research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris­­(hy­dr­oxy­meth­yl)propane

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, 81530-900 Curitiba-PR, Brazil, and bSchool of Chemistry, University of East Anglia, University Plain, Norwich NR4 7TJ, UK
*Correspondence e-mail: jaisa@quimica.ufpr.br, d.l.hughes@uea.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 17 January 2017; accepted 23 January 2017; online 27 January 2017)

Two new mononuclear cationic complexes in which the TbIII ion is bis-chelated by the tripodal alcohol 1,1,1-tris­(hy­droxy­meth­yl)propane (H3LEt, C6H14O3) were prepared from Tb(NO3)3·5H2O and had their crystal and mol­ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris­(hy­droxy­meth­yl)propane]­terbium(III) nitrate di­meth­oxy­ethane hemisolvate, [Tb(NO3)2(H3LEt)2]NO3·0.5C4H10O2, 1, in which the lanthanide ion is 10-coordinate and adopts an s-bicapped square-anti­prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol­ecule of di­meth­oxy­ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua­nitratobis[1,1,1-tris­(hy­droxy­meth­yl)propane]­terbium(III) dinitrate, [Tb(NO3)(H3LEt)2(H2O)](NO3)2, 2, one bidentate nitrate ion and one water mol­ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol­ecule was found in either of the crystal structures and, only in the case of 1, di­meth­oxy­ethane acts as a crystallizing solvent. In both mol­ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2, the methyl group of one of the H3LEt ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter­molecular, are found in the crystal structures due to the number of different donor and acceptor groups present.

1. Chemical context

Our inter­est in developing synthetic routes for the synthesis of mono- or polynuclear complexes containing lanthanide(III) ions is based on the possibility that these compounds behave as single-ion (SIM) or single-mol­ecule (SMM) magnets (Benelli & Gatteschi, 2015[Benelli, C. & Gatteschi, D. (2015). In Introduction to Molecular Magnetism: From Transition Metals to Lanthanides. Weinheim, Germany: Wiley-VCH.]; Gatteschi et al., 2006[Gatteschi, D., Sessoli, R. & Villain, J. (2006). In Molecular nanomagnets. Oxford University Press.]; Frost et al., 2016[Frost, J. M., Harriman, K. L. M. & Murugesu, M. (2016). Chem. Sci. 7, 2470-2491.]; Meng et al., 2016[Meng, Y. S., Jiang, S. D., Wang, B. W. & Gao, S. (2016). Acc. Chem. Res. 49, 2381-2389.]). In such chemical species, it is usually possible to exploit the strong spin-orbit coupling, the relatively high-spin angular momentum and the large magnetic anisotropy presented by lanthanides to maximize the energy barrier for the reversal of the magnetization (Luzon & Sessoli, 2012[Luzon, J. & Sessoli, R. (2012). Dalton Trans. 41, 13556-13567.]; Vieru et al., 2016[Vieru, V., Iwahara, N., Ungur, L. & Chibotaru, L. F. (2016). Sci. Rep. 6, 24046.]; Sessoli & Powell, 2009[Sessoli, R. & Powell, A. K. (2009). Coord. Chem. Rev. 253, 2328-2341.]) and therefore increase the technological applicability of these materials.

With this objective in mind, our first steps were the synthesis and characterization of complexes containing LnIII ions that could be used as building blocks for polynuclear 3d–4f block metal aggregates. The first report of a heterometallic complex of this type that showed SMM behaviour described the tetra­nuclear mol­ecule [{CuIILTbIII(Hfac)2}2] [H3L = 1-(2-hy­droxy­benzamido)-2-(2-hy­droxy-3-meth­oxy-benzyl­idene­amino)­ethane and Hfac = hexa­fluoro­acetyl­acetone], obtained by self-assembly (Osa et al., 2004[Osa, S., Kido, T., Matsumoto, N., Re, N., Pochaba, A. & Mrozinski, J. (2004). J. Am. Chem. Soc. 126, 420-421.]). Magnetic studies of the product revealed ferromagnetic exchange and slow relaxation of the magnetization at low temperatures, with a potential energy barrier Δ/kB of 21 K (14.7 cm−1).

After this report, many other heterometallic complexes containing 3d and 4f ions with different structures and nuclearities were characterized as single-mol­ecule magnets (Liu et al., 2015[Liu, K., Shi, W. & Cheng, P. (2015). Coord. Chem. Rev. 289-290, 74-122.]). In 2014, a trinuclear complex of dyspros­ium(III) and iron(II) presented the largest potential energy barrier reported to date for this type of system. The mol­ecule, formulated as [FeII2DyIIIL2(H2O)]ClO4·2H2O, L = 2,2′,2′′-{[nitrilo­tris­(ethane-2,1-di­yl)]tris­(aza­nedi­yl)methyl­ene}tris­(4-chloro­phenol), and also synthesized in a self-assembly reaction, presents two iron(II) ions in different coordination environments (octa­hedral and distorted trigonal prismatic) bound to a dysprosium(III) ion in quasi-D5h symmetry, which is pointed out by the authors as fundamental for the observed SMM behaviour and for the impressive potential energy barrier of 459 K (319 cm−1) (Liu et al., 2014[Liu, J.-L., Wu, J.-Y., Chen, Y.-C., Mereacre, V., Powell, A. K., Ungur, L., Chibotaru, L. F., Chen, X.-M. & Tong, M.-L. (2014). Angew. Chem. Int. Ed. 53, 12966-12970.]). This value, although lower than the record figures reported for lanthan­ide-containing SIM compounds (Liu et al., 2016[Liu, J., Chen, Y.-C., Liu, J.-L., Vieru, V., Ungur, L., Jia, J.-H., Chibotaru, L. F., Lan, Y., Wernsdorfer, W., Gao, S., Chen, X.-M. & Tong, M.-L. (2016). J. Am. Chem. Soc. 138, 5441-5450.]), still reveals the potential of mixed 3d–4f metal complexes to behave as quantum magnets.

Despite these good results, most of the experimental procedures employed for the preparation of these polynuclear compounds involve self-assembly reactions, which often compete with the rational design of the desired mol­ecules. Many efforts have been directed recently to the development of synthetic routes that allow for greater predictability of the formed products, both structural and with respect to their magnetic properties, employing simple and elegant experimental procedures that include modular synthesis approaches (Kahn, 1997[Kahn, O. (1997). Nato Advanced Science Institutes Series, Series C, Mathematical and Physical Sciences, Vol. 499, Modular Chemistry, edited by J. Michl, pp. 287-302.]; Stumpf et al., 1993[Stumpf, H. O., Pei, Y., Kahn, O., Ouahab, L. & Grandjean, D. (1993). Science, 261, 447-449.]).

In this context, the present work involved reactions between the tripodal alcohol H3LEt [1,1,1-tris­(hy­droxy­meth­yl)propane] and Tb(NO3)3·5H2O that generated the new, cationic complexes [Tb(H3LEt)2(NO3)2](NO3)·0.5glyme (product 1) and [Tb(H3LEt)2(NO3)(H2O)](NO3)2 (product 2). In both cases, the coordination environment of the lanthanide ion is similar to that observed in the central unit (core) of star-shaped heterometallic SMMs of general formula [M3M′(LEt)2(dpm)3] (M and M′ = transition metal(III) ions; LEt = EtC(CH2O)33− tripodal alkoxide and Hdpm = dipivaloyl­methane) (Accorsi et al., 2006[Accorsi, S., Barra, A. L., Caneschi, A., Chastanet, G., Cornia, A., Fabretti, A. C., Gatteschi, D., Mortalo, C., Olivieri, E., Parenti, F., Rosa, P., Sessoli, R., Sorace, L., Wernsdorfer, W. & Zobbi, L. (2006). J. Am. Chem. Soc. 128, 4742-4755.]; Totaro et al., 2013[Totaro, P., Westrup, K. C. M., Boulon, M.-E., Nunes, G. G., Back, D. F., Barison, A., Ciattini, S., Mannini, M., Sorace, L., Soares, J. F., Cornia, A. & Sessoli, R. (2013). Dalton Trans. 42, 4416-4426.]; Westrup et al., 2014[Westrup, K. C. M., Boulon, M. E., Totaro, P., Nunes, G. G., Back, D. F., Barison, A., Jackson, M., Paulsen, C., Gatteschi, D., Sorace, L., Cornia, A., Soares, J. F. & Sessoli, R. (2014). Chem. Eur. J. 20, 13681-13691.]; Gregoli et al., 2009[Gregoli, L., Danieli, C., Barra, A.-L., Neugebauer, P., Pellegrino, G., Poneti, G., Sessoli, R. & Cornia, A. (2009). Chem. Eur. J. 15, 6456-6467.]). Complexes 1 and 2 were characterized by elemental and X-ray diffraction analysis, together with vibrational (infrared) spectroscopy. These products are potential building blocks to be subsequently combined, in stoichiometric proportions, with other 3d and 4f starting materials to give heterometallic products with potentially inter­esting magnetic properties.

[Scheme 1]

2. Structural commentary

The crystals of product 1 contain the mononuclear complex [Tb(H3LEt)2(NO3)2](NO3)·0.5glyme (Fig. 1[link]), in which the terbium(III) ion is 10-coordinate, being connected to six hydroxyl groups of the tripodal alcohol mol­ecules and to two bidentate nitrate ions. There is also one nitrate ion (acting as a counter-ion); a solvating di­meth­oxy­ethane (glyme) mol­ecule is shared between two units of the cationic complex. The complete gylme mol­ecule is completed by a crystallographic twofold rotation axis.

[Figure 1]
Figure 1
ORTEP representation of product 1, [Tb(H3LEt)2(NO3)2](NO3)·0.5C4H10O2 (H3LEt = 1,1,1-tris­(hy­droxy­meth­yl) propane and C4H10O2 = di­meth­oxy­ethane), with the atom-numbering scheme. There is disorder in the tripodal ligand of C21, with the minor component shown with striped bonds. Hydrogen atoms were omitted for clarity, and displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) −x + [1\over2], y, 1 − z.]

The geometric arrangement of the oxygen donor atoms about the metal atom in 1 is closer to a distorted s-bicapped square anti­prism, Fig. 2[link], than to an s-bicapped dodeca­hedron (Rohrbaugh & Jacobson, 1974[Rohrbaugh, W. J. & Jacobson, R. A. (1974). Inorg. Chem. 13, 2535-2539.]). The choice of the bicapped square-anti­prismatic coordination sphere is mainly based on the angles between the coordinating oxygen atoms presented in Table 1[link], which are closer to the expected 90° values of the square planes in the former (Fig. 2[link]) than to the alternating ca 77 and 100° angles in the latter (Rohrbaugh & Jacobson, 1974[Rohrbaugh, W. J. & Jacobson, R. A. (1974). Inorg. Chem. 13, 2535-2539.]).

Table 1
Selected non-bonding angles (°) in the mol­ecular structure of product 1

O24⋯O22⋯O13 101.47 O2⋯O23⋯O14 86.82
O22⋯O13⋯O4 83.25 O23⋯O14⋯O12 100.40
O13⋯O4⋯O24 81.56 O14⋯O12⋯O2 86.34
O4⋯O24⋯O22 93.06 O12⋯O2⋯O23 84.98
[Figure 2]
Figure 2
Plot of the coordination sphere (left) and schematic representation of the coordination environment about the terbium(III) atom in product 1. The two mutually rotated square faces O2–O12–O14–O23 and O13—O22—O24—O4 are capped by atoms O1 and O5, respectively.

The mean square planes represented in Fig. 2[link] form a dihedral angle of 5.58° in the complex cation of 1. The capping atoms, O1 and O5, both belong to the bidentate NO3 ligands and form the two longest Tb—O bonds in the structure of 1, 2.5697 (13) and 2.5874 (14) Å, respectively. Because of the typically small bite angles of the chelating nitrate ions, 49.50 (4)° for O2—Tb1—O1 and 50.12 (4)° for O4—Tb1—O5, the Tb—O1 and Tb—O5 bonds are significantly bent towards O2 and O4, respectively, creating additional structural distortion.

The average Tb—O bond involving the bidentate nitrate ligands in 1 [2.549 Å, and Table 2[link]] is shorter than that described by Delangle and co-workers for the lanthanum(III) cation [La(H3L1)2(NO3)2]+, H3L1 = cis,cis-1,3,5-tri­hydroxy­cyclo­hexane; average = 2.681 Å; Delangle et al., 2001[Delangle, P., Husson, C., Lebrun, C., Pécaut, J. & Vottéro, P. J. A. (2001). Inorg. Chem. 40, 2953-2962.]]. This agrees with the smaller effective ionic radius of the TbIII ion as compared to that of LaIII (for example 1.095 versus 1.216 Å for nine-coordination respectively; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The effective ionic radius for 10-coordinate terbium(III) is not available in the literature. The mean Tb—O bond to the tripodal H3LEt ligands is 2.404 Å, again significantly shorter than in the lanthanum(III)–cyclic triol analogue mentioned above (average = 2.542 Å). The lack of other reported lanthanide complexes with a bis­(tripodal alcohol)-bis(bidentate nitrate) coordination environment similar to that found in 1 restricts further comparisons.

Table 2
Metal–oxygen distances (Å) in the two complexes, 1 and 2

Complex 1   Complex 2  
Tb1—O1 2.5697 (13) Tb1—O1 2.4706 (10)
Tb1—O2 2.5418 (13) Tb1—O2 2.4762 (9)
Tb1—O4 2.4953 (13) Tb1—O10 2.3786 (9)
Tb1—O5 2.5874 (14)    
Tb1—O12 2.4078 (13) Tb1—O12 2.3597 (9)
Tb1—O13 2.4245 (14) Tb1—O13 2.4119 (9)
Tb1—O14 2.3810 (14) Tb1—O14 2.3545 (9)
Tb1—O22 2.3583 (13) Tb1—O22 2.3734 (9)
Tb1—O23 2.4749 (14) Tb1—O23 2.4344 (9)
Tb1—O24 2.3790 (13) Tb1—O24 2.4112 (9)
       
O12—Tb1—O13 66.85 (5) O12—Tb1—O13 68.99 (3)
O14—Tb1—O12 76.53 (5) O14—Tb1—O12 72.38 (3)
O22—Tb1—O12 136.11 (5) O12—Tb1—O22 140.67 (3)
O12—Tb1—O23 130.08 (5) O12—Tb1—O23 131.17 (3)
O24—Tb1—O12 147.08 (5) O12—Tb1—O24 141.14 (3)
O14—Tb1—O13 70.11 (5) O14—Tb1—O13 70.72 (3)
O22—Tb1—O13 71.20 (5) O22—Tb1—O13 71.69 (3)
O13—Tb1—O23 129.41 (5) O13—Tb1—O23 123.37 (3)
O24—Tb1—O13 128.37 (5) O24—Tb1—O13 134.33 (3)
O22—Tb1—O14 77.75 (5) O14—Tb1—O22 93.64 (3)
O14—Tb1—O23 70.24 (5) O14—Tb1—O23 69.97 (3)
O24—Tb1—O14 133.94 (5) O14—Tb1—O24 138.28 (3)
O22—Tb1—O23 70.76 (5) O22—Tb1—O23 71.90 (3)
O22—Tb1—O24 72.47 (5) O22—Tb1—O24 72.06 (3)
O24—Tb1—O23 67.19 (5) O24—Tb1—O23 68.34 (3)
       
O2—Tb1—O1 49.50 (4) O1—Tb1—O2 51.89 (3)
O4—Tb1—O1 104.45 (4) O10—Tb1—O1 124.95 (3)
O1—Tb1—O5 154.57 (4) O10—Tb1—O2 73.09 (3)
O4—Tb1—O2 62.06 (4)    
O2—Tb1—O5 107.78 (4)    
O4—Tb1—O5 50.12 (4)    
O12—Tb1—O1 69.27 (5) O12—Tb1—O1 88.98 (3)
O13—Tb1—O1 125.17 (4) O13—Tb1—O1 71.02 (3)
O14—Tb1—O1 69.06 (4) O14—Tb1—O1 141.34 (3)
O22—Tb1—O1 130.92 (4) O22—Tb1—O1 79.51 (3)
O23—Tb1—O1 64.60 (4) O23—Tb1—O1 139.42 (3)
O24—Tb1—O1 106.31 (4) O24—Tb1—O1 75.88 (3)
O12—Tb1—O2 80.97 (5) O12—Tb1—O2 73.16 (3)
O13—Tb1—O2 144.10 (5) O13—Tb1—O2 110.27 (3)
O14—Tb1—O2 118.55 (4) O14—Tb1—O2 142.17 (3)
O22—Tb1—O2 142.88 (5) O22—Tb1—O2 123.21 (3)
O23—Tb1—O2 83.39 (4) O23—Tb1—O2 125.81 (3)
O24—Tb1—O2 73.14 (4) O24—Tb1—O2 69.33 (3)
O12—Tb1—O4 72.71 (5) O12—Tb1—O10 75.77 (3)
O13—Tb1—O4 92.32 (5) O10—Tb1—O13 141.19 (3)
O14—Tb1—O4 148.71 (4) O14—Tb1—O10 83.74 (3)
O22—Tb1—O4 122.01 (4) O22—Tb1—O10 140.58 (3)
O23—Tb1—O4 136.38 (5) O10—Tb1—O23 70.30 (3)
O24—Tb1—O4 77.30 (5) O10—Tb1—O24 83.96 (3)
O12—Tb1—O5 98.74 (5)    
O13—Tb1—O5 64.19 (5)    
O14—Tb1—O5 131.61 (5)    
O22—Tb1—O5 73.45 (4)    
O23—Tb1—O5 131.18 (4)    
O24—Tb1—O5 71.11 (5)    

The slow mixing of a hexane layer into the same reaction mixture that gave product 1 afforded another set of colourless crystals, product 2, in high yield (see Synthesis and crystallization). As for 1, crystals of 2 were practically insoluble at room temperature in hexane, toluene, thf, glyme and aceto­nitrile, but soluble in the last three solvents after heating at ca 323 K.

Single-crystal X-ray diffraction analysis of 2 revealed again a mononuclear complex, this time of formula [Tb(H3LEt)2(NO3)(H2O)](NO3)2 (Fig. 3[link]), in which the coordination number of the metal atom is nine. In this case, the terb­ium(III) atom is coordinated by six hydroxyl groups of the tripodal alcohols, a bidentate nitrate ion and one water mol­ecule probably coming from the Tb(NO3)3·5H2O starting material. Two distinct non-coordinating nitrate anions complete the charge balance in the product.

[Figure 3]
Figure 3
ORTEP representation of product 2, [Tb(H3LEt)2(NO3)(H2O)](NO3)2, with the atom-numbering scheme. The terminal methyl group on C15 is disordered; the bonding of the minor component is shown with a striped bond. Displacement ellipsoids correspond to the 50% probability level. Hydrogen bonds are indicated by double-dashed lines.

The geometry adopted by the metal atom in 2 is close to a tri-capped trigonal prism, as reported for complexes [Ln(H3L1)2(NO3)(H2O)](NO3)2 (Ln = HoIII, EuIII and YbIII; H3L1 = cis,cis-1,3,5-tri­hydroxy­cyclo­hexane; Husson et al., 1999[Husson, C., Delangle, P., Pécaut, J. & Vottéro, P. J. A. (1999). Inorg. Chem. 38, 2012-2019.]; Delangle et al., 2001[Delangle, P., Husson, C., Lebrun, C., Pécaut, J. & Vottéro, P. J. A. (2001). Inorg. Chem. 40, 2953-2962.]). The two triangular faces, defined by O10–O12–O14 and O1–O22–O24, are nearly parallel, with a dihedral angle of 5.14° between the normals to the mean planes. The three rectangular faces, in turn, formed by O1–O12–O14–O22, O1–O10–O12–O24 and O10–O14–O22–O24, are capped by O13, O2 and O23, respectively. In these rectangular faces, the longer O⋯O distance is on average 3.345 Å, while the shorter is 2.961 Å (mean value). The alternative geometry of a monocapped square anti­prism, as described for [Y(H3LMe)2(NO3)(H2O)](NO3)2 (Chen et al., 1997[Chen, Q., Chang, Y. D. & Zubieta, J. (1997). Inorg. Chim. Acta, 258, 257-262.]), appears less suitable to characterize 2 because of a much less regular placement of the coordinating oxygen atoms in the two square planes, O10–O12–O13–O23 and O1–O2–O22–O24, that are typical of this polyhedral arrangement.

The coordination of the TbIII atom by the two tripodal ligands in both 1 and 2 is very similar. In the [M3M′(LEt)2(dpm)3] complexes (M and M′ = d-block metals), as above (Accorsi et al., 2006[Accorsi, S., Barra, A. L., Caneschi, A., Chastanet, G., Cornia, A., Fabretti, A. C., Gatteschi, D., Mortalo, C., Olivieri, E., Parenti, F., Rosa, P., Sessoli, R., Sorace, L., Wernsdorfer, W. & Zobbi, L. (2006). J. Am. Chem. Soc. 128, 4742-4755.]; Totaro et al., 2013[Totaro, P., Westrup, K. C. M., Boulon, M.-E., Nunes, G. G., Back, D. F., Barison, A., Ciattini, S., Mannini, M., Sorace, L., Soares, J. F., Cornia, A. & Sessoli, R. (2013). Dalton Trans. 42, 4416-4426.]; Westrup et al., 2014[Westrup, K. C. M., Boulon, M. E., Totaro, P., Nunes, G. G., Back, D. F., Barison, A., Jackson, M., Paulsen, C., Gatteschi, D., Sorace, L., Cornia, A., Soares, J. F. & Sessoli, R. (2014). Chem. Eur. J. 20, 13681-13691.]; Gregoli et al., 2009[Gregoli, L., Danieli, C., Barra, A.-L., Neugebauer, P., Pellegrino, G., Poneti, G., Sessoli, R. & Cornia, A. (2009). Chem. Eur. J. 15, 6456-6467.]), the central metal is six-coordinate and the two tripodal ligands are inverted about that atom in an approximately octa­hedral arrangement; here, the CB⋯M ⋯CB′ angle is close to 180° (where CB and CB′ are the bridgehead carbon atoms in the tripodal ligand). In our complexes 1 and 2, with 10- and 9-coordinate atoms, the tripodal ligands are tilted apart, with C11—Tb1—C21 angles of 129.7 and 135.5°, respectively; this arrangement allows more space for the extra ligands in the coordination sphere. In both 1 and 2, all the extra ligands, nitrate ions and water mol­ecules, lie on the plane that bis­ects the tripodal ligands; the number of extra coord­in­ating atoms determines the distribution in the bis­ecting plane and overall geometrical patterns, as described above.

According to Table 2[link], the metal–oxygen distances involving the H3LEt ligands in 1 and 2 vary from 2.3583 (13) to 2.4749 (14) (complex 1) and from 2.3545 (9) to 2.4344 (9) Å (complex 2), these ranges being slightly larger than those reported for the Ln3+ complexes of the tri­hydroxy­cyclo­hexane ligands (Delangle et al., 2001[Delangle, P., Husson, C., Lebrun, C., Pécaut, J. & Vottéro, P. J. A. (2001). Inorg. Chem. 40, 2953-2962.]). This probably arises from the different flexibilities of H3LEt and the cyclic alcohols used in the syntheses, which allow for distortions of the lanthanide coordination environments. Also, the more crowded environment of the 10-coordinated metal ion in 1 as compared to 2 probably causes the larger observed variation.

The Tb—O bond lengths involving the nitrate ions in 2 are inter­mediate when compared to the analogous complexes of EuIII, HoIII and YbIII (Delangle et al., 2001[Delangle, P., Husson, C., Lebrun, C., Pécaut, J. & Vottéro, P. J. A. (2001). Inorg. Chem. 40, 2953-2962.]; Husson et al., 1999[Husson, C., Delangle, P., Pécaut, J. & Vottéro, P. J. A. (1999). Inorg. Chem. 38, 2012-2019.]) (Table 3[link]). This is in agreement with the gradual decrease of the effective ionic radii of these ions (1.120, 1.095, 1.072 and 1.042 Å for EuIII, TbIII, HoIII and YbIII, respectively, in 9-coordinate environments; Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). The same pattern is observed for the average metal–oxygen bond of the water mol­ecule (Table 3[link]).

Table 3
Bond lengths (Å) involving the metal cations and the nitrate/water ligands in the lanthanide complexes [Tb(H3LEt)2(NO3)(H2O)](NO3)2a and [Ln(H3L1)(NO3)(H2O)](NO3)2 (Ln = EuIII, HoIII and YbIII; H3L1 = cis,cis-1,3,5-tri­hydroxy­cyclo­hexa­ne)b

Eu—O(NO3) 2.4869 (12) Eu—O(NO3) 2.517 (2) Eu—O(H2O) 2.4279 (14)
Tb—O(NO3) 2.4706 (10) Tb—O(NO3) 2.4762 (9) Tb—O(H2O) 2.3786 (9)
Ho—O(NO3) 2.450 (9) Ho—O(NO3) 2.454 (8) Ho—O(H2O) 2.377 (8)
Yb—O(NO3) 2.448 (6) Yb—O(NO3) 2.439 (7) Yb—O(H2O) 2.331 (7)
Notes: (a) this work, product 2; (b) Delangle et al. (2001); Husson et al. (1999).

It has been demonstrated (Delangle et al., 2001[Delangle, P., Husson, C., Lebrun, C., Pécaut, J. & Vottéro, P. J. A. (2001). Inorg. Chem. 40, 2953-2962.]) that the formation of Ln(H3L)2 complexes (Ln = LaIII, PrIII, NdIII, EuIII and YbIII; L = cis,cis-1,3,5- or cis,cis-1,2,3-tri­hydroxy­cyclo­hexa­ne) in solution is strongly dependent on the metal:ligand ratio and on the chemical nature of the metal ion, its ionic radius, the polarity of the solvent and the nature of the counter-ion, either nitrate or triflate.

In the present work, the reaction between hydrated terbium(III) nitrate and H3LEt led to the isolation of two distinct products, 1 and 2, from the same reaction mixture, with modification only of the crystallization conditions. Product 2, [Tb(H3LEt)2(NO3)(H2O)](NO3)2, was obtained in higher yield and after a shorter time inter­val (24 h) than the more symmetrical 1, [Tb(H3LEt)2(NO3)2](NO3)·0.5glyme. The preparation of 2 is also easier to reproduce than that of 1; the former appears to be favoured by addition of a less polar solvent (hexa­ne) to the reaction mixture. The isolation of 1, on the other hand, seems to be subjected to a very subtle control of the crystallization conditions, and this is probably the reason why there are fewer reports of similar, anhydrous Ln(H3L)2 products in the literature. The presence of solvating glyme in the crystals of 1 suggests that the use of other solvents with different stereo requirements could be a strategy to help the crystallization of this water-free complex.

3. Supra­molecular features

The three hydroxyl groups in both complexes are all donor groups to hydrogen bonds. The acceptor atoms are oxygen atoms of nitrate ions and, in complex 1, an oxygen atom of the glyme mol­ecule (Fig. 4[link]). In complex 2, the water ligand forms two hydrogen bonds to two non-coordinating nitrate ions (Fig. 5[link]). Thus, in both compounds, all the ions and the glyme mol­ecule are linked in an extensive three-dimensional hydrogen-bonded network.

[Figure 4]
Figure 4
ORTEP representation of hydrogen bonding inter­actions about the ions and glyme mol­ecule of product 1, Tb(H3LEt)2(NO3)2](NO3)·0.5C4H10O2, with hydrogen bonds indicated by double-dashed lines. Hydrogen atoms on carbon atoms have been omitted for clarity.
[Figure 5]
Figure 5
ORTEP representation of hydrogen bonding inter­actions about the ions of product 2, [Tb(H3LEt)2(NO3)(H2O)](NO3)2, with hydrogen bonds indicated by double-dashed lines.

In both complexes, there are also some inter­molecular C—H⋯O inter­actions, which may be described as `weak hydrogen bonds'. These are included in Tables 4[link] and 5[link] with the stronger O—H⋯O bonds.

Table 4
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H12O⋯O9i 0.72 (2) 1.98 (2) 2.683 (2) 167 (3)
O13—H13O⋯O32 0.74 (2) 2.04 (2) 2.774 (2) 170 (3)
O14—H14O⋯O2ii 0.74 (2) 2.07 (3) 2.7935 (19) 165 (3)
O22—H22O⋯O8 0.73 (2) 2.01 (3) 2.735 (2) 172 (3)
O23—H23O⋯O4ii 0.69 (2) 2.16 (2) 2.8550 (19) 175 (2)
O24—H24O⋯O1iii 0.74 (3) 1.93 (3) 2.6624 (19) 171 (3)
C22—H22B⋯O3iv 0.99 2.44 3.358 (3) 153
C24—H24B⋯O7v 0.99 2.49 3.220 (3) 130
C29—H29A⋯O7v 0.99 2.41 3.27 (3) 146
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+1, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+1, z]; (v) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{3\over 2}}].

Table 5
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H1OA⋯O7i 0.75 (2) 2.03 (2) 2.7420 (14) 159 (2)
O10—H1OB⋯O5ii 0.79 (2) 2.00 (2) 2.7703 (14) 167 (2)
O13—H13O⋯O8 0.77 (2) 1.91 (2) 2.6695 (14) 169 (2)
O12—H12O⋯O5iii 0.74 (2) 1.93 (2) 2.6713 (13) 174 (2)
O14—H14O⋯O6 0.73 (2) 1.97 (2) 2.6992 (14) 174 (2)
O23—H23O⋯O6ii 0.71 (2) 2.09 (2) 2.7669 (14) 161 (2)
O22—H22O⋯O9 0.76 (2) 1.94 (2) 2.6609 (14) 157 (2)
O24—H24O⋯O8iv 0.73 (2) 1.97 (2) 2.6650 (14) 158 (2)
C14—H14A⋯O7i 0.99 2.58 3.3462 (17) 135
C23—H23A⋯O3v 0.99 2.51 3.4003 (16) 149
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x+1, y, z.

4. Database survey

Delangle and co-workers (Delangle et al., 2001[Delangle, P., Husson, C., Lebrun, C., Pécaut, J. & Vottéro, P. J. A. (2001). Inorg. Chem. 40, 2953-2962.]; Husson et al., 1999[Husson, C., Delangle, P., Pécaut, J. & Vottéro, P. J. A. (1999). Inorg. Chem. 38, 2012-2019.]) reported the preparation of a variety of mononuclear complexes of various lanthanide(III) ions, specifically LaIII, PrIII, NdIII, HoIII, EuIII and YbIII, with the trialcohols cis,cis-1,3,5-tri­hydroxy­cyclo­hexane (H3L1) and cis,cis-1,2,3-tri­hydroxy­cyclo­hexa­ne(H3L2) as models for the coordination of monosaccharides. In those compounds, as in 1 and 2, the metal atoms are coordinated to two trialcohol mol­ecules and bidentate/monodentate O-donor anions (nitrate or triflate), or to these anions and water mol­ecules.

Monosaccharide-derived polyols have also been used as chelating ligands for lanthanide(III) ions. LnCl3 and Ln(NO3)3 (Ln = LaIII, TbIII and SmIII) were shown to form chain-like complexes with D-galactitol in which the alditol provides three hydroxyl groups to coordinate one metal ion and three other hydroxyl groups to coordinate another; in all cases, there are two alditol mol­ecules bound to each lanthanide (Su et al., 2002[Su, Y., Yang, L., Jin, X., Weng, S. & Wu, J. (2002). J. Mol. Struct. 616, 221-230.]; Yu et al., 2011[Yu, L., Hua, X., Pan, Q., Yang, L., Xu, Y., Zhao, G., Wang, H., Wang, H., Wu, J., Liu, K. & Chen, J. (2011). Carbohydr. Res. 346, 2278-2284.]). Other authors have employed erythritol, whose mol­ecule functions as two bidentate ligands or as a three-hydroxyl donor to a variety of lanthanide(III) chlorides (Ce, Pr, Nd, Eu, Gd and Tb; Yang et al., 2012[Yang, L., Hua, X., Xue, J., Pan, Q., Yu, L., Li, W., Xu, Y., Zhao, G., Liu, L., Liu, K., Chen, J. & Wu, J. (2012). Inorg. Chem. 51, 499-510.]; Yang, Xie et al., 2005[Yang, L., Xie, D., Xu, Y., Wang, Y., Zhang, S., Weng, S., Zhao, K. & Wu, J. (2005). J. Inorg. Biochem. 99, 1090-1097.]; Yang, Xu et al., 2005[Yang, L., Xu, Y., Wang, Y., Zhang, S., Weng, S., Zhao, K. & Wu, J. (2005). Carbohydr. Res. 340, 2773-2781.]). These studies describe several possible binding modes of these polyols to lanthanide ions.

As far as tripodal alcohol ligands are concerned, mononuclear yttrium(III) complexes of 1,1,1-tris­(hy­droxy­meth­yl)propane (H3LEt) and 1,1,1-tris­(hy­droxy­meth­yl)ethane (H3LMe), as well as of the amino­polyalcohol (HOCH2)3CN(CH2CH2OH)2, H5LN(EtOH)2, were described by Chen and co-workers while investigating chelate complexes for radiotherapeutic applications (Chen et al., 1997[Chen, Q., Chang, Y. D. & Zubieta, J. (1997). Inorg. Chim. Acta, 258, 257-262.]). In two of the reported products, those prepared from H3LMe and H5LN(EtOH)2, the coordination sphere of the eight-coordinate yttrium atom contains chloride instead of nitrate ligands. A more recent study (Xu et al., 2015[Xu, Z., Zhang, L., Li, D., Liu, X., Wang, Y. & Lin, J. (2015). Polyhedron, 92, 37-40.]), in its turn, describes a dysprosium(III) complex with H3LEt that is isostructural to product 2 (present work) and has been employed to investigate possible biomedical applications of the binding of rare earth metal ions to the apoferritin protein.

5. Synthesis and crystallization

All experimental operations were performed under N2(g) (99.999%, Praxair) or under vacuum of 10−3 Torr, using Schlenk and glove-box techniques. Solvents (di­meth­oxy­ethane and hexa­ne) were purified according to procedures described in the literature (Perrin & Armarego, 1997[Perrin, D. D. & Armarego, W. L. (1997). In Purification of Laboratory Chemicals, 3rd ed. Oxford: Butterworth-Heinemann.]). Terbium(III) nitrate penta­hydrate and 1,1,1-tris­(hy­droxy­meth­yl)propane (H3LEt) were purchased from Aldrich; the latter was dissolved in thf/toluene (1:1), crystallized at 153 K, isolated by filtration and stored under N2 at room temperature prior to use. Elemental analysis (C, H and N) were performed under argon by MEDAC Laboratories Ltd. (Chobham, Surrey, UK), using a Thermal Scientific Flash EA 1112 Series Elemental Analyzer. Infrared spectra (FTIR, Nujol mulls) were obtained on a BIORAD FTS 3500GX instrument in the range of 400-4000 cm−1.

5.1. Synthesis of [Tb(H3LEt)2(NO3)(H2O)](NO3)2·0.5glyme (product 1)

A solution containing 1.91 g (4.39 mmol) of Tb(NO3)3·5H2O in 50 ml of di­meth­oxy­ethane (glyme) received the addition of 1.11 g (8.27 mmol) of solid 1,1,1-tris­(hy­droxy­meth­yl)propane to form a colourless solution that was refluxed for 15 min. After this period of time, the heating was turned off and a 32 ml aliquot of the reaction mixture was withdrawn for the isolation of product 2 (described below). The remaining 18 ml were cooled down to 153 K for four days, without forming any solid. The solution was then dried under vacuum and the resulting solid was almost completely redissolved in 7.5 ml of glyme. A fine suspension was obtained which, after seven days at 153 K, gave colourless crystals that were isolated and dried under vacuum (complex 1). Yield: 360 mg, 0.547 mmol (12.5% based on the total amount of terbium employed in the reaction). If the yield was extrapolated to the total volume of the reaction mixture (50 ml) instead of the 18 ml effectively employed for crystallization, it could reach 34.7%. Elemental analysis: calculated for [Tb(H3LEt)2(NO3)2](NO3)·0.5glyme (C14H33N3O16Tb) C 25.54, H 5.05, N 6.38%. Found C 25.34, H 5.08, N 6.60%. FTIR (Nujol mull, cm−1, s = strong, m = medium, w = weak, sh = shoulder): 3359m, 3220m ν(O—H); 1050sh, 1020s, 942s, mainly ν(C—O); 1271s νa(NO2), 1041s νs(NO2).

5.2. Isolation of [Tb(H3LEt)2(NO3)(H2O)](NO3)2 (product 2)

The 32 ml aliquot of the reaction mixture described in the synthesis of 1 above received the careful addition of a hexane layer (20 ml) at room temperature, and was allowed to stand for 24 h. During this period it was possible to observe the formation of a large number of colourless crystals, which were isolated by filtration and dried under vacuum (complex 2). Yield: 1.36 g, 2.15 mmol (49.1% based on the total amount of terbium employed in the reaction). If the yield was extrap­olated to the total volume of the reaction mixture (50 ml) instead of 32 ml actually employed for crystallization of 2, this yield could reach 76.7%). Elemental analysis: calculated for C12H30N3O16Tb C 22.83, H 4.79, N 6.66%. Found C 22.69, H 4.84, N 6.78. FTIR (Nujol mull, cm−1): 3475m, 3350s, 3184s ν(O—H); 1620w δ(O—H), 1050s, 1035s, 949s, mainly ν(C—O); 1278s νa(NO2), 1037s νs(NO2).

6. Refinement

Crystal data, data collection and structure refinement details for both complexes 1 and 2 are summarized in Table 6[link].

Table 6
Experimental details

  1 2
Crystal data
Chemical formula [Tb(NO3)2(C6H14O3)2]NO3·0.5C4H10O2 [Tb(NO3)(C6H14O3)2(H2O)](NO3)2
Mr 658.35 631.31
Crystal system, space group Monoclinic, I2/a Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 20.1864 (13), 10.2997 (6), 23.832 (2) 9.1440 (6), 12.7870 (7), 19.7151 (12)
β (°) 108.004 (3) 101.796 (2)
V3) 4712.4 (6) 2256.5 (2)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 3.08 3.22
Crystal size (mm) 0.14 × 0.11 × 0.09 0.36 × 0.19 × 0.18
 
Data collection
Diffractometer Bruker D8 VENTURE/PHOTON100 CMOS Bruker D8 VENTURE/PHOTON100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2014[Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.694, 0.746 0.636, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 172878, 5889, 5031 244328, 5629, 5542
Rint 0.071 0.023
(sin θ/λ)max−1) 0.670 0.670
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.036, 1.07 0.012, 0.029, 1.13
No. of reflections 5889 5629
No. of parameters 344 326
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.77, −0.54 0.74, −0.26
Computer programs: APEX3 (Bruker, 2015[Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP (Johnson, 1976[Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Disorder was noted in both structures: in compound 1, the methyl­ene groups in the three CH2OH groups in one tripodal ligand were each found to be disordered over two sets of sites, with an occupancy ratio of 0.911 (7) : 0.089 (7), whereas in 2, the disorder is in a terminal methyl group, which is disordered over two orientations, with an occupancy ratio of 0.827 (4) : 0.173 (4).

All the hydroxyl and water hydrogen atoms were located clearly in difference maps and were refined freely and satisfactorily. All the remaining hydrogen atoms were set in idealized positions and refined as riding on the parent carbon atoms.

Supporting information


Computing details top

For both compounds, data collection: APEX3 (Bruker, 2015); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP (Johnson, 1976) and ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia, 2012).

(Compound-1) Dinitratobis[1,1,1-tris(hydroxymethyl)propane]terbium(III) nitrate dimethoxyethane hemisolvate top
Crystal data top
[Tb(NO3)2(C6H14O3)2]NO3·0.5C4H10O2F(000) = 2648
Mr = 658.35Dx = 1.856 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 20.1864 (13) ÅCell parameters from 9404 reflections
b = 10.2997 (6) Åθ = 3.1–28.2°
c = 23.832 (2) ŵ = 3.08 mm1
β = 108.004 (3)°T = 100 K
V = 4712.4 (6) Å3Fragment, colourless
Z = 80.14 × 0.11 × 0.09 mm
Data collection top
Bruker D8 VENTURE/PHOTON100 CMOS
diffractometer
5889 independent reflections
Radiation source: fine-focus sealed tube5031 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.071
Detector resolution: 10.4167 pixels mm-1θmax = 28.4°, θmin = 2.7°
φ and ω scansh = 2626
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1313
Tmin = 0.694, Tmax = 0.746l = 3131
172878 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: mixed
wR(F2) = 0.036H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.015P)2 + 5.6056P]
where P = (Fo2 + 2Fc2)/3
5889 reflections(Δ/σ)max = 0.001
344 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.54 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tb10.41961 (2)0.52548 (2)0.68945 (2)0.00881 (3)
C110.39871 (10)0.29809 (17)0.56884 (8)0.0118 (4)
C120.46190 (10)0.38204 (19)0.57107 (9)0.0160 (4)
H12A0.50400.32660.58110.019*
H12B0.45550.41980.53150.019*
O120.47253 (7)0.48486 (14)0.61340 (6)0.0149 (3)
C130.33152 (10)0.37790 (18)0.55500 (8)0.0140 (4)
H13A0.31950.40960.51390.017*
H13B0.29330.32030.55760.017*
O130.33531 (7)0.48753 (14)0.59343 (6)0.0131 (3)
C140.41005 (10)0.21802 (18)0.62473 (8)0.0136 (4)
H14A0.37530.14710.61720.016*
H14B0.45700.17840.63610.016*
O140.40358 (7)0.29827 (13)0.67214 (6)0.0129 (3)
C150.38567 (10)0.20335 (19)0.51616 (8)0.0169 (4)
H15A0.34150.15670.51190.020*
H15B0.37900.25530.47990.020*
C160.44210 (11)0.1029 (2)0.51961 (10)0.0239 (5)
H16A0.42830.04860.48410.036*
H16B0.48600.14710.52240.036*
H16C0.44830.04830.55450.036*
C210.34085 (9)0.52402 (18)0.80793 (8)0.0116 (3)
C220.29008 (11)0.4608 (3)0.75328 (9)0.0142 (6)0.911 (7)
H22A0.29030.36550.75880.017*0.911 (7)
H22B0.24230.49280.74810.017*0.911 (7)
C230.40750 (13)0.4457 (3)0.83121 (10)0.0131 (6)0.911 (7)
H23A0.44260.49730.86110.016*0.911 (7)
H23B0.39800.36580.85050.016*0.911 (7)
C240.35697 (14)0.6637 (2)0.79430 (12)0.0152 (6)0.911 (7)
H24A0.31410.70490.76840.018*0.911 (7)
H24B0.37270.71400.83150.018*0.911 (7)
O220.30941 (7)0.49039 (13)0.70161 (6)0.0129 (3)
O230.43465 (7)0.41116 (14)0.78392 (6)0.0128 (3)
O240.41020 (7)0.66656 (14)0.76566 (6)0.0140 (3)
C250.30551 (10)0.5344 (2)0.85686 (8)0.0165 (4)
H25A0.34040.56770.89300.020*
H25B0.26790.59990.84440.020*
C260.27454 (10)0.4102 (2)0.87266 (9)0.0207 (4)
H26A0.25370.42840.90390.031*
H26B0.23860.37730.83770.031*
H26C0.31130.34500.88650.031*
C270.2836 (12)0.521 (3)0.7509 (10)0.015 (6)*0.089 (7)
H27A0.24880.45500.75300.018*0.089 (7)
H27B0.26010.60650.74390.018*0.089 (7)
C280.3854 (14)0.399 (3)0.8212 (11)0.011 (6)*0.089 (7)
H28A0.41190.39270.86360.013*0.089 (7)
H28B0.35560.32060.80960.013*0.089 (7)
C290.387 (2)0.647 (3)0.8196 (16)0.032 (8)*0.089 (7)
H29A0.35940.72340.82540.039*0.089 (7)
H29B0.42730.63620.85530.039*0.089 (7)
N20.39273 (9)0.79057 (15)0.63712 (7)0.0162 (3)
O40.45380 (7)0.74010 (12)0.65838 (6)0.0164 (3)
O50.34311 (7)0.72241 (13)0.64212 (6)0.0190 (3)
O60.38490 (8)0.89771 (13)0.61430 (6)0.0255 (3)
N10.57343 (8)0.50126 (15)0.75057 (7)0.0130 (3)
O10.53526 (7)0.40279 (12)0.73137 (6)0.0148 (3)
O20.54149 (7)0.60919 (12)0.74203 (6)0.0162 (3)
O30.63542 (7)0.49260 (14)0.77547 (6)0.0230 (3)
N30.13781 (8)0.45279 (15)0.62056 (7)0.0161 (3)
O70.13714 (8)0.54895 (15)0.65113 (7)0.0290 (4)
O80.19346 (7)0.41340 (15)0.61347 (7)0.0259 (3)
O90.08179 (7)0.39286 (14)0.59578 (7)0.0259 (3)
C310.27954 (11)0.7871 (2)0.48781 (10)0.0258 (5)
H31A0.26160.77850.44430.031*
H31B0.30480.87070.49720.031*
O320.32611 (10)0.68347 (15)0.51152 (7)0.0355 (4)
C330.38661 (16)0.6912 (3)0.49237 (13)0.0530 (9)
H33A0.41800.61880.50920.079*
H33B0.37260.68640.44920.079*
H33C0.41070.77350.50550.079*
H12O0.5042 (13)0.518 (2)0.6139 (11)0.019 (6)*
H13O0.3300 (12)0.544 (2)0.5736 (11)0.021 (7)*
H14O0.4146 (12)0.255 (2)0.6983 (11)0.026 (7)*
H22O0.2797 (13)0.473 (2)0.6760 (11)0.022 (7)*
H23O0.4631 (12)0.371 (2)0.7967 (10)0.013 (6)*
H24O0.4214 (13)0.735 (3)0.7651 (11)0.030 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.00815 (4)0.00833 (4)0.01016 (4)0.00074 (4)0.00313 (3)0.00065 (4)
C110.0138 (9)0.0102 (9)0.0119 (9)0.0002 (7)0.0047 (7)0.0012 (7)
C120.0169 (10)0.0159 (10)0.0182 (10)0.0023 (8)0.0101 (8)0.0046 (8)
O120.0120 (7)0.0175 (7)0.0177 (7)0.0066 (6)0.0084 (6)0.0060 (6)
C130.0147 (9)0.0129 (9)0.0124 (9)0.0012 (7)0.0011 (7)0.0019 (7)
O130.0141 (7)0.0121 (7)0.0125 (7)0.0023 (5)0.0032 (5)0.0014 (6)
C140.0192 (10)0.0099 (9)0.0114 (9)0.0007 (7)0.0041 (8)0.0029 (7)
O140.0190 (7)0.0103 (7)0.0103 (7)0.0005 (5)0.0057 (6)0.0005 (5)
C150.0221 (10)0.0155 (10)0.0124 (9)0.0016 (8)0.0042 (8)0.0032 (7)
C160.0303 (12)0.0196 (11)0.0241 (11)0.0009 (9)0.0118 (10)0.0079 (9)
C210.0110 (8)0.0124 (8)0.0128 (9)0.0010 (7)0.0055 (7)0.0006 (8)
C220.0124 (10)0.0181 (16)0.0134 (11)0.0013 (9)0.0061 (8)0.0014 (9)
C230.0127 (11)0.0166 (14)0.0120 (11)0.0006 (10)0.0068 (9)0.0002 (9)
C240.0184 (13)0.0124 (11)0.0193 (14)0.0000 (9)0.0123 (11)0.0014 (9)
O220.0095 (6)0.0187 (7)0.0100 (6)0.0025 (5)0.0023 (5)0.0001 (5)
O230.0121 (7)0.0145 (7)0.0130 (7)0.0068 (6)0.0054 (6)0.0023 (6)
O240.0177 (7)0.0089 (7)0.0183 (7)0.0036 (6)0.0097 (6)0.0017 (5)
C250.0159 (9)0.0225 (10)0.0133 (9)0.0032 (8)0.0078 (7)0.0008 (8)
C260.0161 (10)0.0303 (12)0.0174 (10)0.0005 (9)0.0073 (8)0.0066 (9)
N20.0232 (9)0.0114 (8)0.0118 (8)0.0009 (7)0.0022 (7)0.0012 (6)
O40.0175 (7)0.0123 (7)0.0202 (7)0.0008 (5)0.0070 (6)0.0003 (5)
O50.0174 (7)0.0143 (7)0.0224 (7)0.0022 (6)0.0019 (6)0.0012 (6)
O60.0418 (10)0.0099 (7)0.0229 (8)0.0022 (6)0.0071 (7)0.0055 (6)
N10.0133 (8)0.0153 (9)0.0110 (7)0.0010 (6)0.0047 (6)0.0014 (6)
O10.0137 (7)0.0100 (7)0.0217 (7)0.0011 (5)0.0070 (6)0.0012 (5)
O20.0142 (7)0.0118 (7)0.0208 (7)0.0016 (5)0.0025 (6)0.0004 (5)
O30.0102 (7)0.0329 (9)0.0228 (8)0.0021 (6)0.0005 (6)0.0012 (6)
N30.0134 (8)0.0182 (9)0.0159 (8)0.0013 (6)0.0034 (7)0.0021 (6)
O70.0255 (8)0.0269 (9)0.0339 (9)0.0024 (6)0.0080 (7)0.0160 (7)
O80.0113 (7)0.0347 (9)0.0321 (9)0.0014 (6)0.0073 (6)0.0159 (7)
O90.0124 (7)0.0275 (8)0.0363 (9)0.0021 (6)0.0053 (7)0.0127 (7)
C310.0334 (13)0.0159 (10)0.0204 (11)0.0028 (9)0.0029 (9)0.0044 (8)
O320.0599 (12)0.0252 (9)0.0351 (9)0.0212 (8)0.0351 (9)0.0164 (7)
C330.080 (2)0.0396 (16)0.065 (2)0.0328 (15)0.0601 (18)0.0299 (14)
Geometric parameters (Å, º) top
Tb1—O222.3583 (13)C23—O231.442 (2)
Tb1—O242.3790 (13)C23—H23A0.9900
Tb1—O142.3810 (13)C23—H23B0.9900
Tb1—O122.4078 (13)C24—O241.440 (2)
Tb1—O132.4245 (13)C24—H24A0.9900
Tb1—O232.4749 (14)C24—H24B0.9900
Tb1—O42.4953 (13)O22—C271.46 (2)
Tb1—O22.5418 (13)O22—H22O0.73 (2)
Tb1—O12.5697 (13)O23—C281.53 (2)
Tb1—O52.5874 (14)O23—H23O0.69 (2)
C11—C141.523 (2)O24—C291.52 (3)
C11—C121.528 (3)O24—H24O0.74 (3)
C11—C131.532 (3)C25—C261.521 (3)
C11—C151.547 (3)C25—H25A0.9900
C12—O121.432 (2)C25—H25B0.9900
C12—H12A0.9900C26—H26A0.9800
C12—H12B0.9900C26—H26B0.9800
O12—H12O0.72 (2)C26—H26C0.9800
C13—O131.441 (2)C27—H27A0.9900
C13—H13A0.9900C27—H27B0.9900
C13—H13B0.9900C28—H28A0.9900
O13—H13O0.74 (2)C28—H28B0.9900
C14—O141.438 (2)C29—H29A0.9900
C14—H14A0.9900C29—H29B0.9900
C14—H14B0.9900N2—O61.219 (2)
O14—H14O0.74 (2)N2—O51.259 (2)
C15—C161.522 (3)N2—O41.289 (2)
C15—H15A0.9900N1—O31.211 (2)
C15—H15B0.9900N1—O21.2696 (19)
C16—H16A0.9800N1—O11.270 (2)
C16—H16B0.9800N3—O71.232 (2)
C16—H16C0.9800N3—O81.254 (2)
C21—C271.49 (2)N3—O91.263 (2)
C21—C231.519 (3)C31—O321.419 (3)
C21—C241.532 (3)C31—C31i1.479 (5)
C21—C221.532 (3)C31—H31A0.9900
C21—C291.54 (3)C31—H31B0.9900
C21—C251.547 (2)O32—C331.432 (3)
C21—C281.55 (2)C33—H33A0.9800
C22—O221.435 (2)C33—H33B0.9800
C22—H22A0.9900C33—H33C0.9800
C22—H22B0.9900
O22—Tb1—O2472.47 (5)C24—C21—C25105.80 (15)
O22—Tb1—O1477.75 (5)C22—C21—C25109.09 (15)
O24—Tb1—O14133.94 (5)C29—C21—C25101.4 (11)
O22—Tb1—O12136.11 (5)C27—C21—C28114.0 (14)
O24—Tb1—O12147.08 (5)C29—C21—C28111.8 (16)
O14—Tb1—O1276.53 (5)C25—C21—C28106.2 (9)
O22—Tb1—O1371.20 (5)O22—C22—C21110.57 (16)
O24—Tb1—O13128.37 (5)O22—C22—H22A109.5
O14—Tb1—O1370.11 (5)C21—C22—H22A109.5
O12—Tb1—O1366.85 (5)O22—C22—H22B109.5
O22—Tb1—O2370.76 (5)C21—C22—H22B109.5
O24—Tb1—O2367.19 (5)H22A—C22—H22B108.1
O14—Tb1—O2370.24 (5)O23—C23—C21110.69 (16)
O12—Tb1—O23130.08 (5)O23—C23—H23A109.5
O13—Tb1—O23129.41 (5)C21—C23—H23A109.5
O22—Tb1—O4122.01 (4)O23—C23—H23B109.5
O24—Tb1—O477.30 (5)C21—C23—H23B109.5
O14—Tb1—O4148.71 (4)H23A—C23—H23B108.1
O12—Tb1—O472.71 (5)O24—C24—C21111.00 (16)
O13—Tb1—O492.32 (5)O24—C24—H24A109.4
O23—Tb1—O4136.38 (5)C21—C24—H24A109.4
O22—Tb1—O2142.88 (5)O24—C24—H24B109.4
O24—Tb1—O273.14 (4)C21—C24—H24B109.4
O14—Tb1—O2118.55 (4)H24A—C24—H24B108.0
O12—Tb1—O280.97 (5)C22—O22—Tb1130.93 (12)
O13—Tb1—O2144.10 (5)C27—O22—Tb1130.6 (10)
O23—Tb1—O283.39 (4)C22—O22—H22O107.2 (19)
O4—Tb1—O262.06 (4)C27—O22—H22O109 (2)
O22—Tb1—O1130.92 (4)Tb1—O22—H22O119.6 (19)
O24—Tb1—O1106.31 (4)C23—O23—Tb1128.64 (12)
O14—Tb1—O169.06 (4)C28—O23—Tb1130.5 (9)
O12—Tb1—O169.27 (4)C23—O23—H23O105.3 (19)
O13—Tb1—O1125.17 (4)C28—O23—H23O107 (2)
O23—Tb1—O164.60 (4)Tb1—O23—H23O122.2 (19)
O4—Tb1—O1104.45 (4)C24—O24—Tb1126.61 (12)
O2—Tb1—O149.50 (4)C29—O24—Tb1133.5 (12)
O22—Tb1—O573.45 (4)C24—O24—H24O108 (2)
O24—Tb1—O571.11 (5)C29—O24—H24O108 (2)
O14—Tb1—O5131.61 (5)Tb1—O24—H24O118 (2)
O12—Tb1—O598.74 (5)C26—C25—C21116.65 (16)
O13—Tb1—O564.19 (5)C26—C25—H25A108.1
O23—Tb1—O5131.18 (4)C21—C25—H25A108.1
O4—Tb1—O550.12 (4)C26—C25—H25B108.1
O2—Tb1—O5107.78 (4)C21—C25—H25B108.1
O1—Tb1—O5154.57 (4)H25A—C25—H25B107.3
C14—C11—C12112.20 (16)C25—C26—H26A109.5
C14—C11—C13111.26 (15)C25—C26—H26B109.5
C12—C11—C13112.19 (15)H26A—C26—H26B109.5
C14—C11—C15108.07 (15)C25—C26—H26C109.5
C12—C11—C15108.42 (15)H26A—C26—H26C109.5
C13—C11—C15104.27 (15)H26B—C26—H26C109.5
O12—C12—C11112.61 (15)O22—C27—C21111.7 (16)
O12—C12—H12A109.1O22—C27—H27A109.3
C11—C12—H12A109.1C21—C27—H27A109.3
O12—C12—H12B109.1O22—C27—H27B109.3
C11—C12—H12B109.1C21—C27—H27B109.3
H12A—C12—H12B107.8H27A—C27—H27B107.9
C12—O12—Tb1130.84 (11)O23—C28—C21104.6 (15)
C12—O12—H12O107.4 (19)O23—C28—H28A110.8
Tb1—O12—H12O120.2 (19)C21—C28—H28A110.8
O13—C13—C11114.46 (15)O23—C28—H28B110.8
O13—C13—H13A108.6C21—C28—H28B110.8
C11—C13—H13A108.6H28A—C28—H28B108.9
O13—C13—H13B108.6O24—C29—C21106.4 (19)
C11—C13—H13B108.6O24—C29—H29A110.5
H13A—C13—H13B107.6C21—C29—H29A110.5
C13—O13—Tb1127.60 (11)O24—C29—H29B110.5
C13—O13—H13O104.1 (19)C21—C29—H29B110.5
Tb1—O13—H13O113.5 (19)H29A—C29—H29B108.6
O14—C14—C11110.51 (15)O6—N2—O5123.36 (17)
O14—C14—H14A109.5O6—N2—O4121.15 (16)
C11—C14—H14A109.5O5—N2—O4115.50 (15)
O14—C14—H14B109.5N2—O4—Tb198.93 (10)
C11—C14—H14B109.5N2—O5—Tb195.35 (10)
H14A—C14—H14B108.1O3—N1—O2122.66 (16)
C14—O14—Tb1131.34 (11)O3—N1—O1122.51 (16)
C14—O14—H14O103.8 (19)O2—N1—O1114.82 (15)
Tb1—O14—H14O117 (2)N1—O1—Tb197.15 (10)
C16—C15—C11116.62 (16)N1—O2—Tb198.53 (10)
C16—C15—H15A108.1O7—N3—O8120.91 (16)
C11—C15—H15A108.1O7—N3—O9119.83 (16)
C16—C15—H15B108.1O8—N3—O9119.26 (16)
C11—C15—H15B108.1O32—C31—C31i111.02 (16)
H15A—C15—H15B107.3O32—C31—H31A109.4
C15—C16—H16A109.5C31i—C31—H31A109.4
C15—C16—H16B109.5O32—C31—H31B109.4
H16A—C16—H16B109.5C31i—C31—H31B109.4
C15—C16—H16C109.5H31A—C31—H31B108.0
H16A—C16—H16C109.5C31—O32—C33110.89 (17)
H16B—C16—H16C109.5O32—C33—H33A109.5
C23—C21—C24110.75 (17)O32—C33—H33B109.5
C23—C21—C22111.65 (17)H33A—C33—H33B109.5
C24—C21—C22110.43 (17)O32—C33—H33C109.5
C27—C21—C29115.7 (16)H33A—C33—H33C109.5
C27—C21—C25106.3 (9)H33B—C33—H33C109.5
C23—C21—C25108.92 (15)
C14—C11—C12—O1268.7 (2)C27—C21—C25—C2677.9 (14)
C13—C11—C12—O1257.4 (2)C23—C21—C25—C2669.4 (2)
C15—C11—C12—O12172.01 (15)C24—C21—C25—C26171.49 (18)
C11—C12—O12—Tb110.5 (2)C22—C21—C25—C2652.7 (2)
C14—C11—C13—O1373.16 (19)C29—C21—C25—C26160.8 (16)
C12—C11—C13—O1353.5 (2)C28—C21—C25—C2643.9 (12)
C15—C11—C13—O13170.58 (15)Tb1—O22—C27—C2127 (3)
C11—C13—O13—Tb118.1 (2)C29—C21—C27—O2278 (2)
C12—C11—C14—O1476.17 (19)C25—C21—C27—O22170.9 (15)
C13—C11—C14—O1450.5 (2)C28—C21—C27—O2254 (2)
C15—C11—C14—O14164.36 (15)Tb1—O23—C28—C2129 (2)
C11—C14—O14—Tb125.1 (2)C27—C21—C28—O2378.9 (19)
C14—C11—C15—C1657.1 (2)C29—C21—C28—O2354.7 (19)
C12—C11—C15—C1664.8 (2)C25—C21—C28—O23164.4 (12)
C13—C11—C15—C16175.52 (17)Tb1—O24—C29—C2121 (3)
C23—C21—C22—O2280.2 (2)C27—C21—C29—O2452 (2)
C24—C21—C22—O2243.5 (2)C25—C21—C29—O24166.2 (17)
C25—C21—C22—O22159.38 (18)C28—C21—C29—O2481 (2)
C24—C21—C23—O2375.7 (2)O6—N2—O4—Tb1177.24 (14)
C22—C21—C23—O2347.8 (2)O5—N2—O4—Tb13.28 (16)
C25—C21—C23—O23168.37 (19)O6—N2—O5—Tb1177.39 (15)
C23—C21—C24—O2442.0 (2)O4—N2—O5—Tb13.14 (15)
C22—C21—C24—O2482.2 (2)O3—N1—O1—Tb1179.72 (15)
C25—C21—C24—O24159.84 (18)O2—N1—O1—Tb10.20 (15)
C21—C22—O22—Tb132.0 (3)O3—N1—O2—Tb1179.72 (15)
C21—C23—O23—Tb126.9 (3)O1—N1—O2—Tb10.21 (15)
C21—C24—O24—Tb142.4 (3)C31i—C31—O32—C33174.3 (2)
Symmetry code: (i) x+1/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O12—H12O···O9ii0.72 (2)1.98 (2)2.683 (2)167 (3)
O13—H13O···O320.74 (2)2.04 (2)2.774 (2)170 (3)
O14—H14O···O2iii0.74 (2)2.07 (3)2.7935 (19)165 (3)
O22—H22O···O80.73 (2)2.01 (3)2.735 (2)172 (3)
O23—H23O···O4iii0.69 (2)2.16 (2)2.8550 (19)175 (2)
O24—H24O···O1iv0.74 (3)1.93 (3)2.6624 (19)171 (3)
C22—H22B···O3v0.992.443.358 (3)153
C24—H24B···O7vi0.992.493.220 (3)130
C29—H29A···O7vi0.992.413.27 (3)146
Symmetry codes: (ii) x+1/2, y+1, z; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x1/2, y+1, z; (vi) x+1/2, y+3/2, z+3/2.
(Compound-2) Aquanitratobis[1,1,1-tris(hydroxymethyl)propane]terbium(III) dinitrate top
Crystal data top
[Tb(NO3)(C6H14O3)2(H2O)](NO3)2F(000) = 1264
Mr = 631.31Dx = 1.858 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1440 (6) ÅCell parameters from 9581 reflections
b = 12.7870 (7) Åθ = 3.1–28.3°
c = 19.7151 (12) ŵ = 3.22 mm1
β = 101.796 (2)°T = 100 K
V = 2256.5 (2) Å3Block, colourless
Z = 40.36 × 0.19 × 0.18 mm
Data collection top
Bruker D8 VENTURE/PHOTON100 CMOS
diffractometer
5629 independent reflections
Radiation source: fine-focus sealed tube5542 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.4167 pixels mm-1θmax = 28.4°, θmin = 3.6°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1717
Tmin = 0.636, Tmax = 0.746l = 2626
244328 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.012H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.029 w = 1/[σ2(Fo2) + (0.0128P)2 + 1.457P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
5629 reflectionsΔρmax = 0.74 e Å3
326 parametersΔρmin = 0.26 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tb10.15357 (2)0.39026 (2)0.37356 (2)0.00991 (2)
C110.20317 (14)0.11240 (9)0.41042 (7)0.0134 (2)
C120.05513 (15)0.14541 (10)0.42837 (7)0.0170 (2)
H12A0.02820.11200.39550.020*
H12B0.05160.12060.47560.020*
O120.03581 (10)0.25678 (7)0.42542 (5)0.01517 (17)
C130.19968 (16)0.12622 (10)0.33317 (7)0.0168 (2)
H13A0.30140.11580.32430.020*
H13B0.13350.07260.30670.020*
O130.14671 (11)0.22883 (7)0.30972 (5)0.01632 (18)
C140.33441 (14)0.17092 (10)0.45474 (7)0.0159 (2)
H14A0.32380.17030.50370.019*
H14B0.42880.13470.45210.019*
O140.34140 (11)0.27755 (7)0.43195 (5)0.01548 (18)
C150.22392 (16)0.00526 (10)0.42866 (7)0.0191 (3)
H15A0.24190.01240.47970.023*0.827 (4)
H15B0.12910.04180.40930.023*0.827 (4)
H15C0.24880.01220.47970.023*0.173 (4)
H15D0.31050.03150.41060.023*0.173 (4)
C160.3507 (2)0.06169 (13)0.40298 (9)0.0230 (4)0.827 (4)
H16A0.35370.13520.41730.034*0.827 (4)
H16B0.33310.05770.35230.034*0.827 (4)
H16C0.44620.02820.42290.034*0.827 (4)
C170.0871 (9)0.0763 (6)0.4002 (4)0.0184 (19)*0.173 (4)
H17A0.11110.14880.41440.028*0.173 (4)
H17B0.00110.05280.41880.028*0.173 (4)
H17C0.06290.07220.34950.028*0.173 (4)
C210.36977 (14)0.59444 (10)0.30982 (7)0.0141 (2)
C220.32638 (15)0.51321 (10)0.25283 (6)0.0157 (2)
H22A0.24650.54190.21590.019*
H22B0.41390.49750.23210.019*
O220.27453 (11)0.41792 (7)0.27942 (5)0.01562 (17)
C230.46779 (14)0.54531 (10)0.37450 (7)0.0158 (2)
H23A0.54050.49720.36000.019*
H23B0.52490.60130.40300.019*
O230.38207 (10)0.48831 (7)0.41624 (5)0.01434 (17)
C240.23305 (14)0.64798 (10)0.32772 (7)0.0157 (2)
H24A0.26500.69280.36900.019*
H24B0.18560.69330.28870.019*
O240.12570 (11)0.57223 (7)0.34145 (5)0.01533 (17)
C250.46674 (15)0.67891 (11)0.28378 (7)0.0194 (3)
H25A0.47490.73980.31540.023*
H25B0.56860.65030.28720.023*
C260.41016 (18)0.71744 (12)0.20979 (8)0.0256 (3)
H26A0.47890.77030.19840.038*
H26B0.40460.65850.17760.038*
H26C0.31060.74820.20580.038*
N10.15472 (12)0.43478 (8)0.30929 (6)0.0147 (2)
O10.06405 (11)0.39309 (7)0.27587 (5)0.01717 (18)
O20.10340 (10)0.45124 (7)0.37367 (5)0.01666 (18)
O30.28209 (11)0.45781 (8)0.28147 (5)0.0226 (2)
N20.72651 (12)0.29286 (8)0.48389 (5)0.01374 (19)
O40.70888 (11)0.20729 (8)0.45553 (5)0.0224 (2)
O50.85643 (10)0.32966 (7)0.50584 (5)0.01657 (18)
O60.61580 (10)0.34701 (8)0.49253 (5)0.0213 (2)
N30.18037 (13)0.24790 (9)0.13412 (6)0.0163 (2)
O70.19294 (13)0.21012 (8)0.07818 (5)0.0253 (2)
O80.10941 (12)0.19955 (8)0.17319 (5)0.0226 (2)
O90.24079 (15)0.33293 (9)0.15397 (6)0.0319 (3)
O100.15368 (11)0.45418 (8)0.48688 (5)0.01625 (18)
H1OA0.160 (2)0.4204 (17)0.5185 (11)0.032 (5)*
H1OB0.148 (2)0.5141 (18)0.4948 (11)0.036 (6)*
H12O0.017 (2)0.2727 (15)0.4478 (10)0.028 (5)*
H13O0.131 (2)0.2279 (15)0.2698 (11)0.027 (5)*
H14O0.416 (2)0.2983 (16)0.4460 (10)0.030 (5)*
H22O0.255 (2)0.3813 (16)0.2486 (12)0.034 (6)*
H23O0.371 (2)0.5220 (16)0.4430 (10)0.026 (5)*
H24O0.058 (2)0.6003 (15)0.3462 (10)0.023 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.01123 (3)0.00934 (3)0.00935 (3)0.00074 (2)0.00253 (2)0.00031 (2)
C110.0172 (6)0.0099 (5)0.0137 (6)0.0001 (4)0.0042 (4)0.0001 (4)
C120.0188 (6)0.0110 (6)0.0231 (6)0.0014 (5)0.0088 (5)0.0006 (5)
O120.0168 (4)0.0119 (4)0.0195 (4)0.0010 (3)0.0102 (4)0.0010 (3)
C130.0243 (6)0.0118 (5)0.0148 (6)0.0030 (5)0.0053 (5)0.0012 (4)
O130.0262 (5)0.0123 (4)0.0100 (4)0.0026 (4)0.0026 (4)0.0008 (3)
C140.0176 (6)0.0114 (5)0.0175 (6)0.0017 (5)0.0007 (5)0.0019 (5)
O140.0128 (4)0.0110 (4)0.0206 (5)0.0008 (3)0.0014 (3)0.0007 (3)
C150.0251 (7)0.0113 (6)0.0213 (6)0.0012 (5)0.0052 (5)0.0018 (5)
C160.0315 (9)0.0147 (8)0.0227 (8)0.0072 (6)0.0054 (7)0.0015 (6)
C210.0153 (6)0.0127 (5)0.0155 (6)0.0008 (4)0.0058 (4)0.0002 (4)
C220.0202 (6)0.0136 (6)0.0146 (5)0.0023 (5)0.0067 (5)0.0007 (4)
O220.0215 (5)0.0119 (4)0.0154 (4)0.0024 (4)0.0082 (4)0.0030 (4)
C230.0136 (5)0.0176 (6)0.0170 (6)0.0018 (5)0.0050 (4)0.0002 (5)
O230.0160 (4)0.0138 (4)0.0135 (4)0.0010 (3)0.0039 (3)0.0010 (3)
C240.0176 (6)0.0111 (5)0.0199 (6)0.0003 (4)0.0072 (5)0.0008 (5)
O240.0139 (4)0.0117 (4)0.0223 (5)0.0020 (3)0.0081 (4)0.0011 (3)
C250.0215 (6)0.0156 (6)0.0235 (6)0.0038 (5)0.0101 (5)0.0002 (5)
C260.0306 (7)0.0204 (7)0.0286 (7)0.0004 (6)0.0126 (6)0.0078 (6)
N10.0141 (5)0.0139 (5)0.0162 (5)0.0002 (4)0.0036 (4)0.0037 (4)
O10.0157 (4)0.0220 (5)0.0142 (4)0.0024 (3)0.0037 (3)0.0023 (3)
O20.0181 (4)0.0202 (5)0.0123 (4)0.0027 (4)0.0046 (3)0.0013 (3)
O30.0132 (4)0.0289 (5)0.0247 (5)0.0042 (4)0.0014 (4)0.0064 (4)
N20.0149 (5)0.0149 (5)0.0119 (5)0.0005 (4)0.0037 (4)0.0002 (4)
O40.0239 (5)0.0153 (4)0.0289 (5)0.0022 (4)0.0075 (4)0.0079 (4)
O50.0128 (4)0.0182 (4)0.0193 (4)0.0013 (3)0.0046 (3)0.0026 (4)
O60.0125 (4)0.0218 (5)0.0287 (5)0.0025 (4)0.0023 (4)0.0096 (4)
N30.0200 (5)0.0160 (5)0.0130 (5)0.0023 (4)0.0036 (4)0.0019 (4)
O70.0388 (6)0.0249 (5)0.0143 (4)0.0077 (4)0.0104 (4)0.0073 (4)
O80.0263 (5)0.0272 (5)0.0158 (4)0.0126 (4)0.0079 (4)0.0039 (4)
O90.0526 (7)0.0215 (5)0.0251 (5)0.0174 (5)0.0161 (5)0.0096 (4)
O100.0251 (5)0.0129 (4)0.0114 (4)0.0005 (4)0.0054 (4)0.0003 (4)
Geometric parameters (Å, º) top
Tb1—O142.3545 (9)C17—H17B0.9800
Tb1—O122.3597 (9)C17—H17C0.9800
Tb1—O222.3734 (9)C21—C221.5220 (17)
Tb1—O102.3786 (9)C21—C241.5286 (17)
Tb1—O242.4112 (9)C21—C231.5353 (18)
Tb1—O132.4119 (9)C21—C251.5499 (17)
Tb1—O232.4344 (9)C22—O221.4443 (15)
Tb1—O12.4706 (10)C22—H22A0.9900
Tb1—O22.4762 (9)C22—H22B0.9900
C11—C131.5269 (18)O22—H22O0.76 (2)
C11—C121.5271 (18)C23—O231.4444 (15)
C11—C141.5281 (17)C23—H23A0.9900
C11—C151.5497 (17)C23—H23B0.9900
C12—O121.4347 (15)O23—H23O0.71 (2)
C12—H12A0.9900C24—O241.4436 (15)
C12—H12B0.9900C24—H24A0.9900
O12—H12O0.74 (2)C24—H24B0.9900
C13—O131.4417 (15)O24—H24O0.73 (2)
C13—H13A0.9900C25—C261.526 (2)
C13—H13B0.9900C25—H25A0.9900
O13—H13O0.77 (2)C25—H25B0.9900
C14—O141.4412 (15)C26—H26A0.9800
C14—H14A0.9900C26—H26B0.9800
C14—H14B0.9900C26—H26C0.9800
O14—H14O0.73 (2)N1—O31.2177 (14)
C15—C161.537 (2)N1—O11.2764 (14)
C15—C171.555 (8)N1—O21.2775 (14)
C15—H15A0.9900N2—O41.2244 (15)
C15—H15B0.9900N2—O61.2664 (14)
C15—H15C0.9900N2—O51.2689 (14)
C15—H15D0.9900N3—O71.2308 (14)
C16—H16A0.9800N3—O91.2458 (15)
C16—H16B0.9800N3—O81.2652 (14)
C16—H16C0.9800O10—H1OA0.75 (2)
C17—H17A0.9800O10—H1OB0.79 (2)
O14—Tb1—O1272.38 (3)C11—C15—H15D108.4
O14—Tb1—O2293.64 (3)C17—C15—H15D108.4
O12—Tb1—O22140.67 (3)H15C—C15—H15D107.4
O14—Tb1—O1083.74 (3)C15—C16—H16A109.5
O12—Tb1—O1075.77 (3)C15—C16—H16B109.5
O22—Tb1—O10140.58 (3)H16A—C16—H16B109.5
O14—Tb1—O24138.28 (3)C15—C16—H16C109.5
O12—Tb1—O24141.14 (3)H16A—C16—H16C109.5
O22—Tb1—O2472.06 (3)H16B—C16—H16C109.5
O10—Tb1—O2483.96 (3)C15—C17—H17A109.5
O14—Tb1—O1370.72 (3)C15—C17—H17B109.5
O12—Tb1—O1368.99 (3)H17A—C17—H17B109.5
O22—Tb1—O1371.69 (3)C15—C17—H17C109.5
O10—Tb1—O13141.19 (3)H17A—C17—H17C109.5
O24—Tb1—O13134.33 (3)H17B—C17—H17C109.5
O14—Tb1—O2369.97 (3)C22—C21—C24111.96 (11)
O12—Tb1—O23131.17 (3)C22—C21—C23110.72 (10)
O22—Tb1—O2371.90 (3)C24—C21—C23110.95 (10)
O10—Tb1—O2370.30 (3)C22—C21—C25108.15 (10)
O24—Tb1—O2368.34 (3)C24—C21—C25108.34 (10)
O13—Tb1—O23123.37 (3)C23—C21—C25106.50 (10)
O14—Tb1—O1141.34 (3)O22—C22—C21111.30 (10)
O12—Tb1—O188.98 (3)O22—C22—H22A109.4
O22—Tb1—O179.51 (3)C21—C22—H22A109.4
O10—Tb1—O1124.95 (3)O22—C22—H22B109.4
O24—Tb1—O175.88 (3)C21—C22—H22B109.4
O13—Tb1—O171.02 (3)H22A—C22—H22B108.0
O23—Tb1—O1139.42 (3)C22—O22—Tb1130.51 (7)
O14—Tb1—O2142.17 (3)C22—O22—H22O105.7 (16)
O12—Tb1—O273.16 (3)Tb1—O22—H22O117.7 (16)
O22—Tb1—O2123.21 (3)O23—C23—C21112.77 (10)
O10—Tb1—O273.09 (3)O23—C23—H23A109.0
O24—Tb1—O269.33 (3)C21—C23—H23A109.0
O13—Tb1—O2110.27 (3)O23—C23—H23B109.0
O23—Tb1—O2125.81 (3)C21—C23—H23B109.0
O1—Tb1—O251.89 (3)H23A—C23—H23B107.8
C13—C11—C12111.13 (11)C23—O23—Tb1126.18 (7)
C13—C11—C14111.57 (10)C23—O23—H23O107.4 (16)
C12—C11—C14111.21 (10)Tb1—O23—H23O109.0 (16)
C13—C11—C15108.69 (10)O24—C24—C21111.24 (10)
C12—C11—C15106.67 (10)O24—C24—H24A109.4
C14—C11—C15107.34 (10)C21—C24—H24A109.4
O12—C12—C11111.87 (10)O24—C24—H24B109.4
O12—C12—H12A109.2C21—C24—H24B109.4
C11—C12—H12A109.2H24A—C24—H24B108.0
O12—C12—H12B109.2C24—O24—Tb1131.10 (8)
C11—C12—H12B109.2C24—O24—H24O108.4 (15)
H12A—C12—H12B107.9Tb1—O24—H24O118.9 (15)
C12—O12—Tb1132.24 (8)C26—C25—C21115.88 (12)
C12—O12—H12O109.7 (15)C26—C25—H25A108.3
Tb1—O12—H12O117.7 (15)C21—C25—H25A108.3
O13—C13—C11111.25 (10)C26—C25—H25B108.3
O13—C13—H13A109.4C21—C25—H25B108.3
C11—C13—H13A109.4H25A—C25—H25B107.4
O13—C13—H13B109.4C25—C26—H26A109.5
C11—C13—H13B109.4C25—C26—H26B109.5
H13A—C13—H13B108.0H26A—C26—H26B109.5
C13—O13—Tb1129.81 (7)C25—C26—H26C109.5
C13—O13—H13O107.0 (15)H26A—C26—H26C109.5
Tb1—O13—H13O121.7 (15)H26B—C26—H26C109.5
O14—C14—C11111.38 (10)O3—N1—O1122.06 (11)
O14—C14—H14A109.4O3—N1—O2122.07 (11)
C11—C14—H14A109.4O1—N1—O2115.87 (10)
O14—C14—H14B109.4O3—N1—Tb1177.09 (9)
C11—C14—H14B109.4O1—N1—Tb157.85 (6)
H14A—C14—H14B108.0O2—N1—Tb158.10 (6)
C14—O14—Tb1131.09 (8)N1—O1—Tb196.21 (7)
C14—O14—H14O108.8 (16)N1—O2—Tb195.92 (7)
Tb1—O14—H14O119.6 (16)O4—N2—O6121.06 (11)
C16—C15—C11116.37 (12)O4—N2—O5120.92 (11)
C11—C15—C17115.6 (3)O6—N2—O5118.02 (10)
C16—C15—H15A108.2O7—N3—O9120.49 (11)
C11—C15—H15A108.2O7—N3—O8120.47 (11)
C16—C15—H15B108.2O9—N3—O8119.01 (11)
C11—C15—H15B108.2Tb1—O10—H1OA124.7 (16)
H15A—C15—H15B107.3Tb1—O10—H1OB122.4 (15)
C11—C15—H15C108.4H1OA—O10—H1OB113 (2)
C17—C15—H15C108.4
C13—C11—C12—O1272.04 (13)C23—C21—C22—O2246.85 (14)
C14—C11—C12—O1252.90 (14)C25—C21—C22—O22163.18 (10)
C15—C11—C12—O12169.64 (10)C21—C22—O22—Tb129.13 (15)
C11—C12—O12—Tb117.38 (16)C22—C21—C23—O2379.94 (13)
C12—C11—C13—O1349.60 (14)C24—C21—C23—O2345.02 (14)
C14—C11—C13—O1375.14 (13)C25—C21—C23—O23162.72 (10)
C15—C11—C13—O13166.69 (11)C21—C23—O23—Tb133.74 (14)
C11—C13—O13—Tb125.43 (15)C22—C21—C24—O2451.36 (14)
C13—C11—C14—O1449.60 (14)C23—C21—C24—O2472.89 (13)
C12—C11—C14—O1475.10 (13)C25—C21—C24—O24170.54 (10)
C15—C11—C14—O14168.57 (10)C21—C24—O24—Tb120.64 (15)
C11—C14—O14—Tb126.41 (15)C22—C21—C25—C2644.73 (15)
C13—C11—C15—C1649.30 (16)C24—C21—C25—C2676.83 (14)
C12—C11—C15—C16169.20 (12)C23—C21—C25—C26163.76 (11)
C14—C11—C15—C1671.51 (15)O3—N1—O1—Tb1176.57 (10)
C13—C11—C15—C1770.7 (3)O2—N1—O1—Tb13.17 (11)
C12—C11—C15—C1749.2 (3)O3—N1—O2—Tb1176.58 (10)
C14—C11—C15—C17168.5 (3)O1—N1—O2—Tb13.16 (11)
C24—C21—C22—O2277.54 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H1OA···O7i0.75 (2)2.03 (2)2.7420 (14)159 (2)
O10—H1OB···O5ii0.79 (2)2.00 (2)2.7703 (14)167 (2)
O13—H13O···O80.77 (2)1.91 (2)2.6695 (14)169 (2)
O12—H12O···O5iii0.74 (2)1.93 (2)2.6713 (13)174 (2)
O14—H14O···O60.73 (2)1.97 (2)2.6992 (14)174 (2)
O23—H23O···O6ii0.71 (2)2.09 (2)2.7669 (14)161 (2)
O22—H22O···O90.76 (2)1.94 (2)2.6609 (14)157 (2)
O24—H24O···O8iv0.73 (2)1.97 (2)2.6650 (14)158 (2)
C14—H14A···O7i0.992.583.3462 (17)135
C23—H23A···O3v0.992.513.4003 (16)149
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x, y+1/2, z+1/2; (v) x+1, y, z.
Selected non-bonding angles (°) in the molecular structure of product 1 top
O24···O22···O13101.47O2···O23···O1486.82
O22···O13···O483.25O23···O14···O12100.40
O13···O4···O2481.56O14···O12···O286.34
O4···O24···O2293.06O12···O2···O2384.98
Metal–oxygen distances (Å) in the two complexes, 1 and 2 top
Complex 1Complex 2
Tb1—O12.5697 (13)Tb1—O12.4706 (10)
Tb1—O22.5418 (13)Tb1—O22.4762 (9)
Tb1—O42.4953 (13)Tb1—O102.3786 (9)
Tb1—O52.5874 (14)
Tb1—O122.4078 (13)Tb1—O122.3597 (9)
Tb1—O132.4245 (14)Tb1—O132.4119 (9)
Tb1—O142.3810 (14)Tb1—O142.3545 (9)
Tb1—O222.3583 (13)Tb1—O222.3734 (9)
Tb1—O232.4749 (14)Tb1—O232.4344 (9)
Tb1—O242.3790 (13)Tb1—O242.4112 (9)
O12—Tb1—O1366.85 (5)O12—Tb1—O1368.99 (3)
O14—Tb1—O1276.53 (5)O14—Tb1—O1272.38 (3)
O22—Tb1—O12136.11 (5)O12—Tb1—O22140.67 (3)
O12—Tb1—O23130.08 (5)O12—Tb1—O23131.17 (3)
O24—Tb1—O12147.08 (5)O12—Tb1—O24141.14 (3)
O14—Tb1—O1370.11 (5)O14—Tb1—O1370.72 (3)
O22—Tb1—O1371.20 (5)O22—Tb1—O1371.69 (3)
O13—Tb1—O23129.41 (5)O13—Tb1—O23123.37 (3)
O24—Tb1—O13128.37 (5)O24—Tb1—O13134.33 (3)
O22—Tb1—O1477.75 (5)O14—Tb1—O2293.64 (3)
O14—Tb1—O2370.24 (5)O14—Tb1—O2369.97 (3)
O24—Tb1—O14133.94 (5)O14—Tb1—O24138.28 (3)
O22—Tb1—O2370.76 (5)O22—Tb1—O2371.90 (3)
O22—Tb1—O2472.47 (5)O22—Tb1—O2472.06 (3)
O24—Tb1—O2367.19 (5)O24—Tb1—O2368.34 (3)
O2—Tb1—O149.50 (4)O1—Tb1—O251.89 (3)
O4—Tb1—O1104.45 (4)O10—Tb1—O1124.95 (3)
O1—Tb1—O5154.57 (4)O10—Tb1—O273.09 (3)
O4—Tb1—O262.06 (4)
O2—Tb1—O5107.78 (4)
O4—Tb1—O550.12 (4)
O12—Tb1—O169.27 (5)O12—Tb1—O188.98 (3)
O13—Tb1—O1125.17 (4)O13—Tb1—O171.02 (3)
O14—Tb1—O169.06 (4)O14—Tb1—O1141.34 (3)
O22—Tb1—O1130.92 (4)O22—Tb1—O179.51 (3)
O23—Tb1—O164.60 (4)O23—Tb1—O1139.42 (3)
O24—Tb1—O1106.31 (4)O24—Tb1—O175.88 (3)
O12—Tb1—O280.97 (5)O12—Tb1—O273.16 (3)
O13—Tb1—O2144.10 (5)O13—Tb1—O2110.27 (3)
O14—Tb1—O2118.55 (4)O14—Tb1—O2142.17 (3)
O22—Tb1—O2142.88 (5)O22—Tb1—O2123.21 (3)
O23—Tb1—O283.39 (4)O23—Tb1—O2125.81 (3)
O24—Tb1—O273.14 (4)O24—Tb1—O269.33 (3)
O12—Tb1—O472.71 (5)O12—Tb1—O1075.77 (3)
O13—Tb1—O492.32 (5)O10—Tb1—O13141.19 (3)
O14—Tb1—O4148.71 (4)O14—Tb1—O1083.74 (3)
O22—Tb1—O4122.01 (4)O22—Tb1—O10140.58 (3)
O23—Tb1—O4136.38 (5)O10—Tb1—O2370.30 (3)
O24—Tb1—O477.30 (5)O10—Tb1—O2483.96 (3)
O12—Tb1—O598.74 (5)
O13—Tb1—O564.19 (5)
O14—Tb1—O5131.61 (5)
O22—Tb1—O573.45 (4)
O23—Tb1—O5131.18 (4)
O24—Tb1—O571.11 (5)
Bond lengths (Å) involving the metal cations and the nitrate/water ligands in the lanthanide complexes [Tb(H3LEt)2(NO3)(H2O)](NO3)2a and [Ln(H3L1)(NO3)(H2O)](NO3)2 (Ln = EuIII, HoIII and YbIII; H3L1 = cis,cis-1,3,5-trihydroxycyclohexane)b top
Eu—O(NO3)2.4869 (12)Eu—O(NO3)2.517 (2)Eu—O(H2O)2.4279 (14)
Tb—O(NO3)2.4706 (10)Tb—O(NO3)2.4762 (9)Tb—O(H2O)2.3786 (9)
Ho—O(NO3)2.450 (9)Ho—O(NO3)2.454 (8)Ho—O(H2O)2.377 (8)
Yb—O(NO3)2.448 (6)Yb—O(NO3)2.439 (7)Yb—O(H2O)2.331 (7)
Notes: (a) this work, product 2; (b) Delangle et al. (2001); Husson et al. (1999).
 

Acknowledgements

We thank Dr André Luis Rüdiger (UFPR) for his help with the crystal structure resolution of product 2. We also gratefully acknowledge the financial support from the Brazilian Research Council (CNPq, grant 307592/2012–0), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, PVE A099/2013 and PNPD 2376/2011), Fundação Araucária (grant 283/2014, protocol 37509) and Universidade Federal do Paraná (UFPR). TG, SOKG, DLH and JFS thank CAPES and CNPq for research grants and scholarships.

References

First citationAccorsi, S., Barra, A. L., Caneschi, A., Chastanet, G., Cornia, A., Fabretti, A. C., Gatteschi, D., Mortalo, C., Olivieri, E., Parenti, F., Rosa, P., Sessoli, R., Sorace, L., Wernsdorfer, W. & Zobbi, L. (2006). J. Am. Chem. Soc. 128, 4742–4755.  CSD CrossRef CAS Google Scholar
First citationBenelli, C. & Gatteschi, D. (2015). In Introduction to Molecular Magnetism: From Transition Metals to Lanthanides. Weinheim, Germany: Wiley-VCH.  Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Q., Chang, Y. D. & Zubieta, J. (1997). Inorg. Chim. Acta, 258, 257–262.  CSD CrossRef CAS Web of Science Google Scholar
First citationDelangle, P., Husson, C., Lebrun, C., Pécaut, J. & Vottéro, P. J. A. (2001). Inorg. Chem. 40, 2953–2962.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrost, J. M., Harriman, K. L. M. & Murugesu, M. (2016). Chem. Sci. 7, 2470–2491.  CrossRef CAS Google Scholar
First citationGatteschi, D., Sessoli, R. & Villain, J. (2006). In Molecular nanomagnets. Oxford University Press.  Google Scholar
First citationGregoli, L., Danieli, C., Barra, A.-L., Neugebauer, P., Pellegrino, G., Poneti, G., Sessoli, R. & Cornia, A. (2009). Chem. Eur. J. 15, 6456–6467.  CSD CrossRef CAS Google Scholar
First citationHusson, C., Delangle, P., Pécaut, J. & Vottéro, P. J. A. (1999). Inorg. Chem. 38, 2012–2019.  CSD CrossRef CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKahn, O. (1997). Nato Advanced Science Institutes Series, Series C, Mathematical and Physical Sciences, Vol. 499, Modular Chemistry, edited by J. Michl, pp. 287–302.  Google Scholar
First citationLiu, J., Chen, Y.-C., Liu, J.-L., Vieru, V., Ungur, L., Jia, J.-H., Chibotaru, L. F., Lan, Y., Wernsdorfer, W., Gao, S., Chen, X.-M. & Tong, M.-L. (2016). J. Am. Chem. Soc. 138, 5441–5450.  CSD CrossRef CAS Google Scholar
First citationLiu, K., Shi, W. & Cheng, P. (2015). Coord. Chem. Rev. 289–290, 74–122.  Web of Science CrossRef CAS Google Scholar
First citationLiu, J.-L., Wu, J.-Y., Chen, Y.-C., Mereacre, V., Powell, A. K., Ungur, L., Chibotaru, L. F., Chen, X.-M. & Tong, M.-L. (2014). Angew. Chem. Int. Ed. 53, 12966–12970.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuzon, J. & Sessoli, R. (2012). Dalton Trans. 41, 13556–13567.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMeng, Y. S., Jiang, S. D., Wang, B. W. & Gao, S. (2016). Acc. Chem. Res. 49, 2381–2389.  CrossRef CAS Google Scholar
First citationOsa, S., Kido, T., Matsumoto, N., Re, N., Pochaba, A. & Mrozinski, J. (2004). J. Am. Chem. Soc. 126, 420–421.  Web of Science CrossRef CAS Google Scholar
First citationPerrin, D. D. & Armarego, W. L. (1997). In Purification of Laboratory Chemicals, 3rd ed. Oxford: Butterworth–Heinemann.  Google Scholar
First citationRohrbaugh, W. J. & Jacobson, R. A. (1974). Inorg. Chem. 13, 2535–2539.  CrossRef CAS Google Scholar
First citationSessoli, R. & Powell, A. K. (2009). Coord. Chem. Rev. 253, 2328–2341.  Web of Science CrossRef CAS Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStumpf, H. O., Pei, Y., Kahn, O., Ouahab, L. & Grandjean, D. (1993). Science, 261, 447–449.  CSD CrossRef CAS Google Scholar
First citationSu, Y., Yang, L., Jin, X., Weng, S. & Wu, J. (2002). J. Mol. Struct. 616, 221–230.  CSD CrossRef CAS Google Scholar
First citationTotaro, P., Westrup, K. C. M., Boulon, M.-E., Nunes, G. G., Back, D. F., Barison, A., Ciattini, S., Mannini, M., Sorace, L., Soares, J. F., Cornia, A. & Sessoli, R. (2013). Dalton Trans. 42, 4416–4426.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVieru, V., Iwahara, N., Ungur, L. & Chibotaru, L. F. (2016). Sci. Rep. 6, 24046.  CrossRef Google Scholar
First citationWestrup, K. C. M., Boulon, M. E., Totaro, P., Nunes, G. G., Back, D. F., Barison, A., Jackson, M., Paulsen, C., Gatteschi, D., Sorace, L., Cornia, A., Soares, J. F. & Sessoli, R. (2014). Chem. Eur. J. 20, 13681–13691.  CSD CrossRef CAS Google Scholar
First citationXu, Z., Zhang, L., Li, D., Liu, X., Wang, Y. & Lin, J. (2015). Polyhedron, 92, 37–40.  CSD CrossRef CAS Google Scholar
First citationYang, L., Hua, X., Xue, J., Pan, Q., Yu, L., Li, W., Xu, Y., Zhao, G., Liu, L., Liu, K., Chen, J. & Wu, J. (2012). Inorg. Chem. 51, 499–510.  CSD CrossRef Google Scholar
First citationYang, L., Xie, D., Xu, Y., Wang, Y., Zhang, S., Weng, S., Zhao, K. & Wu, J. (2005). J. Inorg. Biochem. 99, 1090–1097.  CSD CrossRef CAS Google Scholar
First citationYang, L., Xu, Y., Wang, Y., Zhang, S., Weng, S., Zhao, K. & Wu, J. (2005). Carbohydr. Res. 340, 2773–2781.  CSD CrossRef CAS Google Scholar
First citationYu, L., Hua, X., Pan, Q., Yang, L., Xu, Y., Zhao, G., Wang, H., Wang, H., Wu, J., Liu, K. & Chen, J. (2011). Carbohydr. Res. 346, 2278–2284.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds