O2—Tb1—O1 | 49.50 (4) | O1—Tb1—O2 | 51.89 (3) |
O4—Tb1—O1 | 104.45 (4) | O10—Tb1—O1 | 124.95 (3) |
O1—Tb1—O5 | 154.57 (4) | O10—Tb1—O2 | 73.09 (3) |
O4—Tb1—O2 | 62.06 (4) | ||
O2—Tb1—O5 | 107.78 (4) | ||
O4—Tb1—O5 | 50.12 (4) | ||
O12—Tb1—O1 | 69.27 (5) | O12—Tb1—O1 | 88.98 (3) |
O13—Tb1—O1 | 125.17 (4) | O13—Tb1—O1 | 71.02 (3) |
O14—Tb1—O1 | 69.06 (4) | O14—Tb1—O1 | 141.34 (3) |
O22—Tb1—O1 | 130.92 (4) | O22—Tb1—O1 | 79.51 (3) |
O23—Tb1—O1 | 64.60 (4) | O23—Tb1—O1 | 139.42 (3) |
O24—Tb1—O1 | 106.31 (4) | O24—Tb1—O1 | 75.88 (3) |
O12—Tb1—O2 | 80.97 (5) | O12—Tb1—O2 | 73.16 (3) |
O13—Tb1—O2 | 144.10 (5) | O13—Tb1—O2 | 110.27 (3) |
O14—Tb1—O2 | 118.55 (4) | O14—Tb1—O2 | 142.17 (3) |
O22—Tb1—O2 | 142.88 (5) | O22—Tb1—O2 | 123.21 (3) |
O23—Tb1—O2 | 83.39 (4) | O23—Tb1—O2 | 125.81 (3) |
O24—Tb1—O2 | 73.14 (4) | O24—Tb1—O2 | 69.33 (3) |
O12—Tb1—O4 | 72.71 (5) | O12—Tb1—O10 | 75.77 (3) |
O13—Tb1—O4 | 92.32 (5) | O10—Tb1—O13 | 141.19 (3) |
O14—Tb1—O4 | 148.71 (4) | O14—Tb1—O10 | 83.74 (3) |
O22—Tb1—O4 | 122.01 (4) | O22—Tb1—O10 | 140.58 (3) |
O23—Tb1—O4 | 136.38 (5) | O10—Tb1—O23 | 70.30 (3) |
O24—Tb1—O4 | 77.30 (5) | O10—Tb1—O24 | 83.96 (3) |
O12—Tb1—O5 | 98.74 (5) | ||
O13—Tb1—O5 | 64.19 (5) | ||
O14—Tb1—O5 | 131.61 (5) | ||
O22—Tb1—O5 | 73.45 (4) | ||
O23—Tb1—O5 | 131.18 (4) | ||
O24—Tb1—O5 | 71.11 (5) |
Eu—O(NO3) | 2.4869 (12) | Eu—O(NO3) | 2.517 (2) | Eu—O(H2O) | 2.4279 (14) |
Tb—O(NO3) | 2.4706 (10) | Tb—O(NO3) | 2.4762 (9) | Tb—O(H2O) | 2.3786 (9) |
Ho—O(NO3) | 2.450 (9) | Ho—O(NO3) | 2.454 (8) | Ho—O(H2O) | 2.377 (8) |
Yb—O(NO3) | 2.448 (6) | Yb—O(NO3) | 2.439 (7) | Yb—O(H2O) | 2.331 (7) |
Notes: (a) this work, product 2; (b) Delangle et al. (2001); Husson et al. (1999). |
Acknowledgements
We thank Dr André Luis Rüdiger (UFPR) for his help with the 2. We also gratefully acknowledge the financial support from the Brazilian Research Council (CNPq, grant 307592/2012–0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, PVE A099/2013 and PNPD 2376/2011), Fundação Araucária (grant 283/2014, protocol 37509) and Universidade Federal do Paraná (UFPR). TG, SOKG, DLH and JFS thank CAPES and CNPq for research grants and scholarships.
resolution of productReferences
Accorsi, S., Barra, A. L., Caneschi, A., Chastanet, G., Cornia, A., Fabretti, A. C., Gatteschi, D., Mortalo, C., Olivieri, E., Parenti, F., Rosa, P., Sessoli, R., Sorace, L., Wernsdorfer, W. & Zobbi, L. (2006). J. Am. Chem. Soc. 128, 4742–4755. CSD CrossRef CAS Google Scholar
Benelli, C. & Gatteschi, D. (2015). In Introduction to Molecular Magnetism: From Transition Metals to Lanthanides. Weinheim, Germany: Wiley-VCH. Google Scholar
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Q., Chang, Y. D. & Zubieta, J. (1997). Inorg. Chim. Acta, 258, 257–262. CSD CrossRef CAS Web of Science Google Scholar
Delangle, P., Husson, C., Lebrun, C., Pécaut, J. & Vottéro, P. J. A. (2001). Inorg. Chem. 40, 2953–2962. CSD CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frost, J. M., Harriman, K. L. M. & Murugesu, M. (2016). Chem. Sci. 7, 2470–2491. CrossRef CAS Google Scholar
Gatteschi, D., Sessoli, R. & Villain, J. (2006). In Molecular nanomagnets. Oxford University Press. Google Scholar
Gregoli, L., Danieli, C., Barra, A.-L., Neugebauer, P., Pellegrino, G., Poneti, G., Sessoli, R. & Cornia, A. (2009). Chem. Eur. J. 15, 6456–6467. CSD CrossRef CAS Google Scholar
Husson, C., Delangle, P., Pécaut, J. & Vottéro, P. J. A. (1999). Inorg. Chem. 38, 2012–2019. CSD CrossRef CAS Google Scholar
Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kahn, O. (1997). Nato Advanced Science Institutes Series, Series C, Mathematical and Physical Sciences, Vol. 499, Modular Chemistry, edited by J. Michl, pp. 287–302. Google Scholar
Liu, J., Chen, Y.-C., Liu, J.-L., Vieru, V., Ungur, L., Jia, J.-H., Chibotaru, L. F., Lan, Y., Wernsdorfer, W., Gao, S., Chen, X.-M. & Tong, M.-L. (2016). J. Am. Chem. Soc. 138, 5441–5450. CSD CrossRef CAS Google Scholar
Liu, K., Shi, W. & Cheng, P. (2015). Coord. Chem. Rev. 289–290, 74–122. Web of Science CrossRef CAS Google Scholar
Liu, J.-L., Wu, J.-Y., Chen, Y.-C., Mereacre, V., Powell, A. K., Ungur, L., Chibotaru, L. F., Chen, X.-M. & Tong, M.-L. (2014). Angew. Chem. Int. Ed. 53, 12966–12970. Web of Science CSD CrossRef CAS Google Scholar
Luzon, J. & Sessoli, R. (2012). Dalton Trans. 41, 13556–13567. Web of Science CrossRef CAS PubMed Google Scholar
Meng, Y. S., Jiang, S. D., Wang, B. W. & Gao, S. (2016). Acc. Chem. Res. 49, 2381–2389. CrossRef CAS Google Scholar
Osa, S., Kido, T., Matsumoto, N., Re, N., Pochaba, A. & Mrozinski, J. (2004). J. Am. Chem. Soc. 126, 420–421. Web of Science CrossRef CAS Google Scholar
Perrin, D. D. & Armarego, W. L. (1997). In Purification of Laboratory Chemicals, 3rd ed. Oxford: Butterworth–Heinemann. Google Scholar
Rohrbaugh, W. J. & Jacobson, R. A. (1974). Inorg. Chem. 13, 2535–2539. CrossRef CAS Google Scholar
Sessoli, R. & Powell, A. K. (2009). Coord. Chem. Rev. 253, 2328–2341. Web of Science CrossRef CAS Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stumpf, H. O., Pei, Y., Kahn, O., Ouahab, L. & Grandjean, D. (1993). Science, 261, 447–449. CSD CrossRef CAS Google Scholar
Su, Y., Yang, L., Jin, X., Weng, S. & Wu, J. (2002). J. Mol. Struct. 616, 221–230. CSD CrossRef CAS Google Scholar
Totaro, P., Westrup, K. C. M., Boulon, M.-E., Nunes, G. G., Back, D. F., Barison, A., Ciattini, S., Mannini, M., Sorace, L., Soares, J. F., Cornia, A. & Sessoli, R. (2013). Dalton Trans. 42, 4416–4426. Web of Science CSD CrossRef CAS PubMed Google Scholar
Vieru, V., Iwahara, N., Ungur, L. & Chibotaru, L. F. (2016). Sci. Rep. 6, 24046. CrossRef Google Scholar
Westrup, K. C. M., Boulon, M. E., Totaro, P., Nunes, G. G., Back, D. F., Barison, A., Jackson, M., Paulsen, C., Gatteschi, D., Sorace, L., Cornia, A., Soares, J. F. & Sessoli, R. (2014). Chem. Eur. J. 20, 13681–13691. CSD CrossRef CAS Google Scholar
Xu, Z., Zhang, L., Li, D., Liu, X., Wang, Y. & Lin, J. (2015). Polyhedron, 92, 37–40. CSD CrossRef CAS Google Scholar
Yang, L., Hua, X., Xue, J., Pan, Q., Yu, L., Li, W., Xu, Y., Zhao, G., Liu, L., Liu, K., Chen, J. & Wu, J. (2012). Inorg. Chem. 51, 499–510. CSD CrossRef Google Scholar
Yang, L., Xie, D., Xu, Y., Wang, Y., Zhang, S., Weng, S., Zhao, K. & Wu, J. (2005). J. Inorg. Biochem. 99, 1090–1097. CSD CrossRef CAS Google Scholar
Yang, L., Xu, Y., Wang, Y., Zhang, S., Weng, S., Zhao, K. & Wu, J. (2005). Carbohydr. Res. 340, 2773–2781. CSD CrossRef CAS Google Scholar
Yu, L., Hua, X., Pan, Q., Yang, L., Xu, Y., Zhao, G., Wang, H., Wang, H., Wu, J., Liu, K. & Chen, J. (2011). Carbohydr. Res. 346, 2278–2284. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.