research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2,2′-bipyrid­yl)[2,6-bis­­(1-butyl-1H-benzimidazol-2-yl)pyridine]­chlorido­iridium(III) tri­fluoro­methane­sulfonate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Drexel University, 3141 Chestnut St., Philadelphia, PA, 19104, USA, and bDepartment of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555-3663, USA
*Correspondence e-mail: mn468@drexel.edu

Edited by H. Ishida, Okayama University, Japan (Received 15 November 2016; accepted 3 January 2017; online 10 January 2017)

The title complex compound, [Ir(C27H29N5)Cl(C10H8N2)](CF3SO3)2, was synthesized for a study of iridium(III)/periodate redox systems in water. The coordination geometry of the complex can be best described as distorted octa­hedral, with an r.m.s. deviation of 8.8 (8)% from ideal octa­hedral rectangular geometry. In the crystal, C—H⋯O and C—H⋯F inter­actions between the complex cation and the tri­fluoro­methane­sulfonate anions are observed, as well as a C—H⋯Cl inter­molecular inter­action between neighboring complex cations. In addition, the benzimidazole ring systems display parallel-displaced ππ stacking with centroid–centroid distances of 3.585 (3)–3.907 (3) Å. One of the two tri­fluoro­methane­sulfonate anions is disordered over two orientations with an occupancy ratio of 0.582 (6):0.418 (6). The title complex was characterized using FT–IR, cyclic voltammetry/rotating disc electrode polarography, fluorescence spectrometry, high resolution mass spectrometry, CHN elemental analysis and 1H NMR spectroscopy.

1. Chemical context

Some iridium(III) complexes, specifically those containing di­hydroxy­bipyridine ligands, have been shown to catalyze the oxidation of water in the presence of periodate (IO4) as the sacrificial oxidant (DePasquale et al., 2013[DePasquale, J., Nieto, I., Reuther, L. E., Herbst-Gervasoni, C. J., Paul, J. J., Mochalin, V., Zeller, M., Thomas, C. M., Addison, A. W. & Papish, E. T. (2013). Inorg. Chem. 52, 9175-9183.]; Lewandowska-Andralojc et al., 2014[Lewandowska-Andralojc, A., Polyansky, D. E., Wang, C., Wang, W., Himeda, Y. & Fujita, E. (2014). Phys. Chem. Chem. Phys. 16, 11976-11987.]). The title complex was synthesized within a project exploring the nature of iridium(III)/periodate systems in water. The ligands, 2,6-bis­(N-butyl­benzimidazol-2′-yl)pyridine (bubzimpy) and 2,2′-bi­pyridine (bipy), were chosen for their denticity characteristics, available donor atoms and solubility characteristics.

[Scheme 1]

2. Structural commentary

The cationic complex of the title salt is composed of one mol­ecule each of bipy and bubzimpy, and a chloride ion coordinating to the iridium(III) atom, with charge balance provided by two crystallographically independent tri­fluoro­methane­sulfonate ions (Fig. 1[link]). The bond lengths and angles are comparable to similar complexes (Yutaka et al., 2005[Yutaka, T., Obara, S., Ogawa, S., Nozaki, K., Ikeda, N., Ohno, T., Ishii, Y., Sakai, K. & Haga, M. (2005). Inorg. Chem. 44, 4737-4746.]), though the torsion angles show distinct differences. The bond angles involving Ir range from 79.55 (12)° (N6—Ir—N7) to 178.09 (13)° (N3—Ir—N7), with the bond lengths between 1.992 (3) Å (Ir—N3) and 2.3510 (9) Å (Ir—Cl). The Ir complex with 2,6-bis­(N-methyl­benzimidazol-2′-yl)pyridine (mebzimpy) and bipy synthesized by Yutaka et al. (2005[Yutaka, T., Obara, S., Ogawa, S., Nozaki, K., Ikeda, N., Ohno, T., Ishii, Y., Sakai, K. & Haga, M. (2005). Inorg. Chem. 44, 4737-4746.]) is closely related to the title complex. Selected bond lengths, bond angles and torsion angles from their complex are compared with those of the title complex in Table 1[link]. The torsion angle N1—C7—C8—N3 [−6.6 (5)°] for one of the benzimidazoles indicate that the benzimidazole is further removed from coplanarity with the central pyridine plane than it is in the mebzimpy analogue. Meanwhile, the two halves of the coordinating bipy mol­ecule are slightly more rotated vs one another than in the mebzimpy analogue, as indicated by the N6—C32—C33—N7 torsion angle of 7.3 (5)°. The dihedral angle between the mean planes of the bubzimpy and bipy ligands is 89.32 (6)°. The r.m.s. angular deviation from ideal octa­hedral rectangularity, defined as 0.312[Σ(θi − 90)2]1/2 where θi are the twelve cis-angles in the pseudo-octa­hedron (Popovitch et al., 2012[Popovitch, M., Addison, A. W., Butcher, R. K. & Prushan, M. J. (2012). J. Chem. Crystallogr. 42, 295-298.]), is 8.8 (8)% for the title complex, which is comparable to the value of 7.9 (7)% in the analogous N-methyl­ated complex. One of the two tri­fluoro­methane­sulfonate anions in the title complex is disordered over two orientations around the C—S bond with an occupancy ratio of 0.582 (6):0.418 (6).

Table 1
Comparison of selected bond lengths, bond angles and torsion angles (Å, °)

  (bipy)(mebzimpy)chlorido­iridium(III)(PF6)2 (Yutaka et al., 2005[Yutaka, T., Obara, S., Ogawa, S., Nozaki, K., Ikeda, N., Ohno, T., Ishii, Y., Sakai, K. & Haga, M. (2005). Inorg. Chem. 44, 4737-4746.]) (geometry: slightly distorted octa­hedral) Title complex (geometry: slightly distorted octa­hedral)
Bond Length    
Ir—Cl 2.338 (3) 2.3510 (9)
Ir—N1 2.039 (8) 2.032 (3)
Ir—N3 1.991 (8) 1.992 (3)
Ir—N5 2.032 (9) 2.037 (3)
Ir—N6 2.046 (9) 2.050 (3)
Ir—N7 2.049 (9) 2.057 (3)
     
Bond Angles    
N3—Ir—N5 78.9 (3) 80.34 (13)
N3—Ir—N7 178.5 (4) 178.09 (13)
N6—Ir—N7 81.0 (4) 79.55 (12)
N1—Ir—N5 156.3 (3) 158.99 (13)
N3—Ir—N6 103.4 (2) 99.62 (12)
     
Torsion Angles    
N1—C7—C8—N3 0 (1) −6.6 (5)
N3—C12—C13—N5 −1 (1) −1.1 (5)
N6—C32—C33—N7 4 (1) 7.3 (5)
Atom labels correspond to atoms of the title complex, analogous relationships reported by Yutaka et al. (2005[Yutaka, T., Obara, S., Ogawa, S., Nozaki, K., Ikeda, N., Ohno, T., Ishii, Y., Sakai, K. & Haga, M. (2005). Inorg. Chem. 44, 4737-4746.]) were compared.
[Figure 1]
Figure 1
The title complex with two tri­fluoro­methane­sulfonate counter-anions. Displacement ellipsoids are drawn at the 50% probability level. H atoms are rendered as spheres of arbitrary radius. Only one component of the disordered tri­fluoro­methane­sulfonate anion is shown.

3. Supra­molecular features

The mol­ecules stack in the crystal so that the benzimidazole ring systems of neighbouring mol­ecules are parallel to each other, enabling ππ inter­actions to occur. The centroid–centroid distances and the slippages of the slipped ππ stacking inter­actions are given in Table 2[link]. The shortest inter­planar distance is 3.337 (6) Å with the two ππ stacked benzene rings slipped by 2.033 (8) Å. These inter­actions link the mol­ecules into a staircase structure along [011] as shown in Figs. 2[link] and 3[link]. The slipped ππ stacking arrangement (Fig. 3[link]) suggests that isomorphous replacement of iridium(III) mol­ecules by non-luminescent/non-quenching analogues could lead to the formation of a superantenna system (Mikhalyova et al., 2015[Mikhalyova, E. A., Yakovenko, A. V., Zeller, M., Kiskin, M. A., Kolomzarov, Y. V., Eremenko, I. L., Addison, A. W. & Pavlishchuk, V. V. (2015). Inorg. Chem. 54, 3125-3133.]). The two distinct tri­fluoro­methane­sulfonate anions balance the complex charge and display C—H⋯O and C—H⋯F hydrogen bonds (Table 3[link]). These inter­actions involve the O and F atoms from the anions inter­acting with the CH units from bipy as well as the pyridine ring of bubzimpy. An inter­molecular C—H⋯Cl inter­action is also observed between the coordinating chloride ion and the benzimidazole ring of bubzimpy on the neighboring complex (Table 3[link]). Although this inter­action is weaker than the prominent C—H⋯O inter­actions, it contributes to the overall orientation of the packing in the crystal.

Table 2
π–π inter­actions (Å) with centroid–centroid distances less than 4 Å

Cg4, Cg5,Cg9 and Cg10 are the centroids of the N1/C1/C6/N2/C7, N4/C13/N5/C19/C14, C1–C6 and C14–C19 rings, respectively.

Cg(I)⋯Cg(J) CgCg distance Slippage
Cg4⋯Cg9i 3.596 (3) 1.204
Cg5⋯Cg10iii 3.585 (3) 1.311
Cg10⋯Cg10iii 3.907 (3) 2.033
Symmetry codes: (i) −x + 1, −y, −z; (iii) −x + 1, −y + 1, −z + 1.

Table 3
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cl1i 0.95 2.74 3.422 (4) 130
C9—H9⋯O5ii 0.95 2.42 3.084 (11) 126
C9—H9⋯O5Bii 0.95 2.19 3.052 (13) 151
C20—H20B⋯O6ii 0.99 2.48 3.259 (13) 135
C20—H20B⋯O5Bii 0.99 2.52 3.406 (13) 149
C24—H24B⋯O3iii 0.99 2.46 3.419 (5) 163
C25—H25A⋯F2iv 0.99 2.56 3.287 (5) 131
C28—H28⋯O4 0.95 2.19 3.063 (11) 152
C28—H28⋯O4B 0.95 2.34 3.196 (18) 150
C31—H31⋯O2v 0.95 2.45 3.380 (5) 165
C34—H34⋯O2v 0.95 2.35 3.298 (5) 177
C36—H36⋯O3vi 0.95 2.45 3.333 (5) 155
C37—H37⋯O1vi 0.95 2.49 3.302 (5) 144
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x+1, y+1, z; (v) -x, -y, -z+1; (vi) -x+1, -y, -z+1.
[Figure 2]
Figure 2
A perspective view (from 150 Å, inverse stereo stick-structure) along the c-axis direction, with the bis­(benzimidazol­yl)pyridine-Ir planes oriented horizontally and rendered in purple, versus the other atoms (pale green). The slipped stacks form a `staircase'; in the N-methyl analogue (Yutaka et al., 2005[Yutaka, T., Obara, S., Ogawa, S., Nozaki, K., Ikeda, N., Ohno, T., Ishii, Y., Sakai, K. & Haga, M. (2005). Inorg. Chem. 44, 4737-4746.]), the corresponding array appears as an alternating `stepping stone' pattern.
[Figure 3]
Figure 3
Similarly to Fig. 2[link], a view (inverse stereo stick-structure) along the a-axis direction, showing the bis­(benzimidazol­yl)pyridines (purple) and the other atoms (pale green).

4. Electrochemistry

The redox chemistry of the IrIII complex was studied using cyclic voltammetry (CV) and rotating disc electrode (RDE) polarography, which were performed at 298 K on 0.3 mM Ir complex in aceto­nitrile with 0.1 M tetra­butyl­ammonium hexa­fluorido­phosphate (TBAPF6) as the supporting electrolyte, at scan rates ranging from 50 to 800 mV s−1 for CV, and 1200 and 2400 rpm for the RDE. Experiments were run on a BASi-Epsilon instrument using a three-electrode cell, a non-aqueous reference electrode (APE) (Pavlishchuk & Addison, 2000[Pavlishchuk, V. V. & Addison, A. W. (2000). Inorg. Chim. Acta, 298, 97-102.]) and a 3 mm diameter Pt disc working electrode. No well-defined anodic process is observed below +1400 mV, indicating that the oxidative potential for the Ir complex is higher than the potential window available in our experiments. The cathodic electrochemistry is not straightforward; however, there are three reductive processes with cathodic peak potentials of −1211, −1472 and −1719 mV. Similar results have been reported for the mebzimpy complex (Yutaka et al., 2005[Yutaka, T., Obara, S., Ogawa, S., Nozaki, K., Ikeda, N., Ohno, T., Ishii, Y., Sakai, K. & Haga, M. (2005). Inorg. Chem. 44, 4737-4746.]). In the RDE polarogram, a reductive wave was seen at E1/2 = −1042±5 mV, from which the diffusion coefficient of the mol­ecule is estimated to be D = 9.0×10−6 cm2 s−1 in MeCN, corresponding to a Dη value of 3.3×10 −8 g cm s−2, consistent with a one-electron transfer.

5. UV–Vis and Fluorimetry

The photochemical and photophysical properties of iridium(III) complexes have been studied extensively in the last few decades in order to better understand their potential for applications in areas like solar energy and electroluminescence (EL) devices (Nazeeruddin et al., 2003[Nazeeruddin, M. K., Humphry-Baker, R., Berner, D., Rivier, S., Zuppiroli, L. & Graetzel, M. (2003). J. Am. Chem. Soc. 125, 8790-8797.]). The optical absorption spectrum of the title complex is displayed in Fig. 4[link]. In such mixed-ligand complexes, ligand ππ* transition bands typically overlap; however, the ligand ππ* bands for bipy and bubzimpy in our complex were well-resolved at 315 and 352 nm, respectively, similarly to those observed by Yutaka et al. (2005[Yutaka, T., Obara, S., Ogawa, S., Nozaki, K., Ikeda, N., Ohno, T., Ishii, Y., Sakai, K. & Haga, M. (2005). Inorg. Chem. 44, 4737-4746.]). As has often been observed in compounds of this type (Yutaka et al., 2005[Yutaka, T., Obara, S., Ogawa, S., Nozaki, K., Ikeda, N., Ohno, T., Ishii, Y., Sakai, K. & Haga, M. (2005). Inorg. Chem. 44, 4737-4746.]), there is a strong emission in the yellow region of the spectrum with the intensity peaking at 542 nm (Fig. 5[link]). The excitation profile is dominated by an absorption maximizing at 302 nm, corresponding closely to the bipy ππ* transition at 315 nm.

[Figure 4]
Figure 4
UV–Vis spectrum of the title complex (10 µM) in aceto­nitrile.
[Figure 5]
Figure 5
Emission spectrum of the title Ir(III) complex (0.8 µM) in non-purged aceto­nitrile at ambient temperature, excited at 295 nm. The ordinate unit is arbitrary.

6. Database survey

Crystal structures of complexes containing bubzimpy as a ligand exist in the literature. This ligand chelates well to other transition metals, such as ruthenium (Yu et al., 2012[Yu, O., Lei, B., Liu, J., Shen, Y., Xiao, L., Qiu, R., Kuang, D. & Su, C. (2012). Inorg. Chim. Acta, 392, 388-395.]), copper (Kose et al., 2014[Kose, M., Digrak, M., Gonul, I. & McKee, V. (2014). J. Coord. Chem. 67, 1746-1759.]), gadolinium, lanthanum (Drew et al., 2004[Drew, M. G. B., Hill, C., Hudson, M. J., Iveson, P. B., Madic, C., Vaillant, L. & Youngs, T. G. (2004). New J. Chem. 28, 462-470.]) and manganese (Kose & McKee, 2014[Kose, M. & McKee, V. (2014). Polyhedron, 75, 30-39.]). Hijazi et al. (2010[Hijazi, A., Walther, M. E., Besnard, C. & Wenger, O. S. (2010). Polyhedron, 29, 857-863.]) reported a platinum complex with a ligand similar to bubzimpy, 2,6-di(N-hexyl­benzimidazol-2′-yl)pyridine. Similarly, Mathew & Sun (2010[Mathew, I. & Sun, W. (2010). Dalton Trans. 39, 5885-5898.]) showed a variety of 2,6-bis­(N-alkyl­benzimidazol-2′-y)pyridine platinum(II) complexes with one coordinating chloride as in our iridium complex. These platinum complexes involved variation of the alkyl chain on the benzimidazole ligand, as well as varied counter-ions, such as PF6, ClO4, and BF4.

7. Synthesis and crystallization

The bubzimpy ligand used was prepared using a previously reported alkyl­ation method (Nozari et al., 2014[Nozari, M., Addison, A. W. & Zeller, M. (2014). Chem. Abstr. 2014, 1303793.]). The title complex was synthesized following a method adapted from the literature (Yutaka et al., 2005[Yutaka, T., Obara, S., Ogawa, S., Nozaki, K., Ikeda, N., Ohno, T., Ishii, Y., Sakai, K. & Haga, M. (2005). Inorg. Chem. 44, 4737-4746.]). Sodium hexa­chlorido­iridate(IV) (0.28 g, 0.5 mmol) was reduced to hexa­chlorido­iridate(III) with ascorbic acid under a nitro­gen atmosphere. The reduced iridium and the bubzimpy (0.36 g, 0.5 mmol) were dissolved in warm ethyl­ene glycol (5 mL) and then heated on a steam bath for 4 h, after which the reddish brown solid was filtered off and washed with ether and chloro­form (Fig. 6[link]). This resulting trichlorido-inter­mediate [0.057 g, 78 mmol; FAB-LSIMS MS: calculated (m+) m/z 721.110, found 721.135] was then dissolved in hot ethyl­ene glycol (10 mL) with 2,2′-bi­pyridine (0.015 g, 94 mmol) and stirred at 433 K for 18 h (Fig. 7[link]). The resulting iridium complex was precipitated by addition of aqueous sodium tri­fluoro­methane­sulfonate and then filtered off and washed with ether and chloro­form. The crude product was purified via a two month diffusion of toluene into a methyl­ene chloride solution, yielding orange crystals. M.p. > 523 K; Analysis calculated: C 42.3, H 3.35, N 8.86; found: C 42.7, H 3.70, N 9.06; 1H NMR (500 MHz, C2D6OS): δ 10.1 (d, 1H), 9.20 (d, 1H), 8.90 (d, 1H), 8.82 (d, 1H), 8.75–8.67(t, 2H), 8.43 (t, 1H),8.13 (m, 1H), 8.07 (m, 1H), 7.94 (m, 2H), 7.72 (t, 1H), 7.59 (m, 2H), 7.49 (t, 1H), 7.30 (m, 2H), 5.90 (m, 2H), 3.41 (m, 4H), 1.95 (m, 4H), 1.49–1.35 (m, 4H), 0.99–0.74 (m, 6H); FT–IR: 3085, 2959, 2873, 1606, 1466, 1451, 1154, 844, 745 cm−1; FAB MS: calculated (m-CF3SO3)+ m/z 956.195, found 956.198.

[Figure 6]
Figure 6
Step 1: Reaction of bubzimpy with hexa­chlorido­iridate(III) in a 1:1 ratio.
[Figure 7]
Figure 7
Step 2: Reaction of [2,6-bis-(N-butyl­benzimidazol-2′-yl)pyridine]­tri­chlorido­iridium(III) with bipy.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H bond lengths of 0.95, 0.99 and 0.98 Å for aromatic CH, aliphatic CH2 and CH3 groups, respectively. Methyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. Uiso(H) values were set to a multiple of Ueq(C) with 1.5 for CH3 and 1.2 for CH and CH2 units.

Table 4
Experimental details

Crystal data
Chemical formula [Ir(C27H29N5)Cl(C10H8N2)](CF3O3S)2
Mr 1105.52
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 10.7731 (6), 13.1932 (6), 17.0021 (9)
α, β, γ (°) 104.530 (2), 96.3822 (16), 110.8357 (15)
V3) 2131.96 (19)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.37
Crystal size (mm) 0.21 × 0.11 × 0.09
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS diffractometer
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.580, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 32148, 12026, 9498
Rint 0.048
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.081, 1.03
No. of reflections 12026
No. of parameters 634
No. of restraints 171
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 3.37, −1.91
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL-2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

One of the two tri­fluoro­methane­sulfonate anions was refined as disordered over two orientations [occupancy ratio 0.582 (6):0.418 (6)]. The two components were restrained to have geometries similar to that of the non-disordered anion (SAME with esd 0.02 Å), and the disordered atoms were subjected to a rigid-bond restraint (RIGU with esd 0.001 Å2). Reflections 001 and [\overline{1}]10 affected by the beam stop were omitted from the refinement. The residual electron density peaks of 3.18 and 3.12 e Å−3 are located 0.89 and 0.85 Å, respectively, from atom Ir.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2014); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL-2014/7 (Sheldrick, 2015) and SHELXLE (Hübschle et al., 2011); molecular graphics: SHELXL-2014/7 (Sheldrick, 2015); software used to prepare material for publication: SHELXL-2014/7 (Sheldrick, 2015).

(2,2'-Bipyridyl)[2,6-bis(1-butyl-1H-benzimidazol-2-yl)pyridine]chloridoiridium(III) trifluoromethanesulfonate top
Crystal data top
[Ir(C27H29N5)Cl(C10H8N2)](CF3O3S)2Z = 2
Mr = 1105.52F(000) = 1096
Triclinic, P1Dx = 1.722 Mg m3
a = 10.7731 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.1932 (6) ÅCell parameters from 9841 reflections
c = 17.0021 (9) Åθ = 2.4–30.5°
α = 104.530 (2)°µ = 3.37 mm1
β = 96.3822 (16)°T = 100 K
γ = 110.8357 (15)°Block, orange
V = 2131.96 (19) Å30.21 × 0.11 × 0.09 mm
Data collection top
Bruker AXS D8 Quest CMOS
diffractometer
12026 independent reflections
Radiation source: I-mu-S microsource X-ray tube9498 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromatorRint = 0.048
ω and phi scansθmax = 30.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1515
Tmin = 0.580, Tmax = 0.746k = 1718
32148 measured reflectionsl = 2124
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0341P)2]
where P = (Fo2 + 2Fc2)/3
12026 reflections(Δ/σ)max = 0.001
634 parametersΔρmax = 3.37 e Å3
171 restraintsΔρmin = 1.91 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. One of the two triflate anions is disordered with two alternative orientations. The two moieties were restrained to geometries similar to that of the not disordered anion, and disordered atoms were subjected to a rigid bond restraint (RIGU in Shelxl). Reflections 0 0 1 and -1 1 0 were affected by the beam stop and were omitted from the refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3587 (4)0.0118 (3)0.0770 (3)0.0220 (9)
C20.3051 (4)0.0916 (3)0.0931 (3)0.0256 (9)
H20.31130.09540.14830.031*
C30.2418 (4)0.1890 (4)0.0243 (3)0.0324 (11)
H30.20260.26140.03240.039*
C40.2347 (5)0.1824 (4)0.0572 (3)0.0370 (12)
H40.19160.25100.10260.044*
C50.2878 (4)0.0805 (4)0.0738 (3)0.0330 (11)
H50.28190.07690.12910.040*
C60.3503 (4)0.0167 (4)0.0050 (2)0.0245 (9)
C70.4573 (4)0.1915 (3)0.0822 (2)0.0191 (8)
C80.5313 (4)0.3152 (3)0.1233 (2)0.0193 (8)
C90.5901 (4)0.4009 (4)0.0896 (3)0.0313 (10)
H90.58260.38440.03110.038*
C100.6605 (5)0.5118 (4)0.1431 (3)0.0354 (11)
H100.70220.57150.12080.043*
C110.6711 (4)0.5371 (4)0.2287 (3)0.0279 (10)
H110.71750.61350.26460.033*
C120.6128 (4)0.4491 (3)0.2604 (3)0.0211 (8)
C130.6136 (4)0.4471 (3)0.3461 (2)0.0185 (8)
C140.6482 (4)0.4872 (3)0.4835 (2)0.0176 (8)
C150.6864 (4)0.5366 (3)0.5698 (3)0.0230 (9)
H150.73980.61590.59530.028*
C160.6425 (4)0.4645 (4)0.6160 (3)0.0255 (9)
H160.66700.49510.67510.031*
C170.5626 (4)0.3468 (3)0.5792 (3)0.0234 (9)
H170.53430.30040.61380.028*
C180.5246 (4)0.2976 (3)0.4937 (2)0.0184 (8)
H180.47090.21830.46860.022*
C190.5683 (4)0.3693 (3)0.4460 (2)0.0175 (8)
C200.4182 (5)0.1735 (4)0.0728 (3)0.0327 (11)
H20A0.40050.10970.12380.039*
H20B0.51070.23180.06570.039*
C210.3146 (5)0.2257 (4)0.0839 (3)0.0367 (11)
H21A0.32150.25150.13380.044*
H21B0.33760.29370.03500.044*
C220.1683 (5)0.1437 (5)0.0938 (4)0.0451 (13)
H22A0.15740.12570.04110.054*
H22B0.14800.07150.13830.054*
C230.0683 (6)0.1953 (6)0.1156 (4)0.0654 (18)
H23A0.07680.21050.16870.098*
H23B0.08850.26680.07170.098*
H23C0.02480.14160.12050.098*
C240.7624 (4)0.6541 (3)0.4311 (3)0.0243 (9)
H24A0.76480.70190.48680.029*
H24B0.72270.68030.38880.029*
C250.9067 (4)0.6697 (3)0.4235 (3)0.0275 (9)
H25A0.95580.74740.42050.033*
H25B0.90310.61430.37090.033*
C260.9862 (4)0.6534 (4)0.4960 (3)0.0332 (11)
H26A0.93860.57520.49860.040*
H26B0.98920.70800.54890.040*
C271.1315 (5)0.6718 (4)0.4868 (4)0.0421 (12)
H27A1.12880.62000.43340.063*
H27B1.17780.65620.53250.063*
H27C1.18100.75100.48860.063*
C280.2264 (4)0.2617 (3)0.2236 (2)0.0182 (8)
H280.27970.31780.20160.022*
C290.0938 (4)0.2494 (3)0.2276 (3)0.0234 (9)
H290.05670.29640.20830.028*
C300.0167 (4)0.1683 (3)0.2598 (3)0.0261 (9)
H300.07330.15990.26420.031*
C310.0723 (4)0.0993 (3)0.2858 (3)0.0257 (9)
H310.02010.04220.30740.031*
C320.2048 (4)0.1139 (3)0.2801 (2)0.0183 (8)
C330.2706 (4)0.0411 (3)0.3017 (2)0.0189 (8)
C340.2044 (4)0.0575 (4)0.3209 (3)0.0340 (11)
H340.11190.07940.32520.041*
C350.2739 (5)0.1238 (4)0.3338 (4)0.0455 (14)
H350.22920.19240.34610.055*
C360.4088 (5)0.0899 (4)0.3288 (3)0.0367 (12)
H360.45760.13520.33700.044*
C370.4723 (4)0.0113 (3)0.3117 (3)0.0218 (8)
H370.56590.03600.30980.026*
Cl10.70261 (9)0.22427 (8)0.26931 (6)0.0210 (2)
Ir0.47773 (2)0.21221 (2)0.25420 (2)0.01354 (5)
N10.4271 (3)0.1240 (3)0.1307 (2)0.0178 (7)
N20.4136 (3)0.1306 (3)0.0000 (2)0.0236 (8)
N30.5444 (3)0.3419 (3)0.2083 (2)0.0176 (7)
N40.6751 (3)0.5341 (3)0.4193 (2)0.0189 (7)
N50.5502 (3)0.3484 (2)0.36020 (19)0.0149 (6)
N60.2805 (3)0.1961 (2)0.25020 (18)0.0127 (6)
N70.4044 (3)0.0751 (2)0.29777 (19)0.0148 (6)
S10.23767 (11)0.10966 (9)0.66797 (8)0.0310 (3)
O10.2471 (3)0.0300 (3)0.7107 (2)0.0433 (9)
O20.1201 (4)0.1376 (3)0.6721 (3)0.0604 (12)
O30.3621 (3)0.2058 (2)0.67949 (19)0.0302 (7)
C380.2054 (5)0.0301 (4)0.5598 (4)0.0485 (15)
F10.1975 (4)0.0920 (3)0.5085 (2)0.0599 (10)
F20.0911 (4)0.0634 (3)0.5361 (3)0.1020 (18)
F30.3068 (4)0.0043 (3)0.5431 (2)0.0668 (11)
S20.2918 (3)0.5497 (3)0.1313 (2)0.0543 (10)0.582 (6)
O40.3281 (12)0.4757 (10)0.1688 (7)0.058 (3)0.582 (6)
O50.2739 (13)0.4969 (10)0.0387 (5)0.118 (4)0.582 (6)
O60.3639 (11)0.6683 (7)0.1562 (9)0.133 (5)0.582 (6)
C390.1205 (10)0.5273 (10)0.1400 (8)0.076 (2)0.582 (6)
F40.0816 (9)0.6038 (8)0.1201 (8)0.111 (3)0.582 (6)
F50.0356 (8)0.4249 (6)0.1081 (7)0.107 (3)0.582 (6)
F60.1377 (13)0.5693 (12)0.2280 (6)0.138 (4)0.582 (6)
S2B0.2732 (5)0.4888 (5)0.1166 (3)0.0588 (14)0.418 (6)
O4B0.358 (2)0.5038 (15)0.1939 (9)0.072 (5)0.418 (6)
O5B0.3405 (17)0.5776 (12)0.0763 (10)0.110 (5)0.418 (6)
O6B0.1775 (17)0.3759 (9)0.0761 (9)0.132 (6)0.418 (6)
C39B0.1601 (16)0.5559 (13)0.1526 (11)0.095 (4)0.418 (6)
F4B0.0708 (19)0.5400 (16)0.0816 (10)0.159 (6)0.418 (6)
F5B0.2410 (17)0.6581 (11)0.2000 (10)0.159 (6)0.418 (6)
F6B0.0723 (17)0.4905 (13)0.1949 (12)0.127 (5)0.418 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0131 (18)0.029 (2)0.021 (2)0.0120 (16)0.0014 (15)0.0016 (18)
C20.021 (2)0.028 (2)0.026 (2)0.0095 (17)0.0038 (17)0.0046 (18)
C30.026 (2)0.026 (2)0.037 (3)0.0123 (18)0.0028 (19)0.003 (2)
C40.028 (2)0.040 (3)0.030 (3)0.017 (2)0.0037 (19)0.012 (2)
C50.030 (2)0.045 (3)0.021 (2)0.022 (2)0.0003 (18)0.003 (2)
C60.018 (2)0.038 (2)0.019 (2)0.0163 (18)0.0022 (16)0.0049 (18)
C70.0186 (19)0.031 (2)0.0123 (18)0.0133 (16)0.0040 (15)0.0092 (16)
C80.0174 (19)0.024 (2)0.0179 (19)0.0075 (15)0.0033 (15)0.0097 (16)
C90.024 (2)0.047 (3)0.027 (2)0.009 (2)0.0074 (18)0.025 (2)
C100.034 (3)0.035 (3)0.034 (3)0.000 (2)0.003 (2)0.027 (2)
C110.029 (2)0.023 (2)0.029 (2)0.0045 (17)0.0000 (18)0.0163 (19)
C120.0170 (19)0.0185 (19)0.028 (2)0.0062 (15)0.0012 (16)0.0098 (17)
C130.0173 (19)0.0190 (19)0.024 (2)0.0084 (15)0.0048 (15)0.0119 (17)
C140.0161 (18)0.0161 (18)0.0190 (19)0.0063 (14)0.0030 (15)0.0035 (16)
C150.0179 (19)0.022 (2)0.024 (2)0.0094 (16)0.0016 (16)0.0013 (17)
C160.023 (2)0.034 (2)0.017 (2)0.0132 (18)0.0036 (16)0.0010 (18)
C170.021 (2)0.032 (2)0.022 (2)0.0118 (17)0.0098 (16)0.0118 (18)
C180.0163 (18)0.025 (2)0.0184 (19)0.0097 (15)0.0077 (15)0.0101 (16)
C190.0121 (17)0.025 (2)0.0171 (19)0.0101 (15)0.0015 (14)0.0057 (16)
C200.033 (2)0.056 (3)0.017 (2)0.024 (2)0.0081 (18)0.014 (2)
C210.032 (3)0.059 (3)0.026 (2)0.023 (2)0.004 (2)0.020 (2)
C220.031 (3)0.060 (3)0.049 (3)0.021 (2)0.006 (2)0.022 (3)
C230.034 (3)0.088 (5)0.082 (5)0.030 (3)0.004 (3)0.035 (4)
C240.023 (2)0.0147 (18)0.033 (2)0.0068 (15)0.0006 (17)0.0069 (18)
C250.023 (2)0.019 (2)0.038 (3)0.0060 (16)0.0020 (18)0.0112 (19)
C260.022 (2)0.033 (2)0.046 (3)0.0110 (18)0.004 (2)0.016 (2)
C270.027 (2)0.043 (3)0.061 (4)0.016 (2)0.009 (2)0.021 (3)
C280.0180 (19)0.0166 (18)0.0191 (19)0.0062 (15)0.0006 (15)0.0062 (16)
C290.0185 (19)0.024 (2)0.030 (2)0.0119 (16)0.0014 (17)0.0098 (18)
C300.0146 (19)0.028 (2)0.038 (3)0.0102 (16)0.0064 (17)0.0109 (19)
C310.0158 (19)0.027 (2)0.039 (3)0.0086 (16)0.0098 (18)0.0178 (19)
C320.0163 (18)0.0170 (18)0.024 (2)0.0076 (15)0.0060 (15)0.0078 (16)
C330.0153 (18)0.0181 (18)0.025 (2)0.0058 (15)0.0060 (15)0.0104 (16)
C340.018 (2)0.037 (2)0.057 (3)0.0101 (18)0.012 (2)0.031 (2)
C350.026 (2)0.039 (3)0.088 (4)0.014 (2)0.015 (3)0.046 (3)
C360.024 (2)0.030 (2)0.066 (4)0.0137 (19)0.007 (2)0.030 (2)
C370.0169 (19)0.0211 (19)0.032 (2)0.0099 (15)0.0048 (17)0.0128 (18)
Cl10.0169 (4)0.0262 (5)0.0225 (5)0.0110 (4)0.0056 (4)0.0076 (4)
Ir0.01303 (7)0.01454 (7)0.01389 (7)0.00593 (5)0.00301 (5)0.00519 (5)
N10.0135 (15)0.0195 (16)0.0182 (16)0.0080 (13)0.0019 (12)0.0006 (13)
N20.0202 (17)0.038 (2)0.0163 (17)0.0151 (15)0.0053 (14)0.0082 (15)
N30.0134 (15)0.0191 (16)0.0304 (19)0.0100 (13)0.0128 (14)0.0162 (15)
N40.0183 (16)0.0147 (15)0.0217 (17)0.0062 (13)0.0001 (13)0.0046 (14)
N50.0145 (15)0.0112 (14)0.0195 (16)0.0042 (12)0.0037 (12)0.0069 (13)
N60.0133 (14)0.0092 (13)0.0120 (14)0.0015 (11)0.0051 (12)0.0008 (12)
N70.0156 (15)0.0129 (15)0.0124 (15)0.0030 (12)0.0001 (12)0.0033 (12)
S10.0220 (5)0.0278 (5)0.0578 (8)0.0139 (4)0.0201 (5)0.0269 (5)
O10.0321 (18)0.0451 (19)0.082 (3)0.0249 (16)0.0293 (18)0.048 (2)
O20.043 (2)0.070 (3)0.125 (4)0.044 (2)0.056 (2)0.077 (3)
O30.0299 (17)0.0252 (15)0.0365 (18)0.0082 (13)0.0119 (14)0.0133 (14)
C380.042 (3)0.021 (2)0.066 (4)0.012 (2)0.023 (3)0.002 (2)
F10.081 (2)0.0412 (17)0.0464 (19)0.0292 (17)0.0194 (17)0.0015 (15)
F20.071 (3)0.0259 (16)0.155 (4)0.0036 (16)0.066 (3)0.010 (2)
F30.087 (3)0.067 (2)0.046 (2)0.056 (2)0.0110 (18)0.0086 (17)
S20.0451 (15)0.0461 (18)0.073 (2)0.0062 (12)0.0005 (13)0.0441 (17)
O40.086 (7)0.073 (6)0.058 (6)0.052 (6)0.039 (5)0.053 (5)
O50.139 (10)0.128 (8)0.072 (3)0.032 (7)0.016 (3)0.041 (3)
O60.094 (7)0.052 (3)0.216 (11)0.004 (2)0.028 (7)0.055 (3)
C390.054 (3)0.072 (4)0.116 (5)0.019 (2)0.018 (3)0.060 (4)
F40.075 (5)0.102 (5)0.191 (10)0.042 (5)0.027 (6)0.099 (6)
F50.070 (4)0.078 (4)0.162 (8)0.006 (3)0.016 (4)0.056 (4)
F60.151 (10)0.180 (10)0.117 (5)0.097 (8)0.032 (3)0.058 (4)
S2B0.097 (3)0.056 (3)0.0281 (19)0.031 (2)0.0234 (19)0.016 (2)
O4B0.101 (7)0.068 (8)0.040 (4)0.018 (5)0.017 (4)0.030 (4)
O5B0.157 (11)0.104 (7)0.091 (9)0.041 (7)0.058 (9)0.072 (7)
O6B0.179 (9)0.067 (4)0.097 (9)0.008 (4)0.018 (7)0.018 (4)
C39B0.128 (6)0.070 (6)0.117 (8)0.050 (5)0.069 (5)0.044 (5)
F4B0.172 (10)0.157 (14)0.156 (9)0.056 (10)0.036 (8)0.077 (8)
F5B0.180 (10)0.093 (6)0.174 (11)0.027 (6)0.089 (9)0.009 (6)
F6B0.149 (10)0.119 (10)0.173 (12)0.070 (8)0.100 (10)0.093 (9)
Geometric parameters (Å, º) top
C1—C21.389 (6)C25—H25A0.9900
C1—N11.402 (5)C25—H25B0.9900
C1—C61.406 (6)C26—C271.529 (6)
C2—C31.389 (6)C26—H26A0.9900
C2—H20.9500C26—H26B0.9900
C3—C41.404 (7)C27—H27A0.9800
C3—H30.9500C27—H27B0.9800
C4—C51.376 (7)C27—H27C0.9800
C4—H40.9500C28—N61.338 (5)
C5—C61.387 (6)C28—C291.391 (5)
C5—H50.9500C28—H280.9500
C6—N21.387 (6)C29—C301.378 (6)
C7—N11.340 (5)C29—H290.9500
C7—N21.358 (5)C30—C311.382 (6)
C7—C81.472 (5)C30—H300.9500
C8—N31.377 (5)C31—C321.389 (5)
C8—C91.380 (6)C31—H310.9500
C9—C101.391 (6)C32—N61.355 (5)
C9—H90.9500C32—C331.471 (5)
C10—C111.390 (6)C33—N71.364 (5)
C10—H100.9500C33—C341.383 (6)
C11—C121.380 (6)C34—C351.378 (6)
C11—H110.9500C34—H340.9500
C12—N31.347 (5)C35—C361.380 (6)
C12—C131.464 (6)C35—H350.9500
C13—N51.334 (5)C36—C371.388 (6)
C13—N41.365 (5)C36—H360.9500
C14—N41.392 (5)C37—N71.341 (5)
C14—C151.394 (5)C37—H370.9500
C14—C191.413 (5)Cl1—Ir2.3510 (9)
C15—C161.372 (6)Ir—N31.992 (3)
C15—H150.9500Ir—N12.032 (3)
C16—C171.409 (6)Ir—N52.037 (3)
C16—H160.9500Ir—N62.050 (3)
C17—C181.381 (5)Ir—N72.057 (3)
C17—H170.9500S1—O31.433 (3)
C18—C191.388 (5)S1—O21.444 (3)
C18—H180.9500S1—O11.445 (3)
C19—N51.392 (5)S1—C381.799 (6)
C20—N21.483 (6)C38—F21.327 (6)
C20—C211.523 (6)C38—F11.351 (6)
C20—H20A0.9900C38—F31.355 (6)
C20—H20B0.9900S2—O61.400 (8)
C21—C221.523 (7)S2—O41.430 (8)
C21—H21A0.9900S2—O51.511 (9)
C21—H21B0.9900S2—C391.791 (10)
C22—C231.524 (7)C39—F51.265 (12)
C22—H22A0.9900C39—F41.323 (12)
C22—H22B0.9900C39—F61.425 (13)
C23—H23A0.9800S2B—O6B1.410 (11)
C23—H23B0.9800S2B—O4B1.444 (11)
C23—H23C0.9800S2B—O5B1.508 (10)
C24—N41.473 (5)S2B—C39B1.818 (12)
C24—C251.519 (6)C39B—F5B1.300 (15)
C24—H24A0.9900C39B—F4B1.377 (15)
C24—H24B0.9900C39B—F6B1.428 (14)
C25—C261.527 (6)
C2—C1—N1131.4 (4)H27B—C27—H27C109.5
C2—C1—C6121.3 (4)N6—C28—C29121.3 (4)
N1—C1—C6107.3 (4)N6—C28—H28119.4
C1—C2—C3116.6 (4)C29—C28—H28119.4
C1—C2—H2121.7C30—C29—C28119.3 (4)
C3—C2—H2121.7C30—C29—H29120.3
C2—C3—C4121.2 (5)C28—C29—H29120.3
C2—C3—H3119.4C29—C30—C31119.1 (4)
C4—C3—H3119.4C29—C30—H30120.4
C5—C4—C3122.6 (4)C31—C30—H30120.4
C5—C4—H4118.7C30—C31—C32119.7 (4)
C3—C4—H4118.7C30—C31—H31120.2
C4—C5—C6116.1 (4)C32—C31—H31120.2
C4—C5—H5122.0N6—C32—C31120.5 (4)
C6—C5—H5122.0N6—C32—C33115.6 (3)
C5—C6—N2130.5 (4)C31—C32—C33123.9 (3)
C5—C6—C1122.1 (4)N7—C33—C34120.9 (4)
N2—C6—C1107.3 (3)N7—C33—C32114.6 (3)
N1—C7—N2111.9 (3)C34—C33—C32124.4 (4)
N1—C7—C8117.9 (3)C35—C34—C33119.3 (4)
N2—C7—C8130.2 (4)C35—C34—H34120.3
N3—C8—C9119.3 (4)C33—C34—H34120.3
N3—C8—C7110.9 (3)C34—C35—C36119.6 (4)
C9—C8—C7129.7 (4)C34—C35—H35120.2
C8—C9—C10118.4 (4)C36—C35—H35120.2
C8—C9—H9120.8C35—C36—C37119.1 (4)
C10—C9—H9120.8C35—C36—H36120.4
C11—C10—C9121.3 (4)C37—C36—H36120.4
C11—C10—H10119.3N7—C37—C36121.4 (4)
C9—C10—H10119.3N7—C37—H37119.3
C12—C11—C10118.7 (4)C36—C37—H37119.3
C12—C11—H11120.7N3—Ir—N180.34 (13)
C10—C11—H11120.7N3—Ir—N578.67 (13)
N3—C12—C11119.8 (4)N1—Ir—N5158.99 (13)
N3—C12—C13108.6 (3)N3—Ir—N699.62 (12)
C11—C12—C13131.5 (4)N1—Ir—N690.06 (12)
N5—C13—N4110.9 (3)N5—Ir—N692.58 (11)
N5—C13—C12119.6 (3)N3—Ir—N7178.09 (13)
N4—C13—C12129.5 (4)N1—Ir—N797.92 (12)
N4—C14—C15131.5 (3)N5—Ir—N7103.06 (12)
N4—C14—C19107.1 (3)N6—Ir—N779.55 (12)
C15—C14—C19121.5 (4)N3—Ir—Cl185.00 (9)
C16—C15—C14116.4 (4)N1—Ir—Cl193.26 (9)
C16—C15—H15121.8N5—Ir—Cl185.79 (9)
C14—C15—H15121.8N6—Ir—Cl1174.72 (9)
C15—C16—C17122.5 (4)N7—Ir—Cl195.92 (9)
C15—C16—H16118.8C7—N1—C1106.7 (3)
C17—C16—H16118.8C7—N1—Ir113.3 (2)
C18—C17—C16121.2 (4)C1—N1—Ir139.8 (3)
C18—C17—H17119.4C7—N2—C6106.8 (3)
C16—C17—H17119.4C7—N2—C20128.5 (4)
C17—C18—C19117.1 (4)C6—N2—C20124.5 (3)
C17—C18—H18121.5C12—N3—C8122.4 (3)
C19—C18—H18121.5C12—N3—Ir120.0 (3)
C18—C19—N5131.9 (4)C8—N3—Ir117.2 (3)
C18—C19—C14121.3 (4)C13—N4—C14107.1 (3)
N5—C19—C14106.8 (3)C13—N4—C24127.9 (4)
N2—C20—C21112.7 (4)C14—N4—C24124.9 (3)
N2—C20—H20A109.1C13—N5—C19108.2 (3)
C21—C20—H20A109.1C13—N5—Ir112.6 (3)
N2—C20—H20B109.1C19—N5—Ir138.6 (3)
C21—C20—H20B109.1C28—N6—C32120.1 (3)
H20A—C20—H20B107.8C28—N6—Ir125.0 (2)
C20—C21—C22113.5 (4)C32—N6—Ir114.9 (3)
C20—C21—H21A108.9C37—N7—C33119.5 (3)
C22—C21—H21A108.9C37—N7—Ir124.9 (3)
C20—C21—H21B108.9C33—N7—Ir115.0 (3)
C22—C21—H21B108.9O3—S1—O2114.1 (2)
H21A—C21—H21B107.7O3—S1—O1115.5 (2)
C21—C22—C23111.0 (5)O2—S1—O1115.6 (2)
C21—C22—H22A109.4O3—S1—C38103.1 (2)
C23—C22—H22A109.4O2—S1—C38102.7 (3)
C21—C22—H22B109.4O1—S1—C38103.5 (2)
C23—C22—H22B109.4F2—C38—F1107.6 (4)
H22A—C22—H22B108.0F2—C38—F3106.7 (4)
C22—C23—H23A109.5F1—C38—F3105.3 (5)
C22—C23—H23B109.5F2—C38—S1112.3 (5)
H23A—C23—H23B109.5F1—C38—S1112.8 (3)
C22—C23—H23C109.5F3—C38—S1111.6 (3)
H23A—C23—H23C109.5O6—S2—O4124.0 (7)
H23B—C23—H23C109.5O6—S2—O5111.4 (8)
N4—C24—C25112.0 (3)O4—S2—O5105.0 (7)
N4—C24—H24A109.2O6—S2—C39105.7 (7)
C25—C24—H24A109.2O4—S2—C39106.6 (6)
N4—C24—H24B109.2O5—S2—C39102.0 (6)
C25—C24—H24B109.2F5—C39—F4115.0 (10)
H24A—C24—H24B107.9F5—C39—F6113.3 (11)
C24—C25—C26113.2 (4)F4—C39—F698.0 (11)
C24—C25—H25A108.9F5—C39—S2114.5 (9)
C26—C25—H25A108.9F4—C39—S2112.8 (8)
C24—C25—H25B108.9F6—C39—S2101.2 (8)
C26—C25—H25B108.9O6B—S2B—O4B114.4 (10)
H25A—C25—H25B107.8O6B—S2B—O5B127.1 (9)
C25—C26—C27111.6 (4)O4B—S2B—O5B112.2 (11)
C25—C26—H26A109.3O6B—S2B—C39B100.0 (9)
C27—C26—H26A109.3O4B—S2B—C39B102.1 (10)
C25—C26—H26B109.3O5B—S2B—C39B93.2 (8)
C27—C26—H26B109.3F5B—C39B—F4B120.8 (16)
H26A—C26—H26B108.0F5B—C39B—F6B113.5 (15)
C26—C27—H27A109.5F4B—C39B—F6B102.2 (14)
C26—C27—H27B109.5F5B—C39B—S2B104.7 (11)
H27A—C27—H27B109.5F4B—C39B—S2B105.3 (12)
C26—C27—H27C109.5F6B—C39B—S2B109.9 (10)
H27A—C27—H27C109.5
N1—C1—C2—C3179.6 (4)C1—C6—N2—C20175.4 (4)
C6—C1—C2—C30.7 (6)C21—C20—N2—C772.8 (5)
C1—C2—C3—C40.9 (6)C21—C20—N2—C6101.0 (5)
C2—C3—C4—C50.8 (7)C11—C12—N3—C80.9 (6)
C3—C4—C5—C60.4 (7)C13—C12—N3—C8177.1 (3)
C4—C5—C6—N2179.6 (4)C11—C12—N3—Ir173.3 (3)
C4—C5—C6—C10.2 (6)C13—C12—N3—Ir4.7 (4)
C2—C1—C6—C50.4 (6)C9—C8—N3—C120.1 (6)
N1—C1—C6—C5179.9 (4)C7—C8—N3—C12177.4 (3)
C2—C1—C6—N2179.5 (4)C9—C8—N3—Ir172.5 (3)
N1—C1—C6—N20.3 (4)C7—C8—N3—Ir4.8 (4)
N1—C7—C8—N36.6 (5)N5—C13—N4—C140.2 (4)
N2—C7—C8—N3174.4 (4)C12—C13—N4—C14178.4 (4)
N1—C7—C8—C9170.4 (4)N5—C13—N4—C24175.7 (3)
N2—C7—C8—C98.6 (7)C12—C13—N4—C242.5 (7)
N3—C8—C9—C100.2 (6)C15—C14—N4—C13179.7 (4)
C7—C8—C9—C10177.0 (4)C19—C14—N4—C130.1 (4)
C8—C9—C10—C110.6 (7)C15—C14—N4—C243.6 (7)
C9—C10—C11—C121.5 (7)C19—C14—N4—C24176.2 (3)
C10—C11—C12—N31.7 (6)C25—C24—N4—C1379.1 (5)
C10—C11—C12—C13175.7 (4)C25—C24—N4—C1496.1 (4)
N3—C12—C13—N51.1 (5)N4—C13—N5—C190.5 (4)
C11—C12—C13—N5178.7 (4)C12—C13—N5—C19178.8 (3)
N3—C12—C13—N4177.0 (4)N4—C13—N5—Ir172.5 (2)
C11—C12—C13—N40.7 (7)C12—C13—N5—Ir5.9 (4)
N4—C14—C15—C16179.6 (4)C18—C19—N5—C13179.8 (4)
C19—C14—C15—C160.2 (6)C14—C19—N5—C130.5 (4)
C14—C15—C16—C170.3 (6)C18—C19—N5—Ir9.7 (7)
C15—C16—C17—C180.3 (6)C14—C19—N5—Ir169.6 (3)
C16—C17—C18—C190.1 (6)C29—C28—N6—C321.5 (5)
C17—C18—C19—N5179.2 (4)C29—C28—N6—Ir176.1 (3)
C17—C18—C19—C140.0 (6)C31—C32—N6—C282.0 (5)
N4—C14—C19—C18179.8 (3)C33—C32—N6—C28175.6 (3)
C15—C14—C19—C180.0 (6)C31—C32—N6—Ir175.8 (3)
N4—C14—C19—N50.4 (4)C33—C32—N6—Ir6.6 (4)
C15—C14—C19—N5179.4 (3)C36—C37—N7—C331.0 (6)
N2—C20—C21—C2257.6 (5)C36—C37—N7—Ir170.0 (3)
C20—C21—C22—C23172.8 (5)C34—C33—N7—C370.8 (6)
N4—C24—C25—C2669.9 (5)C32—C33—N7—C37176.3 (3)
C24—C25—C26—C27179.0 (4)C34—C33—N7—Ir172.7 (3)
N6—C28—C29—C300.2 (6)C32—C33—N7—Ir4.4 (4)
C28—C29—C30—C311.4 (6)O3—S1—C38—F2179.1 (3)
C29—C30—C31—C320.9 (6)O2—S1—C38—F260.4 (4)
C30—C31—C32—N60.8 (6)O1—S1—C38—F260.2 (4)
C30—C31—C32—C33176.6 (4)O3—S1—C38—F157.3 (4)
N6—C32—C33—N77.3 (5)O2—S1—C38—F161.5 (4)
C31—C32—C33—N7175.2 (4)O1—S1—C38—F1177.9 (4)
N6—C32—C33—C34169.7 (4)O3—S1—C38—F361.1 (4)
C31—C32—C33—C347.8 (7)O2—S1—C38—F3179.9 (4)
N7—C33—C34—C351.9 (7)O1—S1—C38—F359.5 (4)
C32—C33—C34—C35174.9 (5)O6—S2—C39—F5169.9 (11)
C33—C34—C35—C361.1 (8)O4—S2—C39—F556.5 (12)
C34—C35—C36—C370.7 (8)O5—S2—C39—F553.4 (11)
C35—C36—C37—N71.8 (7)O6—S2—C39—F435.9 (13)
N2—C7—N1—C10.3 (4)O4—S2—C39—F4169.5 (11)
C8—C7—N1—C1179.5 (3)O5—S2—C39—F480.7 (12)
N2—C7—N1—Ir175.6 (2)O6—S2—C39—F667.9 (10)
C8—C7—N1—Ir5.2 (4)O4—S2—C39—F665.7 (10)
C2—C1—N1—C7179.7 (4)O5—S2—C39—F6175.6 (9)
C6—C1—N1—C70.0 (4)O6B—S2B—C39B—F5B172.2 (13)
C2—C1—N1—Ir6.9 (7)O4B—S2B—C39B—F5B54.4 (15)
C6—C1—N1—Ir173.4 (3)O5B—S2B—C39B—F5B59.1 (14)
N1—C7—N2—C60.5 (4)O6B—S2B—C39B—F4B59.4 (14)
C8—C7—N2—C6179.6 (4)O4B—S2B—C39B—F4B177.2 (14)
N1—C7—N2—C20175.1 (4)O5B—S2B—C39B—F4B69.2 (14)
C8—C7—N2—C205.8 (7)O6B—S2B—C39B—F6B50.0 (15)
C5—C6—N2—C7179.7 (4)O4B—S2B—C39B—F6B67.8 (16)
C1—C6—N2—C70.4 (4)O5B—S2B—C39B—F6B178.7 (15)
C5—C6—N2—C204.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···Cl1i0.952.743.422 (4)130
C9—H9···O5ii0.952.423.084 (11)126
C9—H9···O5Bii0.952.193.052 (13)151
C20—H20B···O6ii0.992.483.259 (13)135
C20—H20B···O5Bii0.992.523.406 (13)149
C24—H24B···O3iii0.992.463.419 (5)163
C25—H25A···F2iv0.992.563.287 (5)131
C28—H28···O40.952.193.063 (11)152
C28—H28···O4B0.952.343.196 (18)150
C31—H31···O2v0.952.453.380 (5)165
C34—H34···O2v0.952.353.298 (5)177
C36—H36···O3vi0.952.453.333 (5)155
C37—H37···O1vi0.952.493.302 (5)144
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x, y, z+1; (vi) x+1, y, z+1.
Comparison of selected bond lengths, bond angles and torsion angles (Å, °) top
(bipy)(mebzimpy)chloroiridium(III)(PF6)2 (Yutaka et al., 2005) (geometry: slightly distorted octahedral)Title complex (geometry: slightly distorted octahedral)
Bond Length
Ir—Cl2.338 (3)2.3510 (9)
Ir—N12.039 (8)2.032 (3)
Ir—N31.991 (8)1.992 (3)
Ir—N52.032 (9)2.037 (3)
Ir—N62.046 (9)2.050 (3)
Ir—N72.049 (9)2.057 (3)
Bond Angles
N3—Ir—N578.9 (3)80.34 (13)
N3—Ir—N7178.5 (4)178.09 (13)
N6—Ir—N781.0 (4)79.55 (12)
N1—Ir—N5156.3 (3)158.99 (13)
N3—Ir—N6103.4 (2)99.62 (12)
Torsion Angles
N1—C7—C8—N30 (1)-6.6 (5)
N3—C12—C13—N5-1 (1)-1.1 (5)
N6—C32—C33—N74 (1)7.3 (5)
Atom labels correspond to atoms of the title complex, analogous relationships reported by Yutaka et al. (2005) were compared.
ππ interactions (Å) with centroid–centroid distances less than 4 Å top
Cg4, Cg5,Cg9 and Cg10 are the centroids of the N1/C1/C6/N2/C7, N4/C13/N5/C19/C14, C1–C6 and C14–C19 rings, respectively.
Cg(I)···Cg(J)Cg···Cg distanceSlippage
Cg4···Cg9i3.596 (3)1.204
Cg5···Cg10iii3.585 (3)1.311
Cg10···Cg10iii3.907 (3)2.033
Symmetry codes: (i) -x+1, -y, -z; (iii) -x+1, -y+1, -z+1.
 

Acknowledgements

VIS thanks Drs B. and C. Maryanoff for providing a research fellowship at Drexel University. AWA, VIS, and MN thank Drexel University for support. MZ acknowledges NSF Grant DMR 1337296 for funds to purchase the X-ray diffractometer.

References

First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationDePasquale, J., Nieto, I., Reuther, L. E., Herbst-Gervasoni, C. J., Paul, J. J., Mochalin, V., Zeller, M., Thomas, C. M., Addison, A. W. & Papish, E. T. (2013). Inorg. Chem. 52, 9175–9183.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDrew, M. G. B., Hill, C., Hudson, M. J., Iveson, P. B., Madic, C., Vaillant, L. & Youngs, T. G. (2004). New J. Chem. 28, 462–470.  Web of Science CSD CrossRef CAS Google Scholar
First citationHijazi, A., Walther, M. E., Besnard, C. & Wenger, O. S. (2010). Polyhedron, 29, 857–863.  Web of Science CSD CrossRef CAS Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKose, M., Digrak, M., Gonul, I. & McKee, V. (2014). J. Coord. Chem. 67, 1746–1759.  Web of Science CrossRef CAS Google Scholar
First citationKose, M. & McKee, V. (2014). Polyhedron, 75, 30–39.  Web of Science CSD CrossRef CAS Google Scholar
First citationLewandowska-Andralojc, A., Polyansky, D. E., Wang, C., Wang, W., Himeda, Y. & Fujita, E. (2014). Phys. Chem. Chem. Phys. 16, 11976–11987.  CAS Google Scholar
First citationMathew, I. & Sun, W. (2010). Dalton Trans. 39, 5885–5898.  Web of Science CrossRef CAS Google Scholar
First citationMikhalyova, E. A., Yakovenko, A. V., Zeller, M., Kiskin, M. A., Kolomzarov, Y. V., Eremenko, I. L., Addison, A. W. & Pavlishchuk, V. V. (2015). Inorg. Chem. 54, 3125–3133.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNazeeruddin, M. K., Humphry-Baker, R., Berner, D., Rivier, S., Zuppiroli, L. & Graetzel, M. (2003). J. Am. Chem. Soc. 125, 8790–8797.  Web of Science CrossRef CAS Google Scholar
First citationNozari, M., Addison, A. W. & Zeller, M. (2014). Chem. Abstr. 2014, 1303793.  Google Scholar
First citationPavlishchuk, V. V. & Addison, A. W. (2000). Inorg. Chim. Acta, 298, 97–102.  Web of Science CrossRef CAS Google Scholar
First citationPopovitch, M., Addison, A. W., Butcher, R. K. & Prushan, M. J. (2012). J. Chem. Crystallogr. 42, 295–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationYu, O., Lei, B., Liu, J., Shen, Y., Xiao, L., Qiu, R., Kuang, D. & Su, C. (2012). Inorg. Chim. Acta, 392, 388–395.  Web of Science CrossRef CAS Google Scholar
First citationYutaka, T., Obara, S., Ogawa, S., Nozaki, K., Ikeda, N., Ohno, T., Ishii, Y., Sakai, K. & Haga, M. (2005). Inorg. Chem. 44, 4737–4746.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds