research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-4-hy­dr­oxy-6-methyl-3-{1-[2-(4-nitro­phen­yl)hydrazinyl­­idene]eth­yl}-2H-pyran-2-one

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160 014, India, and bDepartment of Chemistry, DAV University Jalandhar, Jalandhar 144 001, Punjab, India
*Correspondence e-mail: gkumar@pu.ac.in, rkataria@pu.ac.in

Edited by A. J. Lough, University of Toronto, Canada (Received 10 December 2016; accepted 12 January 2017; online 20 January 2017)

The title compound, C14H13N3O5 (HMNP), was synthesized by the simple condensation of p-nitro­phenyl­hydrazine with de­hydro­acetic acid (DHA) in a 1:1 molar ratio in ethanol. HMNP has been characterized by using FT–IR, 1H and 13C NMR and UV–Vis spectroscopic and single-crystal X-ray diffraction techniques. The crystal packing reveals strong hydrogen bonds between the NH group and the carbonyl O atom of di­hydro­pyran­one moiety, forming chains along [101]. The thermal stability of the synthesized compound was confirmed by thermogravimetric analysis and it was found to be stable up to 513 K. The UV–Vis spectrum shows the presence of a strong band at λmax 394 nm. 1H NMR and single-crystal X-ray analyses confirmed the presence of the enol form of the ligand and dominance over the keto form. The crystal studied was a non-merohedral twin with the refined ratio of the twin components being 0.3720 (19):0.6280 (19).

1. Chemical context

For the last several decades, Schiff bases have remained an important and popular area of research for the scientific community due to their simple synthesis, versatility and extensive range of applications (Cozzi, 2004[Cozzi, P. G. (2004). Chem. Soc. Rev. 33, 410-421.]; Chen et al., 2008[Chen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170-2171.]). A number of carbonyl compounds and amines have been utilized for the synthesis of Schiff bases (Zheng et al., 2009[Zheng, Y., Ma, K., Li, H., Li, J., He, J., Sun, X., Li, R. & Ma, J. (2009). Catal. Lett. 128, 465-474.]; Hussain et al., 2014[Hussain, Z., Yousif, E., Ahmed, A. & Altaie, A. (2014). Org. Med. Chem. Lett. 4, 1.]). However, there are only a few reports where de­hydro­acetic acid (DHA) has been used for the preparation of Schiff bases for various applications (Liu et al., 1991[Liu, S., Rettig, S. J. & Orvig, C. (1991). Inorg. Chem. 30, 4915-4919.]; Luo et al., 1995[Luo, H., Liu, S., Rettig, S. J. & Orvig, C. (1995). Can. J. Chem. 73, 2272-2281.]). In some cases, DHA-based Schiff bases are used for the synthesis of metal complexes, leading to their utilization in various biomedical applications due to their anti­fungal, anti­bacterial, anti­malarial and anti­cancer activities (Chan & Wong, 1995[Chan, S. & Wong, W. T. (1995). Coord. Chem. Rev. 138, 219-296.]; Erkkila et al., 1999[Erkkila, K. E., Odom, D. T. & Barton, J. K. (1999). Chem. Rev. 99, 2777-2796.]; Ganjali et al., 2007[Ganjali, M. R., Norouzi, P., Alizadeh, T. & Salavati, N. M. (2007). Bull. Korean Chem. Soc. 28, 68-72.]; Gupta & Sutar, 2008[Gupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420-1450.]). In general, the compounds are formed via a condensation product of hydrazine and the respective aldehyde or ketone in a 1:1 molar ratio. Structurally, a Schiff base (also known as an imine or azomethine) is a nitro­gen analogue of an aldehyde or ketone in which the carbonyl group (C=O) has been replaced by an imine or azomethine group.

The reaction between p-nitro­phenyl­hydrazine and de­hydro­acetic acid (DHA) in a 1:1 molar ratio in distilled ethanol afforded the title compound within 4 h. We report herein on its characterization by FT–IR, 1H and 13C NMR and UV–Vis spectroscopic and single-crystal X-ray diffraction techniques.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The dihedral angle between the pyran (O2/C9–C13) and benzene (C1–C6) rings is 12.9 (1)°. The approximate planarity of the entire mol­ecule maybe influenced by an intra­molecular O1—H1⋯N3 hydrogen bond, which forms an S(6) ring.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-naming scheme. The displacement ellipsoids are shown at the 50% probability level.

3. Supra­molecular features

The crystal packing features strong N2—H2⋯O3i hydrogen bonds between the NH group and the Ocarbon­yl atom of the DHA moiety of symmetry-related mol­ecules, creating infinite chains along [101] (see Table 1[link] for symmetry code). This Ocarbon­yl atom is also weakly hydrogen bonded to a symmetry-related hydrogen atom (C5–H5⋯O3i), forming a bifurcated N—H,C—H⋯O hydrogen bond (Fig. 2[link]). In a similar fashion, the O2 atom of the pyran ring forms a weak hydrogen bond to the methyl hydrogen of an adjacent mol­ecule (C7—H7A⋯O2i). The chains are arranged in a herringbone pattern in the three-dimensional structure (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N3 0.90 (2) 1.64 (2) 2.4760 (18) 154 (2)
N2—H2⋯O3i 0.85 (2) 2.00 (2) 2.8361 (19) 165.2 (19)
C5—H5⋯O3i 0.93 2.60 3.264 (2) 129
C7—H7A⋯O2i 0.96 2.51 3.283 (2) 138
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
A chain parallel to [101] formed by the inter­molecular hydrogen bonding (dashed lines) between the N—H group and carbonyl O atom of the DHA moiety. Weak C—H⋯O hydrogen bonds are also shown as dashed lines.
[Figure 3]
Figure 3
The crystal packing showing the herringbone arrangement of HMNP, viewed along the a axis. C-bound H atoms have been omitted for clarity. Hydrogen bonds are shown as dashed lines.

4. Hirshfeld surface analysis

The Hirshfeld surface was mapped with dnorm to visualize the inter­molecular inter­actions and 2-D fingerprint plots were generated using Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]) (Fig. 4[link]).

[Figure 4]
Figure 4
(a) Hirshfeld surfaces representation for HMNP mapped with dnorm. (b)–(d) Fingerprint plots of HMNP resolved into different inter­molecular inter­actions showing the percentages of contacts contributing to the total Hirshfeld surface.

5. Spectroscopic and TG analysis

The FT–IR spectrum of the title compound shows a characteristic peak at 1687 cm−1 which has been consigned for νC=N, whereas the broad signal at 3280 cm−1 (νO–H) indicates the presence of a phenolic group. The 1H NMR spectrum display a singlet at δ 15.23 ppm, which clearly indicates the dominance of the enol form of the title compound over the keto form. The absorption spectra for HMNP was recorded in C2H5OH, and λmax was observed at 394 nm, which is ascribed to the ππ* or nπ* transition of the C=O or C=N group. To probe the thermal stability of HMNP, thermogravimetric analysis (TGA) was undertaken and it was found that HMNP is stable to 513 K.

6. Synthesis and crystallization

Materials and methods: p-Nitro­phenyl­hydrazine and de­hydro­acetic acid were of analytical grade and purchased from Spectrochem and Merck (India), respectively, and used as received. However, analytical grade solvents were purified wherever necessary as per as the standard literature method (Perrin et al., 1980[Perrin, D. D., Armarego, W. L. F. & Perrin, D. R. (1980). Purification of Laboratory Chemicals. Oxford: Pergamon Press.]). The FT–IR spectra were recorded with a Perkin–Elmer FTIR–2000 spectrometer. The NMR spectroscopic measurements were carried out with a JEOL AL-400 MHz spectrometer. The thermogravimetric analysis (TGA) measurement was performed on an SDT Q600 (V20.9 Build 20) instrument (Artisan Technology Group, Champaign, IL) under N2 atmosphere with a heating rate of 10 K min−1. The absorbance spectrum was recorded on a JASCO V-530 UV/vis Spectrophotometer.

Synthesis of (E)-4-hy­droxy-6-methyl-3-(1-(2-(4-nitro­phen­yl) hydrazone) eth­yl) 2-H-pyran-2-one (HMNP):

HMNP was synthesized by the reaction of DHA (0.56g, 0.003 mol) with para-nitro­phenyl­hydrazine (0.45g, 0.003 mol) in distilled ethanol (15 mL) under reflux condition at 353 K for 3 h (Fig. 5[link]). The progress of the reaction was monitored by thin layer chromatography (TLC). After completion of the reaction, the reaction mixture was cooled to room temperature and the yellow crystalline precipitate was filtrated off and washed with cold ethanol and dried [yield: 0.728g (80%)]. Crystals suitable for single crystal X-ray analysis were obtained by the slow evaporation of a THF solution of HMNP for 7–8 d.

[Figure 5]
Figure 5
Synthetic route for the organic ligand HMNP.

FT–IR (selected peaks): 3280 (O–H), 3088 (N–H), 1687 (C=O), 1646 (C=N) cm−1. Absorption spectrum [λmax, nm, C2H5OH (, M−1 cm−1)]: 394 (150), 274 (sh, 525). 1H NMR (CDCl3, 400 MHz): δ (ppm): 15.23 (s, 1H, He), 8.23–8.21 (d, 2H, Ha), 7.34 (1s, 1H, Hc), 6.94–6.93 (d, 2H, Hb), 5.93 (s, 1H, Hf), 2.67 (1s, 3H, Hg), 2.25 (1s, 3H, Hd). 13C NMR (DMSO-d6, 100 MHz): δ 176.4 (C8), 167.1 (C12), 163.1 (C10), 150.2 (C7), 139.5 (C4), 125.8 (C1), 111.3 (C2), 103.3 (C3), 96.4 (C9), 79.1 (C5), 78.7 (C11), 78.3 (C6).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The NH and OH hydrogen atoms were located in a difference-Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.96 Å, O—H= 0.82 Å with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(Cmeth­yl). The crystal studied was a non-merohedral twin with the refined ratio of the twin components being 0.3720 (19):0.6280 (19) using twin matrix ([\overline{1}]0 0) (0 [\overline{1}] 0) (0.265 0 [\overline{1}]).

Table 2
Experimental details

Crystal data
Chemical formula C14H13N3O5
Mr 303.27
Crystal system, space group Monoclinic, P21/n
Temperature (K) 297
a, b, c (Å) 6.9633 (3), 19.5008 (9), 10.2031 (5)
β (°) 95.196 (2)
V3) 1379.78 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.16 × 0.13 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (TWINABS; Sheldrick, 2012[Sheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.])
No. of measured, independent and observed [I > 2σ(I)] reflections 2696, 2696, 2302
Rint 0.028
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.121, 1.08
No. of reflections 2696
No. of parameters 208
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), X-SEED (Barbour 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and publCIF (Westrip 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS2013 (Sheldrick 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: X-SEED (Barbour 2001); software used to prepare material for publication: publCIF (Westrip 2010).

(E)-4-Hydroxy-6-methyl-3-{1-[2-(4-nitrophenyl)hydrazin-1-ylidene]ethyl}-2H-pyran-2-one top
Crystal data top
C14H13N3O5F(000) = 632
Mr = 303.27Dx = 1.460 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.9633 (3) ÅCell parameters from 9944 reflections
b = 19.5008 (9) Åθ = 2.3–30.3°
c = 10.2031 (5) ŵ = 0.11 mm1
β = 95.196 (2)°T = 297 K
V = 1379.78 (11) Å3Block, colourless
Z = 40.16 × 0.13 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2302 reflections with I > 2σ(I)
φ and ω scansRint = 0.028
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
θmax = 26.0°, θmin = 2.3°
h = 88
2696 measured reflectionsk = 024
2696 independent reflectionsl = 012
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.121 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.3029P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2696 reflectionsΔρmax = 0.18 e Å3
208 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3744 (2)0.45226 (6)0.80648 (13)0.0531 (4)
H10.344 (4)0.4379 (12)0.7235 (19)0.080*
O20.6082 (2)0.28918 (6)1.00744 (12)0.0469 (3)
O30.6119 (3)0.22490 (6)0.83226 (13)0.0663 (5)
O40.0188 (3)0.67218 (8)0.2507 (2)0.0812 (6)
O50.0004 (3)0.61297 (9)0.07175 (19)0.0865 (6)
N10.0349 (3)0.61838 (9)0.1917 (2)0.0611 (5)
N20.3120 (2)0.38498 (7)0.46572 (14)0.0398 (4)
H20.268 (3)0.3474 (11)0.432 (2)0.048*
N30.3581 (2)0.38475 (6)0.60024 (13)0.0347 (3)
C10.1015 (3)0.55793 (9)0.2667 (2)0.0451 (5)
C20.1693 (3)0.56440 (9)0.3967 (2)0.0444 (4)
H2A0.1673360.6069280.4378350.053*
C30.2406 (3)0.50781 (8)0.46645 (17)0.0391 (4)
H30.2898620.5123660.5538130.047*
C40.2383 (2)0.44367 (8)0.40531 (16)0.0337 (4)
C50.1636 (3)0.43827 (9)0.27327 (18)0.0462 (5)
H50.1589760.3956630.2321580.055*
C60.0978 (3)0.49483 (10)0.20466 (19)0.0517 (5)
H60.0507520.4910010.1167170.062*
C70.5379 (3)0.27794 (9)0.57620 (17)0.0454 (5)
H7A0.4548840.2386230.5756350.068*
H7B0.6641220.2657630.6148830.068*
H7C0.5463260.2934060.4875760.068*
C80.4574 (2)0.33419 (8)0.65505 (16)0.0332 (4)
C90.5723 (3)0.28148 (8)0.87201 (16)0.0410 (4)
C100.4942 (2)0.33851 (8)0.79792 (15)0.0329 (4)
C110.4516 (3)0.39848 (8)0.86652 (17)0.0389 (4)
C120.4968 (3)0.40211 (10)1.00539 (19)0.0491 (5)
H120.4723080.4422141.0502900.059*
C130.5736 (3)0.34866 (9)1.07078 (17)0.0451 (4)
C140.6316 (4)0.34367 (13)1.21487 (19)0.0689 (7)
H14A0.5648680.3060981.2512410.103*
H14B0.5990500.3855391.2571360.103*
H14C0.7681550.3361661.2289530.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0792 (10)0.0393 (7)0.0400 (7)0.0220 (7)0.0012 (7)0.0015 (6)
O20.0651 (8)0.0416 (7)0.0322 (6)0.0067 (6)0.0064 (6)0.0044 (5)
O30.1158 (14)0.0320 (6)0.0454 (8)0.0182 (8)0.0238 (8)0.0018 (6)
O40.0772 (12)0.0448 (9)0.1196 (16)0.0129 (8)0.0011 (11)0.0242 (9)
O50.0958 (14)0.0791 (12)0.0806 (13)0.0013 (10)0.0138 (11)0.0484 (10)
N10.0438 (9)0.0498 (10)0.0889 (15)0.0011 (8)0.0009 (9)0.0340 (10)
N20.0555 (9)0.0297 (7)0.0317 (8)0.0015 (7)0.0101 (6)0.0025 (6)
N30.0398 (8)0.0327 (7)0.0303 (7)0.0018 (6)0.0039 (6)0.0047 (5)
C10.0382 (9)0.0397 (9)0.0563 (12)0.0006 (8)0.0016 (8)0.0210 (8)
C20.0436 (10)0.0312 (8)0.0587 (12)0.0023 (8)0.0059 (9)0.0048 (8)
C30.0427 (9)0.0347 (8)0.0389 (10)0.0036 (7)0.0017 (8)0.0025 (7)
C40.0349 (8)0.0308 (8)0.0345 (9)0.0030 (6)0.0025 (7)0.0068 (6)
C50.0610 (11)0.0383 (9)0.0371 (10)0.0013 (9)0.0068 (9)0.0042 (7)
C60.0611 (12)0.0516 (11)0.0396 (10)0.0018 (10)0.0102 (9)0.0134 (8)
C70.0601 (12)0.0401 (9)0.0342 (9)0.0088 (9)0.0052 (8)0.0031 (7)
C80.0364 (8)0.0277 (7)0.0344 (8)0.0031 (6)0.0026 (7)0.0014 (6)
C90.0547 (11)0.0331 (8)0.0329 (9)0.0011 (8)0.0083 (8)0.0020 (7)
C100.0368 (8)0.0301 (8)0.0307 (8)0.0006 (6)0.0024 (7)0.0023 (6)
C110.0458 (10)0.0337 (8)0.0371 (9)0.0051 (7)0.0028 (7)0.0024 (7)
C120.0670 (13)0.0450 (10)0.0354 (9)0.0098 (9)0.0053 (9)0.0048 (8)
C130.0550 (11)0.0494 (10)0.0304 (9)0.0041 (9)0.0020 (8)0.0008 (8)
C140.0965 (18)0.0774 (15)0.0312 (10)0.0156 (14)0.0026 (11)0.0018 (10)
Geometric parameters (Å, º) top
O1—C111.305 (2)C4—C51.403 (2)
O1—H10.899 (17)C5—C61.363 (2)
O2—C131.360 (2)C5—H50.9300
O2—C91.390 (2)C6—H60.9300
O3—C91.216 (2)C7—C81.499 (2)
O4—N11.220 (2)C7—H7A0.9600
O5—N11.231 (3)C7—H7B0.9600
N1—C11.458 (2)C7—H7C0.9600
N2—C41.377 (2)C8—C101.460 (2)
N2—N31.3809 (18)C9—C101.424 (2)
N2—H20.85 (2)C10—C111.408 (2)
N3—C81.301 (2)C11—C121.425 (3)
C1—C21.373 (3)C12—C131.324 (3)
C1—C61.383 (3)C12—H120.9300
C2—C31.381 (2)C13—C141.492 (2)
C2—H2A0.9300C14—H14A0.9600
C3—C41.397 (2)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C11—O1—H1104.1 (16)H7A—C7—H7B109.5
C13—O2—C9122.74 (13)C8—C7—H7C109.5
O4—N1—O5123.05 (18)H7A—C7—H7C109.5
O4—N1—C1118.4 (2)H7B—C7—H7C109.5
O5—N1—C1118.5 (2)N3—C8—C10115.09 (14)
C4—N2—N3119.41 (13)N3—C8—C7122.27 (14)
C4—N2—H2115.4 (14)C10—C8—C7122.54 (14)
N3—N2—H2116.0 (14)O3—C9—O2113.81 (14)
C8—N3—N2119.75 (14)O3—C9—C10128.22 (15)
C2—C1—C6120.96 (16)O2—C9—C10117.97 (14)
C2—C1—N1119.85 (18)C11—C10—C9118.16 (15)
C6—C1—N1119.18 (18)C11—C10—C8121.23 (14)
C1—C2—C3120.03 (16)C9—C10—C8120.60 (14)
C1—C2—H2A120.0O1—C11—C10122.02 (16)
C3—C2—H2A120.0O1—C11—C12118.12 (15)
C2—C3—C4119.77 (16)C10—C11—C12119.85 (15)
C2—C3—H3120.1C13—C12—C11120.32 (17)
C4—C3—H3120.1C13—C12—H12119.8
N2—C4—C3123.76 (14)C11—C12—H12119.8
N2—C4—C5117.25 (15)C12—C13—O2120.85 (16)
C3—C4—C5118.95 (15)C12—C13—C14127.50 (18)
C6—C5—C4120.68 (17)O2—C13—C14111.65 (16)
C6—C5—H5119.7C13—C14—H14A109.5
C4—C5—H5119.7C13—C14—H14B109.5
C5—C6—C1119.57 (17)H14A—C14—H14B109.5
C5—C6—H6120.2C13—C14—H14C109.5
C1—C6—H6120.2H14A—C14—H14C109.5
C8—C7—H7A109.5H14B—C14—H14C109.5
C8—C7—H7B109.5
C4—N2—N3—C8168.31 (16)C13—O2—C9—C100.6 (3)
O4—N1—C1—C29.0 (3)O3—C9—C10—C11177.1 (2)
O5—N1—C1—C2170.29 (19)O2—C9—C10—C112.2 (3)
O4—N1—C1—C6172.0 (2)O3—C9—C10—C82.0 (3)
O5—N1—C1—C68.7 (3)O2—C9—C10—C8178.60 (16)
C6—C1—C2—C31.9 (3)N3—C8—C10—C119.8 (2)
N1—C1—C2—C3177.08 (17)C7—C8—C10—C11166.71 (17)
C1—C2—C3—C41.8 (3)N3—C8—C10—C9169.40 (16)
N3—N2—C4—C312.9 (3)C7—C8—C10—C914.1 (3)
N3—N2—C4—C5169.53 (16)C9—C10—C11—O1177.92 (17)
C2—C3—C4—N2177.75 (17)C8—C10—C11—O11.3 (3)
C2—C3—C4—C50.2 (3)C9—C10—C11—C123.5 (3)
N2—C4—C5—C6176.40 (19)C8—C10—C11—C12177.33 (18)
C3—C4—C5—C61.3 (3)O1—C11—C12—C13179.38 (19)
C4—C5—C6—C11.2 (3)C10—C11—C12—C132.0 (3)
C2—C1—C6—C50.4 (3)C11—C12—C13—O20.9 (3)
N1—C1—C6—C5178.59 (18)C11—C12—C13—C14179.3 (2)
N2—N3—C8—C10178.73 (15)C9—O2—C13—C122.3 (3)
N2—N3—C8—C74.8 (2)C9—O2—C13—C14177.92 (19)
C13—O2—C9—O3179.91 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N30.90 (2)1.64 (2)2.4760 (18)154 (2)
N2—H2···O3i0.85 (2)2.00 (2)2.8361 (19)165.2 (19)
C5—H5···O3i0.932.603.264 (2)129
C7—H7A···O2i0.962.513.283 (2)138
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors thank the School of Chemistry, Hyderabad Central University, Hyderabad 500 046, India, for the single-crystal X-ray data collection. RK thanks the University Grant Commission (UGC), New Delhi, India, for providing financial support in the form of a UGC–BSR research start-up grant [F. 30–86/2014(BSR)].

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, S. & Wong, W. T. (1995). Coord. Chem. Rev. 138, 219–296.  CrossRef CAS Google Scholar
First citationChen, Z., Morimoto, H., Matsunaga, S. & Shibasaki, M. (2008). J. Am. Chem. Soc. 130, 2170–2171.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCozzi, P. G. (2004). Chem. Soc. Rev. 33, 410–421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationErkkila, K. E., Odom, D. T. & Barton, J. K. (1999). Chem. Rev. 99, 2777–2796.  CrossRef CAS Google Scholar
First citationGanjali, M. R., Norouzi, P., Alizadeh, T. & Salavati, N. M. (2007). Bull. Korean Chem. Soc. 28, 68–72.  CAS Google Scholar
First citationGupta, K. C. & Sutar, A. K. (2008). Coord. Chem. Rev. 252, 1420–1450.  Web of Science CrossRef CAS Google Scholar
First citationHussain, Z., Yousif, E., Ahmed, A. & Altaie, A. (2014). Org. Med. Chem. Lett. 4, 1.  CrossRef Google Scholar
First citationLiu, S., Rettig, S. J. & Orvig, C. (1991). Inorg. Chem. 30, 4915–4919.  CSD CrossRef CAS Google Scholar
First citationLuo, H., Liu, S., Rettig, S. J. & Orvig, C. (1995). Can. J. Chem. 73, 2272–2281.  CSD CrossRef CAS Google Scholar
First citationPerrin, D. D., Armarego, W. L. F. & Perrin, D. R. (1980). Purification of Laboratory Chemicals. Oxford: Pergamon Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2012). TWINABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar
First citationZheng, Y., Ma, K., Li, H., Li, J., He, J., Sun, X., Li, R. & Ma, J. (2009). Catal. Lett. 128, 465–474.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds