research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-n-butyl­bis­­[N-(2-meth­­oxy­eth­yl)-N-methyl­di­thio­carbamato-κ2S,S′]tin(IV): crystal structure and Hirshfeld surface analysis

CROSSMARK_Color_square_no_text.svg

aBiomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, bEnvironmental Health and Industrial Safety Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia, cDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, and dResearch Centre for Chemical Crystallography, School of Science and Technology, Sunway University, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
*Correspondence e-mail: edwardt@sunway.edu.my

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 19 January 2017; accepted 22 January 2017; online 27 January 2017)

The complete mol­ecule of the title compound, [Sn(C4H9)2(C5H10NOS2)2], is generated by a crystallographic mirror plane, with the SnIV atom and the two inner methyl­ene C atoms of the butyl ligands lying on the mirror plane; statistical disorder is noted in the two terminal ethyl groups, which deviate from mirror symmetry. The di­thio­carbamate ligand coordinates to the metal atom in an asymmetric mode with the resulting C2S4 donor set defining a skew trapezoidal bipyramidal geometry; the n-butyl groups are disposed to lie over the longer Sn—S bonds. Supra­molecular chains aligned along the a-axis direction and sustained by methyl­ene-C—H⋯S(weakly coordinating) inter­actions feature in the mol­ecular packing. A Hirshfeld surface analysis reveals the dominance of H⋯H contacts in the crystal.

1. Chemical context

The structural chemistry of mol­ecules with the general formula R2Sn(S2CNRR′)2 is diverse with coordination geometries ranging from five, as in trigonal bipyramid (t-Bu)2Sn(S2CNMe2)2 (Kim et al., 1987[Kim, K., Ibers, J. A., Jung, O.-S. & Sohn, Y. S. (1987). Acta Cryst. C43, 2317-2319.]), to seven, as in penta­gonal bipyramidal [MeOC(=O)CH2CH2]2Sn(S2CNMe)2 (Ng et al., 1989[Ng, S. W., Wei, C., Kumar Das, V. G., Jameson, G. B. & Butcher, R. J. (1989). J. Organomet. Chem. 365, 75-82.]). However, the overwhelming majority of structures are comprised of a six-coordinate SnIV atom, being based on either skew trapezoidal bipyramidal or octa­hedral coordination geometries (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). In the former, the di­thio­carbamate ligands are coord­in­ating in an asymmetric mode and lie in a plane, with the Sn-bound organic substituents orientated over the weaker Sn—S bonds. In the octa­hedral mol­ecules, the Sn-bound substituents occupy mutually cis-positions. As a general observation, compounds with Sn-bound aryl groups are octa­hedral and those with Sn-bound alkyl groups are skew trapezoidal bipyramidal. However, the capricious nature of the ultimate structure adopted in the solid state is nicely illustrated in a recent study whereby Ph2Sn[S2CN(CH2CH2OMe)Me]2, with a di­thio­carbamate ligand with dissimilar substituents, was found to be octa­hedral but, Ph2Sn[S2CN(CH2CH2OMe)2]2, with the di­thio­carbamate ligand having similar substituents, was skew trapezoidal bipyramidal (Mohamad, Awang, Jotani et al., 2016[Mohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130-1137.]). The structural inter­est notwithstanding, organotin di­thio­carbamates have potential biological applications, with recent investigations focusing upon biocidal activities, e.g. anti-fungal (Yu et al., 2014[Yu, Y., Yang, H., Wei, Z.-W. & Tang, L.-F. (2014). Heteroat. Chem. 25, 274-281.]) and anti-bacterial (Ferreira et al., 2012[Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2012). Eur. J. Med. Chem. 58, 493-503.]), and, especially, as anti-cancer agents (Ferreira et al., 2014[Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2014). Polyhedron, 79, 161-169.]; Kadu et al., 2015[Kadu, R., Roy, H. & Singh, V. K. (2015). Appl. Organomet. Chem. 29, 746-755.]), the focus of our inter­est (Khan et al., 2014[Khan, N., Farina, Y., Mun, L. K., Rajab, N. F. & Awang, N. (2014). J. Mol. Struct. 1076, 403-410.], 2015[Khan, M. D., Akhtar, J., Malik, M. A., Akhtar, M. & Revaprasadu, N. (2015). New J. Chem. 39, 9569-9574.]). During the course of the latter studies, crystals of the title compound, n-Bu2Sn[S2CN(CH2CH2OMe)Me]2, (I)[link], became available. Herein, the crystal and mol­ecular structures of (I)[link] are described along with a detailed analysis of the mol­ecular packing via an analysis of the Hirshfeld surface.

[Scheme 1]

1.1. Structural commentary

The asymmetric unit of (I)[link] comprises half a mol­ecule being located on a crystallographic mirror plane with the Sn atom along with the two inner C atoms of the n-butyl groups lying on the plane, Fig. 1[link]. The di­thio­carbamate ligand coordinates the Sn atom in an asymmetric fashion with the Δ(Sn—S), i.e. the difference between the Sn—Slong and Sn—Sshort distances, being ca 0.39 Å, Table 1[link]. This asymmetry is reflected in the associated C—S bond lengths with the short Sn—S bond being correlated with a long C—S bond length, Table 1[link]. The coord­ination environment is completed by two α-C atoms of the n-butyl groups. The four S atoms are co-planar and define a skewed trapezoidal plane, and the α-C atoms are disposed over the weaker Sn—S bonds so that the C2S4 donor set defines a skew trapezoidal bipyramidal geometry.

Table 1
Selected bond lengths (Å)

Sn—S1 2.5425 (5) Sn—C10 2.138 (3)
Sn—S2 2.9318 (5) S1—C1 1.7443 (18)
Sn—C6 2.146 (3) S2—C1 1.6974 (19)
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. Unlabelled atoms are related by the symmetry operation (x, [{1\over 2}] − y, z). Only one component of each of the disordered n-butyl groups is shown.

2. Supra­molecular features

The only notable contacts identified in the mol­ecular packing are methyl­ene-C—H⋯S(weakly coordinating) inter­actions that assemble mol­ecules into linear supra­molecular chains propagating along the a-axis direction, Fig. 2[link]a and Table 2[link]. The chains pack in the crystal with no specific inter­actions between them, Fig. 2[link]b. In order to ascertain more information of the nature of inter­actions between mol­ecules, the mol­ecular packing and its Hirshfeld surface was analysed, as discussed in Hirshfeld surface analysis.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4B⋯S2i 0.99 2.96 3.608 (2) 124
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
The mol­ecular packing in (I)[link]: (a) supra­molecular chain along the a axis sustained by methyl­ene-C—H⋯S inter­actions shown as orange dashed lines and (b) a view of the unit cell contents in projection down the a axis. Only one component of each of the disordered n-butyl groups is shown.

3. Hirshfeld surface analysis

The Hirshfeld surface analysis for (I)[link] was performed as described recently for organotin di­thio­carbamates (Mohamad, Awang, Kamaludin et al., 2016[Mohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1480-1487.]). From the views of the Hirshfeld surface mapped over dnorm, in the range −0.298 to +1.346 au, in Fig. 3[link], the pairs of bright-red spots near hydrogen atoms H9C and H13B of the disordered methyl groups, i.e. deviating from mirror symmetry, indicate their participation in specific inter­molecular H⋯H inter­actions. In the crystal, these lead to a supra­molecular chain along the c axis. The presence of this di­hydrogen inter­action, resulting from disparate charges on respective hydrogen atoms, can also be viewed by the different curvatures and electrostatic potentials around these atoms on the Hirshfeld surface mapped over the electrostatic potential in the range −0.082 to +0.163 au, Fig. 4[link]. Fig. 5[link] illustrates the immediate environment around a reference mol­ecule within its Hirshfeld surface mapped over dnorm, highlighting the inter­molecular C—H⋯S and H⋯H inter­actions.

[Figure 3]
Figure 3
Two views of the Hirshfeld surface mapped over dnorm for (I)[link]. The disorder component has been retained in the images.
[Figure 4]
Figure 4
Two views of the Hirshfeld surfaces mapped over the electrostatic potential highlighting the disparate charge about the terminal hydrogen atoms (the red and blue regions represent negative and positive electrostatic potentials, respectively) for (I)[link].
[Figure 5]
Figure 5
A view of the Hirshfeld surface mapped over dnorm for a reference mol­ecule in contact with nearest neighbouring mol­ecules and highlighting inter­molecular C—H⋯S and H⋯H inter­actions, shown as white and black dashed lines, respectively.

From the overall two dimensional fingerprint plot, Fig. 6[link]a, and those delineated (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) into H⋯H, C⋯H/H⋯C, S⋯H/H⋯S, O⋯H/H⋯O and N⋯H/H⋯N contacts, illustrated in Fig. 6[link]bf, it is inter­esting to note that each of the specified inter­atomic contacts involves the participation of H atoms to the Hirshfeld surfaces. The qu­anti­tative summary showing the relative contributions from all inter­atomic contacts, given in Table 3[link], reinforces this fact.

Table 3
Percentage contribution of the different inter­molecular contacts to the Hirshfeld surface in (I)

Contact % contribution in (I)
H⋯H 74.5
S⋯H/H⋯S 16.2
O⋯H/H⋯O 4.9
C⋯H/H⋯C 3.2
N⋯H/H⋯N 1.2
[Figure 6]
Figure 6
Views of the (a) full two-dimensional fingerprint plot for (I)[link], and plots delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) S⋯H/H⋯S, (e) O⋯H/H⋯O and (f) N⋯H/H⋯N contacts.

In the fingerprint plot delineated into H⋯H contacts, Fig. 6[link]b, a long and distinctive spike at de + di ∼ 1.8 Å represents H⋯H bonding described above, Table 4[link], i.e. between methyl-H9B and -H13B atoms. The major contribution from these contacts to the Hirshfeld surface, i.e. 74.5%, and the essentially same shape of overall and H⋯H delineated fingerprint plots in the upper (de, di) region, Fig. 6[link]a and b, show the dominance of these inter­actions in the mol­ecular packing. The peak in the plot corresponding to a second short inter­atomic H⋯H contact, i.e. between methyl-H2B and methyl­ene-H10A, Table 4[link], is diminished within the plot due to H9B⋯H13B inter­action. The di­hydrogen H⋯H bonding also results in short inter­atomic C⋯H/H⋯C contacts, Table 4[link], leading to a pair of short peaks at de + di ∼ 2.8 Å in the delineated fingerprint plot, Fig. 6[link]c; the other inter­atomic short C⋯H/H⋯C contact is merged within the plot. The presence of the weak C—H⋯S inter­actions, Table 2[link], is seen from the fingerprint plot corresponding to S⋯H/H⋯S contacts, Fig. 6[link]d, and is evident as a pair of broad peaks at de + di ∼ 2.9 Å. The fingerprint plots delineated into O⋯H/H⋯O and N⋯H/H⋯N contacts, Fig. 6[link]e and f, contribute in a minor fashion to the Hirshfeld surface and their characteristic points are longer than their respective van der Waals separations, i.e. longer than 2.72 and 2.75 Å, respectively, and hence it is likely they do not make any significant contribution to the mol­ecular packing.

Table 4
Short inter­atomic contacts in (I)

Contact distance symmetry operation
H9C⋯H13B 1.85 x, y, 1 + z
H2B⋯H10A 2.27 1 − x, −y, 1 − z
C9⋯H13B 2.72 x, y, 1 + z
C13⋯H9C 2.73 x, y, −1 + z
C1⋯H2A 2.86 1 − x, −y, 1 − z
S2⋯H4B 2.96 1 + x, y, z

A comment on the relationship of the modelled disorder, the contribution of H⋯H contacts to the Hirshfeld surface and the nature of the H⋯H contacts is warranted. In the statistical disorder model for (I)[link], it might be normally assumed (as done in Fig. 2[link]b) that that H atoms adopt positions as far apart from each other as possible rather than participate in `non-bonded steric repulsion' (Matta et al., 2003[Matta, C. F., Hernández-Trujillo, J., Tang, T.-H. & Bader, R. F. W. (2003). Chem. Eur. J. pp. 1940-1951.]). In (I)[link], this does not appear to the case but, rather is an example where H⋯H contacts contribute to the stabilization of the mol­ecular packing. In examples where di­hydrogen H⋯H contacts are formed intra­molecularly, energies of stabilization up to 10 kcal mol−1 have been suggested (Matta et al., 2003[Matta, C. F., Hernández-Trujillo, J., Tang, T.-H. & Bader, R. F. W. (2003). Chem. Eur. J. pp. 1940-1951.]).

4. Database survey

The inter­est in organotin di­thio­carbamates is reflected in the relatively large number of crystal structures available in the crystallographic literature (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). An example of this inter­est is twenty structures conforming to the general formula n-Bu2Sn(S2CNRR')2. One structure, i.e. R = R′ = i-Pr (Farina et al., 2000[Farina, Y., Baba, I., Othman, A. H. & Ng, S. W. (2000). Main Group Met. Chem. 23, 795-796.]), conforms to crystallographic mm2 symmetry (implying disorder in the terminal residues), seven, i.e. R = Me, R′ = n-Bu (Ramasamy et al., 2013[Ramasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266-276.]), R = Me, R′ = CH2C(H)Me2 (Ferreira et al., 2012[Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2012). Eur. J. Med. Chem. 58, 493-503.]), R = Me, R′ = methyl­ene-1,3-dioxolan-2-yl (Ferreira et al., 2012[Ferreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2012). Eur. J. Med. Chem. 58, 493-503.]), R = Et, R′ = methyl­ene-4-pyridyl (Barba et al., 2012[Barba, V., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroat. Chem. 23, 422-428.]), NR,R′ = piperidine (Khan et al., 2015[Khan, M. D., Akhtar, J., Malik, M. A., Akhtar, M. & Revaprasadu, N. (2015). New J. Chem. 39, 9569-9574.]), NRR′ = morpholine (Vrábel & Kellö, 1993[Vrábel, V. & Kellö, E. (1993). Acta Cryst. C49, 873-875.]) and NRR′ = 4-(2-meth­oxy­phen­yl)piperazine (Zia-ur-Rehman et al., 2012[Zia-ur-Rehman, Muhammad, N., Shah, A., Ali, S., Butler, I. S. & Meetsma, A. (2012). J. Coord. Chem. 65, 3238-3253.]), have twofold symmetry with the remainder having no crystallographically imposed symmetry. This implies the structure of (I)[link] is the first of this type to have crystallographic m symmetry. Two structures, i.e. R = R′ = Et (Vrábel et al., 1992[Vrábel, V., Lokaj, J., Kellö, E., Garaj, J., Batsanov, A. C. & Struchkov, Yu. T. (1992). Acta Cryst. C48, 633-635.]) and R = R′ = n-Bu (Ramasamy et al., 2013[Ramasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266-276.]), have two independent mol­ecules in the crystallographic unit and, remarkably, one, i.e. R = i-Pr and R′ = benzyl (Awang, Baba, Yousof et al., 2010[Awang, N., Baba, I., Yousof, N. S. A. M. & Kamaludin, N. F. (2010). Am. J. Appl. Sci. 7, 1047-1052.]), has Z′ = 5. In all, there are 26 independent di­thio­carbamate ligands in n-Bu2Sn(S2CNRR′)2.

The first noteworthy comment to be made on the structures of n-Bu2Sn(S2CNRR′)2 is that they all conform to the same structural motif as adopted for (I)[link]. The Sn—Sshort bond lengths in these structures span a relatively narrow range of 2.51 to 2.55 Å and cluster around 2.53 Å. As might be anti­cipated, a wider range is exhibited by the Sn—Slong bonds, i.e. 2.83 to 3.08 Å and these cluster around 2.96 Å. Given the range of Sn—Sshort bond lengths is 0.04 Å and that for Sn—Slong is 0.25 Å, the observation that differences between the average values of Sn—Sshort and Sn—Slong span a range of 0.43 Å indicates no specific correlations exist between Sn—Sshort and Sn—Slong bond lengths. The Sshort—Sn—Sshort, Slong—Sn—Slong and C—Sn—C angles cluster around 83, 147 and 136°, respectively. However, these angles span ranges of 8° (range: 80 to 88°), 10° (140 to 151°) and 18° (127 to 145°), respectively. The disparity in the S—Sn—S angles is as expected from the adopted coordination geometry. While, generally, the Slong—Sn—Slong angles are wider than the C—Sn—C angles, there are three exceptional structures, namely R = R′ = Et (Vrábel et al., 1992[Vrábel, V., Lokaj, J., Kellö, E., Garaj, J., Batsanov, A. C. & Struchkov, Yu. T. (1992). Acta Cryst. C48, 633-635.]), R = Et and R′ = Cy (Awang, Baba, Yamin et al., 2010[Awang, N., Baba, I., Yamin, B. M. & Ng, S. W. (2010). Acta Cryst. E66, m938.]) and R = benzyl and R′ = methyl­ene-4-pyridyl (Gupta et al., 2015[Gupta, A. N., Kumar, V., Singh, V., Rajput, A., Prasad, L. B., Drew, M. G. B. & Singh, N. (2015). J. Organomet. Chem. 787, 65-72.]) have C—Sn—C which are marginally wider, by ca 1°, than the Slong—Sn—Slong angles. The fact of non-systematic variations in the geometric parameters in organotin di­thio­carbamates has been commented upon previously (Buntine et al., 1998[Buntine, M. A., Hall, V. J., Kosovel, F. J. & Tiekink, E. R. T. (1998). J. Phys. Chem. A, 102, 2472-2482.]; Muthalib et al., 2014[Muthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39-46.]).

The homogeneity in the n-Bu2Sn(S2CNRR′)2 structural motif does not translate to the diphenyl analogues, i.e. Ph2Sn(S2CNRR′)2. Of the 19 structures conforming to this general formula, seven resemble the skew trapezoidal bipyramidal motif with the majority, i.e. twelve, having a cis-disposition of the tin-bound phenyl substituents. In this context, it is noteworthy that all structures of the general formula Sn(S2CNRR′)2X2, where X = halide, are invariably cis-S4X2 octa­hedral (Tiekink, 2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]). Given the electronegativity of a phenyl group is inter­mediate between that of an alkyl group and a halide, it seems that there is a fine balance between adopting one structural motif over the other for Ph2Sn(S2CNRR′)2 compounds.

5. Synthesis and crystallization

(2-Meth­oxy­eth­yl)methyl­amine (10 mmol) dissolved in ethanol (30 ml) was stirred in an ice bath (ca 277 K) for 30 min. 25% Ammonia solution (ca 2 ml) was added to make the solution basic. Then, a cold ethanol solution of carbon di­sulfide (10 mmol) was added to the solution followed by stirring for about 2 h. Next, di-n-butyl­tin(IV) dichloride (5 mmol), dissolved in ethanol (30 ml), was added to the solution which was further stirred for 2 h. The precipitate that formed was filtered and then washed three times with cold ethanol to remove any impurities. The precipitate was then dried in a dessicator. The compound was crystallized in a mixture of chloro­form and ethanol (1:2 v/v) at room temperature to give colourless slabs. Yield: 66%, m.p. 333–336 K. Analysis. Found C, 40.3; H, 7.3; N, 5.0; S, 22.8. C18H38N2O2S4Sn requires: C, 38.5; H, 6.8; N, 5.0; S, 23.7. IR (cm−1): 1490 ν(C—N), 991 ν(C—S), 553 ν(Sn—C), 420 ν(Sn—S). 1H NMR (CDCl3): 7.40–7.74 (15H, Sn–Ph), 4.07 (2H, OCH2), 3.71 (2H, NCH2), 3.46 (3H, OCH3), 3.40 (3H, NCH3), 2.04 (2H, SnCH2), 1.92 (2H, SNCH2CH2), 1.44 (2H, CH2CH3), 0.98 (3H, CH2CH3). 13C{1H} NMR (CDCl3): δ 201.2 (S2C), 70.1 (OCH2), 59.1 (NCH2), 56.6 (OCH3), 44.5 (NCH3), 34.3 (SnCH2), 28.6 (SnCH2CH2), 26.5 (CH2CH3), 13.9 (CH2CH3). 119Sn{1H} NMR (CDCl3): 338.6.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Carbon-bound H atoms were placed in calculated positions (C—H = 0.98–0.99 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2–1.5Ueq(C). The mol­ecule has crystallographic mirror symmetry with the Sn atom and n-butyl-C atoms lying on the plane. The terminal CH2CH3 residue of each n-butyl group is statistically disordered across this plane. Owing to poor agreement, three reflections, i.e. (172), (124) and (155), were omitted from the final cycles of refinement.

Table 5
Experimental details

Crystal data
Chemical formula [Sn(C4H9)2(C5H10NOS2)2]
Mr 561.43
Crystal system, space group Monoclinic, P21/m
Temperature (K) 148
a, b, c (Å) 7.1021 (4), 18.0761 (8), 10.8809 (7)
β (°) 108.877 (7)
V3) 1321.74 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.30
Crystal size (mm) 0.50 × 0.42 × 0.40
 
Data collection
Diffractometer Agilent Technologies SuperNova Dual diffractometer with an Atlas detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.])
Tmin, Tmax 0.482, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10631, 4063, 3712
Rint 0.022
(sin θ/λ)max−1) 0.739
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.12
No. of reflections 4063
No. of parameters 147
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.68, −0.56
Computer programs: CrysAlis PRO (Agilent, 2015[Agilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2015); cell refinement: CrysAlis PRO (Agilent, 2015); data reduction: CrysAlis PRO (Agilent, 2015); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Di-n-butylbis[N-(2-methoxyethyl)-N-methyldithiocarbamato-κ2S,S']tin(IV) top
Crystal data top
[Sn(C4H9)2(C5H10NOS2)2]F(000) = 580
Mr = 561.43Dx = 1.411 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 7.1021 (4) ÅCell parameters from 6472 reflections
b = 18.0761 (8) Åθ = 4.5–31.4°
c = 10.8809 (7) ŵ = 1.30 mm1
β = 108.877 (7)°T = 148 K
V = 1321.74 (14) Å3Block, colourless
Z = 20.50 × 0.42 × 0.40 mm
Data collection top
Agilent Technologies SuperNova Dual
diffractometer with an Atlas detector
4063 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3712 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.022
Detector resolution: 10.4041 pixels mm-1θmax = 31.7°, θmin = 3.8°
ω scanh = 610
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2015)
k = 2625
Tmin = 0.482, Tmax = 1.000l = 1512
10631 measured reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0308P)2 + 0.5383P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.002
4063 reflectionsΔρmax = 0.68 e Å3
147 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn0.63209 (3)0.25000.65708 (2)0.02489 (6)
S10.36767 (7)0.15500 (2)0.65625 (5)0.02861 (11)
S20.76229 (7)0.09574 (3)0.66305 (5)0.02966 (11)
O10.3352 (2)0.06447 (9)0.86623 (16)0.0396 (3)
N10.4586 (2)0.01192 (8)0.66892 (16)0.0266 (3)
C10.5266 (3)0.08039 (10)0.66318 (17)0.0234 (3)
C20.5918 (3)0.05193 (11)0.6850 (2)0.0341 (4)
H2A0.63880.05550.60990.051*
H2B0.51970.09720.69160.051*
H2C0.70590.04580.76420.051*
C30.2511 (3)0.00359 (11)0.6614 (2)0.0298 (4)
H3A0.21030.05160.61700.036*
H3B0.16370.03510.60800.036*
C40.2207 (3)0.00634 (11)0.7922 (2)0.0325 (4)
H4A0.26150.04130.83800.039*
H4B0.07810.01440.78070.039*
C50.2984 (4)0.07280 (17)0.9863 (3)0.0531 (7)
H5A0.33550.02721.03710.080*
H5B0.37760.11411.03500.080*
H5C0.15680.08290.96970.080*
C60.8488 (4)0.25000.8477 (3)0.0309 (6)
H6A0.83000.29430.89590.037*0.5
H6B0.83000.20570.89590.037*0.5
C71.0587 (5)0.25000.8393 (3)0.0453 (8)
H7A1.08300.29820.80390.054*0.5
H7B1.06770.21110.77730.054*0.5
C81.2246 (7)0.2366 (3)0.9707 (5)0.0471 (18)0.5
H8A1.18580.19601.01860.056*0.5
H8B1.35020.22260.95570.056*0.5
C91.2526 (10)0.3068 (4)1.0476 (7)0.0674 (16)*0.5
H9A1.25720.34880.99160.101*0.5
H9B1.37760.30431.12020.101*0.5
H9C1.14130.31331.08130.101*0.5
C100.6376 (4)0.25000.4618 (3)0.0278 (5)
H10A0.56520.20580.41670.033*0.5
H10B0.56520.29420.41670.033*0.5
C110.8436 (5)0.25000.4497 (3)0.0442 (8)
H11A0.91320.20390.48830.053*0.5
H11B0.92000.29230.49940.053*0.5
C120.8384 (7)0.2556 (15)0.3070 (4)0.059 (3)0.5
H12A0.79670.20740.26370.071*0.5
H12B0.73780.29290.26150.071*0.5
C131.0384 (9)0.2771 (5)0.2943 (6)0.086 (3)0.5
H13A1.08010.32510.33610.129*0.5
H13B1.02630.28050.20210.129*0.5
H13C1.13780.23950.33640.129*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02457 (10)0.02545 (9)0.02660 (10)0.0000.01098 (7)0.000
S10.0263 (2)0.0217 (2)0.0407 (3)0.00326 (16)0.0147 (2)0.00337 (18)
S20.0279 (2)0.0278 (2)0.0364 (3)0.00582 (17)0.0146 (2)0.00320 (18)
O10.0414 (8)0.0371 (8)0.0389 (9)0.0048 (6)0.0112 (7)0.0136 (7)
N10.0304 (8)0.0225 (7)0.0267 (8)0.0017 (6)0.0091 (7)0.0005 (6)
C10.0269 (8)0.0243 (8)0.0194 (8)0.0017 (6)0.0080 (7)0.0005 (6)
C20.0412 (11)0.0221 (8)0.0390 (11)0.0061 (8)0.0132 (9)0.0005 (8)
C30.0290 (9)0.0254 (8)0.0314 (10)0.0022 (7)0.0048 (8)0.0023 (7)
C40.0303 (9)0.0318 (9)0.0358 (11)0.0016 (7)0.0113 (8)0.0071 (8)
C50.0475 (14)0.0690 (17)0.0420 (14)0.0079 (12)0.0134 (11)0.0210 (12)
C60.0325 (14)0.0377 (14)0.0241 (13)0.0000.0115 (11)0.000
C70.0279 (14)0.074 (2)0.0311 (16)0.0000.0051 (13)0.000
C80.044 (2)0.045 (6)0.043 (2)0.003 (2)0.0020 (18)0.001 (2)
C100.0330 (13)0.0241 (11)0.0263 (13)0.0000.0096 (11)0.000
C110.0391 (17)0.066 (2)0.0323 (17)0.0000.0185 (14)0.000
C120.059 (2)0.091 (8)0.0343 (19)0.021 (7)0.0253 (19)0.006 (6)
C130.070 (4)0.148 (10)0.061 (4)0.013 (4)0.048 (3)0.011 (4)
Geometric parameters (Å, º) top
Sn—S12.5425 (5)C6—C71.523 (4)
Sn—S22.9318 (5)C6—H6A0.9900
Sn—S1i2.5425 (5)C6—H6B0.9900
Sn—S2i2.9318 (5)C7—C81.550 (5)
Sn—C62.146 (3)C7—H7A0.9900
Sn—C102.138 (3)C7—H7B0.9900
S1—C11.7443 (18)C8—C91.498 (7)
S2—C11.6974 (19)C8—H8A0.9900
O1—C41.411 (2)C8—H8B0.9900
O1—C51.421 (3)C9—H9A0.9800
N1—C11.337 (2)C9—H9B0.9800
N1—C21.466 (2)C9—H9C0.9800
N1—C31.476 (2)C10—C111.511 (4)
C2—H2A0.9800C10—H10A0.9900
C2—H2B0.9800C10—H10B0.9900
C2—H2C0.9800C11—C121.545 (5)
C3—C41.508 (3)C11—H11A0.9900
C3—H3A0.9900C11—H11B0.9900
C3—H3B0.9900C12—C131.521 (8)
C4—H4A0.9900C12—H12A0.9900
C4—H4B0.9900C12—H12B0.9900
C5—H5A0.9800C13—H13A0.9800
C5—H5B0.9800C13—H13B0.9800
C5—H5C0.9800C13—H13C0.9800
C10—Sn—C6136.27 (11)C7—C6—H6B109.5
C10—Sn—S1104.32 (6)Sn—C6—H6B109.5
C6—Sn—S1107.55 (5)H6A—C6—H6B108.1
C10—Sn—S1i104.32 (6)C6—C7—C8114.3 (3)
C6—Sn—S1i107.55 (5)C6—C7—H7A108.7
S1—Sn—S1i84.97 (2)C8—C7—H7A108.7
C10—Sn—S285.12 (2)C6—C7—H7B108.7
C6—Sn—S281.73 (2)C8—C7—H7B108.7
S1—Sn—S265.482 (14)H7A—C7—H7B107.6
S1i—Sn—S2150.431 (15)C9—C8—C7107.9 (4)
C1—S1—Sn93.17 (6)C9—C8—H8A110.1
C1—S2—Sn81.45 (6)C7—C8—H8A110.1
C4—O1—C5111.11 (19)C9—C8—H8B110.1
C1—N1—C2120.35 (16)C7—C8—H8B110.1
C1—N1—C3122.84 (15)H8A—C8—H8B108.4
C2—N1—C3116.80 (15)C8—C9—H9A109.5
N1—C1—S2121.49 (14)C8—C9—H9B109.5
N1—C1—S1118.64 (14)H9A—C9—H9B109.5
S2—C1—S1119.87 (10)C8—C9—H9C109.5
N1—C2—H2A109.5H9A—C9—H9C109.5
N1—C2—H2B109.5H9B—C9—H9C109.5
H2A—C2—H2B109.5C11—C10—Sn114.6 (2)
N1—C2—H2C109.5C11—C10—H10A108.6
H2A—C2—H2C109.5Sn—C10—H10A108.6
H2B—C2—H2C109.5C11—C10—H10B108.6
N1—C3—C4113.55 (16)Sn—C10—H10B108.6
N1—C3—H3A108.9H10A—C10—H10B107.6
C4—C3—H3A108.9C10—C11—C12112.3 (3)
N1—C3—H3B108.9C10—C11—H11A109.2
C4—C3—H3B108.9C12—C11—H11A109.2
H3A—C3—H3B107.7C10—C11—H11B109.2
O1—C4—C3109.33 (17)C12—C11—H11B109.2
O1—C4—H4A109.8H11A—C11—H11B107.9
C3—C4—H4A109.8C13—C12—C11112.9 (5)
O1—C4—H4B109.8C13—C12—H12A109.0
C3—C4—H4B109.8C11—C12—H12A109.0
H4A—C4—H4B108.3C13—C12—H12B109.0
O1—C5—H5A109.5C11—C12—H12B109.0
O1—C5—H5B109.5H12A—C12—H12B107.8
H5A—C5—H5B109.5C12—C13—H13A109.5
O1—C5—H5C109.5C12—C13—H13B109.5
H5A—C5—H5C109.5H13A—C13—H13B109.5
H5B—C5—H5C109.5C12—C13—H13C109.5
C7—C6—Sn110.60 (19)H13A—C13—H13C109.5
C7—C6—H6A109.5H13B—C13—H13C109.5
Sn—C6—H6A109.5
C2—N1—C1—S24.5 (3)C1—N1—C3—C491.6 (2)
C3—N1—C1—S2176.29 (14)C2—N1—C3—C487.6 (2)
C2—N1—C1—S1175.26 (14)C5—O1—C4—C3175.28 (18)
C3—N1—C1—S13.9 (2)N1—C3—C4—O162.2 (2)
Sn—S2—C1—N1178.28 (16)Sn—C6—C7—C8170.1 (2)
Sn—S2—C1—S11.51 (10)C6—C7—C8—C976.4 (5)
Sn—S1—C1—N1178.07 (14)Sn—C10—C11—C12175.9 (11)
Sn—S1—C1—S21.72 (11)C10—C11—C12—C13164.0 (11)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4B···S2ii0.992.963.608 (2)124
Symmetry code: (ii) x1, y, z.
Percentage contribution of the different intermolecular contacts to the Hirshfeld surface in (I) top
Contact% contribution in (I)
H···H74.5
S···H/H···S16.2
O···H/H···O4.9
C···H/H···C3.2
N···H/H···N1.2
Short interatomic contacts in (I) top
Contactdistancesymmetry operation
H9C···H13B1.85x, y, 1 + z
H2B···H10A2.271-x, -y, 1 - z
C9···H13B2.72x, y, 1 + z
C13···H9C2.73x, y, -1 + z
C1···H2A2.861-x, -y, 1 - z
S2···H4B2.961 + x, y, z
 

Footnotes

Additional correspondence author, e-mail: awang_normah@yahoo.com.

Acknowledgements

This work was supported by grant GGPM-2016-061. We gratefully acknowledge the School of Chemical Science and Food Technology, Universiti Kebangsaan Malaysia for providing the essential laboratory facilities. We would also like to acknowledge the technical support from the laboratory assistants of the Faculty of Science and Technology, Universiti Kebangsaan Malaysia. Intensity data were collected in the University of Malaya crystallographic laboratory.

Funding information

Funding for this research was provided by: Universiti Kebangsaan Malaysia (award No. GGPM-2016-061).

References

First citationAgilent (2015). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationAwang, N., Baba, I., Yousof, N. S. A. M. & Kamaludin, N. F. (2010). Am. J. Appl. Sci. 7, 1047–1052.  CSD CrossRef CAS Google Scholar
First citationAwang, N., Baba, I., Yamin, B. M. & Ng, S. W. (2010). Acta Cryst. E66, m938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarba, V., Arenaza, B., Guerrero, J. & Reyes, R. (2012). Heteroat. Chem. 23, 422–428.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBuntine, M. A., Hall, V. J., Kosovel, F. J. & Tiekink, E. R. T. (1998). J. Phys. Chem. A, 102, 2472–2482.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarina, Y., Baba, I., Othman, A. H. & Ng, S. W. (2000). Main Group Met. Chem. 23, 795–796.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFerreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2012). Eur. J. Med. Chem. 58, 493–503.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFerreira, I. P., de Lima, G. M., Paniago, E. B., Rocha, W. R., Takahashi, J. A., Pinheiro, C. B. & Ardisson, J. D. (2014). Polyhedron, 79, 161–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, A. N., Kumar, V., Singh, V., Rajput, A., Prasad, L. B., Drew, M. G. B. & Singh, N. (2015). J. Organomet. Chem. 787, 65–72.  CSD CrossRef CAS Google Scholar
First citationKadu, R., Roy, H. & Singh, V. K. (2015). Appl. Organomet. Chem. 29, 746–755.  Web of Science CrossRef CAS Google Scholar
First citationKhan, M. D., Akhtar, J., Malik, M. A., Akhtar, M. & Revaprasadu, N. (2015). New J. Chem. 39, 9569–9574.  CSD CrossRef CAS Google Scholar
First citationKhan, N., Farina, Y., Mun, L. K., Rajab, N. F. & Awang, N. (2014). J. Mol. Struct. 1076, 403–410.  Web of Science CSD CrossRef CAS Google Scholar
First citationKim, K., Ibers, J. A., Jung, O.-S. & Sohn, Y. S. (1987). Acta Cryst. C43, 2317–2319.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMatta, C. F., Hernández-Trujillo, J., Tang, T.-H. & Bader, R. F. W. (2003). Chem. Eur. J. pp. 1940–1951.  CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMohamad, R., Awang, N., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1130–1137.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamad, R., Awang, N., Kamaludin, N. F., Jotani, M. M. & Tiekink, E. R. T. (2016). Acta Cryst. E72, 1480–1487.  CSD CrossRef IUCr Journals Google Scholar
First citationMuthalib, A. F. A., Baba, I., Khaledi, H., Ali, H. M. & Tiekink, E. R. T. (2014). Z. Kristallogr. 229, 39–46.  Google Scholar
First citationNg, S. W., Wei, C., Kumar Das, V. G., Jameson, G. B. & Butcher, R. J. (1989). J. Organomet. Chem. 365, 75–82.  CSD CrossRef CAS Web of Science Google Scholar
First citationRamasamy, K., Kuznetsov, V. L., Gopal, K., Malik, M. A., Raftery, J., Edwards, P. P. & O'Brien, P. (2013). Chem. Mater. 25, 266–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar
First citationVrábel, V. & Kellö, E. (1993). Acta Cryst. C49, 873–875.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationVrábel, V., Lokaj, J., Kellö, E., Garaj, J., Batsanov, A. C. & Struchkov, Yu. T. (1992). Acta Cryst. C48, 633–635.  CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Y., Yang, H., Wei, Z.-W. & Tang, L.-F. (2014). Heteroat. Chem. 25, 274–281.  Web of Science CSD CrossRef CAS Google Scholar
First citationZia-ur-Rehman, Muhammad, N., Shah, A., Ali, S., Butler, I. S. & Meetsma, A. (2012). J. Coord. Chem. 65, 3238–3253.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds