research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of N-ethyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­­idene)hydrazinecarbo­thio­amide

CROSSMARK_Color_square_no_text.svg

aUniversidade Federal de Sergipe (UFS), Departamento de Química, São Cristóvão, Brazil, bRheinische Friedrich-Wilhelms-Universität Bonn, Institut für Anorganische Chemie, Bonn, Germany, and cUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquara, Brazil
*Correspondence e-mail: adriano@daad-alumni.de

Edited by A. J. Lough, University of Toronto, Canada (Received 9 January 2017; accepted 25 January 2017; online 31 January 2017)

There are two crystallographically independent mol­ecules in the asymmetric unit of the title compound, C13H17N3S, one of them being disordered over the methyl group [site-occupancy ratio = 0.705 (5):0.295 (5)]. The maximum r.m.s. deviations from the mean plane of the non-H atoms for the tetra­lone fragments amount to 0.4572 (17) and 0.4558 (15) Å. The N—N—C—N fragments are not planar and torsion angles are −9.4 (2) and 8.3 (2)°. In the crystal, the mol­ecules are linked by weak N—H⋯S inter­actions into chains along [100] with graph-set motif C(4) and connected by weak N—H⋯S and C—H⋯S inter­actions, forming R21(10) rings. The Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H⋯H (64.20%), H⋯S (12.60%) and H⋯C (12.00%) inter­actions. The crystal packing resembles a herringbone arrangement when viewed along [001].

1. Chemical context

The synthesis of thio­semicarbazone derivatives can be traced back to the early 1900′s (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]). Initially, the chemically selective nucleophilic reaction with thio­semicarbazide, H2N—N(H)C(=S)NH2, was employed for the identification and characterization of aldehydes and ketones, yielding the respective thio­semicarbazone. In the 1940s it was reported that in in vitro assays, the thio­semicarbazone turned out to be very effective against tuberculosis. In contrast, the related oxygen-containing semicarbazones did not shown biological activity in the same assays, so that the sulfur atom in the mol­ecular structure is essential for Mycobacterium tuberculosis growth inhibition, a true milestone in the thio­semi­carbazone pharmacological research (Domagk et al., 1946[Domagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.]). Today, thio­semicarbazone chemistry is present across a wide range of scientific disciplines, especially inorganic coordination chemistry (Lobana et al., 2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]) and medicinal chemistry. For example, the synthesis, the mol­ecular docking calculation and the in vitro inhibition of Chikungunya virus replication by a thio­semicarbazone derivative was published in the past year (Mishra et al., 2016[Mishra, P., Kumar, A., Mamidi, P., Kumar, S., Basantray, I., Saswat, T., Das, I., Nayak, T. K., Chattopadhyay, S., Subudhi, B. B. & Chattopadhyay, S. (2016). Sci. Rep. 6, 20122.]). Thus, the crystal structure determination of thio­semicarbazone derivatives is an intensive research field, especially for biological chemistry.

2. Structural commentary

The asymmetric unit shows two crystallographically independent mol­ecules, one of them being disordered over the terminal methyl group. For the disordered mol­ecule, the C25 atom was fixed with restraints and had to be split over two positions with an occupancy ratio of 0.705 (5):0.295 (5) with A and B labels. As the orientations for this sp3-hybridized C atom are different, two possibilities for the disordered C26–atom locations are generated (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with labeling and displacement ellipsoids drawn at the 40% probability level. The N3—H12⋯S2 and C9—H10⋯S2 inter­actions are drawn as dashed lines. Disordered atoms are shown with 30% transparency. The C25A/B atom is itself not disordered, but it was split using the same occupancy ratio as C26A and C26B.

For the first mol­ecule, the C1/C2/C5/C10 atoms are essentially planar and atoms C3 and C4 deviate by 0.564 (2) and −0.142 (2) Å, respectively, from this plane. For the second, the C14/C15/C18/C23 atoms are essentially planar while atoms C16 and C17 deviate from the plane by −0.534 (2) and 0.201 (2) Å, respectively.

In addition, the N1—N2—C11—N3 and N4—N5—C24—N6 torsion angles are 9.4 (2)° and 8.3 (2)°. The dihedral angle between the tetra­lone fragments of the two mol­ecules within the asymmetric unit is 85.51 (02)°.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal, the mol­ecules are connected by weak N3—H12⋯S2 and N6—H29⋯S1i inter­actions into chains along [100]. The S1–C11–N3–H12 and S2–C24–N6–H29 fragments are the subunits of the periodic arrangement, with graph-set motif C(4). In addition, the mol­ecules are linked by C9—H10⋯S2 and C22—H27⋯S1i inter­actions building rings with graph-set motif [R_{2}^{1}](10). The sulfur atoms are hydrogen-bond acceptors and bridge two D—H⋯S inter­actions (Fig. 2[link], Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H12⋯S2 0.88 3.02 3.7172 (16) 138
C9—H10⋯S2 0.95 3.09 3.8835 (19) 142
N6—H29⋯S1i 0.88 3.31 4.002 (2) 138
C22—H27⋯S1i 0.95 2.98 3.7828 (17) 143
Symmetry code: (i) x-1, y, z.
[Figure 2]
Figure 2
Section of the crystal structure of the title compound, showing the N—H⋯S and C—H⋯S inter­actions. The graph-set motifs for the hydrogen-bonding inter­actions in the crystal packing are C(4) and [R_{2}^{1}](10). The H⋯S inter­actions are shown as dashed lines and connect the mol­ecules into a chain along [100].

The Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]) of the crystal structure suggests that the contribution of the H⋯H inter­molecular inter­actions to the crystal packing amounts to 64.20%, the H⋯S inter­actions amount to 12.60% and the H⋯C inter­actions amount to 12.00%. Other important inter­molecular contacts for the cohesion of the structure are (values given in %) are: H⋯N = 5.50, C⋯N = 3.60 and C⋯C = 2.20. For the Hirshfeld surface analysis, the disorder over the mol­ecule was not considered and the calculations were performed using the major occupancy component atoms. The graphical representation of the Hirshfeld surface (Fig. 3[link], represented in magenta) suggests the locations of the strongest inter­molecular contacts. The H⋯H contribution for the crystal packing is shown as a Hirshfeld surface two-dimensional fingerprint plot with cyan dots (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]). The de (y axis) and di (x axis) values are the closest external and inter­nal distances (in Å) from given points on the Hirshfeld surface contacts (Fig. 4[link]). As the most important contribution for the crystal packing is from the H⋯H inter­actions, all other inter­molecular inter­actions are relatively weak. As a consequence, the lengths of the H⋯S contacts are close to or slightly above the sum of the van der Waals radii for H and S atoms (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]; Rowland & Taylor, 1996[Rowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.]). Finally, the mol­ecular packing shows a herringbone motif when viewed along [001] (Fig. 5[link]).

[Figure 3]
Figure 3
The Hirshfeld surface graphical representation (dnorm) for the asymmetric unit of the title compound. The surface regions with the strongest inter­molecular inter­actions are shown in magenta. The disorder is not shown and the figure is simplified for clarity.
[Figure 4]
Figure 4
Hirshfeld surface two-dimensional fingerprint plot for the title compound showing the H⋯H contacts in detail (cyan dots). The contribution of the H⋯H inter­actions to the crystal packing amounts to 64.20%. The de (y axis) and di (x axis) values are the closest external and inter­nal distances (in Å) from given points on the Hirshfeld surface contacts. The disorder was not considered.
[Figure 5]
Figure 5
Section of the crystal structure of the title compound, in a view along the [001], showing the herringbone motif.

4. Comparison with related structures

H⋯H connections are the most important contribution for the crystal packing of 1-tetra­lone thio­semicarbazone derivatives; however, the H⋯S contacts are relevant inter­molecular inter­actions because of the possibility of forming hydrogen bonds. Therefore, D—H⋯S hydrogen bonding is considered in the comparison of the title compound with related structures. In the crystal structure of 2-(1,2,3,4-tetra­hydro­naph­thalen-1-yl­idene)hydrazinecarbo­thio­amide, the mol­­ecules are linked into chains by N—H⋯S hydrogen bonds (H⋯S distances = 2.45 and 2.71 Å) and the H⋯S contribution for the cohesion of the structure amounts to 19.20% (Fig. 6[link]a and 7a). This kind of arrangement, the one-dimensional hydrogen-bonded polymer, is possible due to the unsubstituted amine, which increases the possibilities for inter­molecular hydrogen bonding (Oliveira et al., 2012[Oliveira, A. B. de, Silva, C. S., Feitosa, B. R. S., Näther, C. & Jess, I. (2012). Acta Cryst. E68, o2581.]). For the crystal structure of N-methyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbo­thio­amide, one H atom of the amine group is substituted by one methyl group. The N—H⋯S hydrogen bonds are weaker in comparison with the first structure (H⋯S distances = 3.03 and 3.29 Å), the H⋯S contribution for the cohesion of the structure amounts to 15.80% and the dimensionality of the structure is preserved with mol­ecules linked into chains (Fig. 6[link]b and 7b). The disorder over the mol­ecules in the asymmetric unit was not considered and the calculations were performed using atoms of the major occupancy component (Oliveira et al., 2014a[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014a). Acta Cryst. E70, o301-o302.]). Finally, for N-phenyl-2-(1,2,3,4-tetra­hydro­naphthalen-1-yl­idene)hydrazinecarbo­thio­amide, the mol­ecules are also linked by N—H⋯S hydrogen bonds, but not into hydrogen-bonded polymers (H⋯S distance = 2.70 Å). The phenyl rings linked to the amino groups change the mol­ecular arrangement due to steric effects: the mol­ecules build dimers and the H⋯S contribution to the crystal packing amounts to 13.00% (Fig. 6[link]c and 7c) (Oliveira et al., 2014b[Oliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014b). Acta Cryst. E70, o205.]). For the 1-tetra­lone 4-ethyl­thio­semicarbazone reported here, the H⋯S contribution for the mol­ecular cohesion on the crystal structure amounts to 12.60% (Fig. 7[link]d). Thus, there is a relationship between the mol­ecular assembly, the geometry of the H⋯S inter­actions and their contribution to the crystal structures (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.] and Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]).

[Figure 6]
Figure 6
Sections of the crystal structures of 1-tetra­lone thio­semicarbazone derivatives: (a) 1-tetra­lone thio­semicarbazone, (b) 1-tetra­lone 4-methyl­thio­semicarbazone and (c) 1-tetra­lone 4-phenyl­thio­semicarbazone. The H⋯S inter­molecular inter­actions are shown as dashed lines. The disorder of the 1-tetra­lone 4-methyl­thio­semicarbazone mol­ecule is not shown and the figures are simplified for clarity.
[Figure 7]
Figure 7
Hirshfeld surface two-dimensional fingerprint plots for the crystal structures of (a) 1-tetra­lone thio­semicarbazone, (b) 1-tetra­lone 4-methyl­thio­semicarbazone, (c) 1-tetra­lone 4-phenyl­lthio­semicarbazone and (d) 1-tetra­lone 4-ethyl­thio­semicarbazone showing the H⋯S contacts in detail (cyan dots). The H⋯S inter­actions contributions to the mol­ecular cohesion on the crystal structures amount to 19.20, 15.80, 13.00 and 12.60%, respectively.

5. Synthesis and crystallization

The starting materials are commercially available and were used without further purification. The synthesis of the title compound was adapted from a previously reported procedure (Freund & Schander, 1902[Freund, M. & Schander, A. (1902). Chem. Ber. 35, 2602-2606.]). In a hydro­chloric acid catalysed reaction, a mixture of 1-tetra­lone (10 mmol) and 4-ethyl-3-thio­semicarbazide (10 mmol) in ethanol (80 mL) was stirred and refluxed for 4 h. After cooling and filtering, a pale-yellow solid was obtained. Colourless crystals were grown in tetra­hydro­furan by slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. One of the two independent mol­ecules exhibits disorder of the methyl group. Although the secondary C atom of the ethyl substituent is not itself disordered, it was split using the same occupancy ratio as the terminal C atom to account for the different orientations of the two hydrogen atoms for the two disordered parts. The C25A and C25B atoms share the same site (EXYZ and EADP commands) and two positions will be possible for the terminal CH3–group. The C25 and C26 atoms were fixed with restraints (SADI command) and had to be split over two positions. The occupancy factor for C25A and C26A is 0.705 (5) and for C25B and C26B it is 0.295 (5). H atoms were located in difference maps but were positioned with idealized geometry and were refined with isotropic displacement parameters using a riding model (HFIX command) with Uiso(H) = 1.2Ueq(secondary C atoms) (C—H = 0.99 Å for aliphatic and C—H = 0.95 Å for aromatic atoms), Uiso(H) = 1.5 Ueq(terminal C atoms) (C—H = 0.98 Å) and Uiso(H) = 1.2 Ueq(N) (N—H = 0.88 Å).

Table 2
Experimental details

Crystal data
Chemical formula C13H17N3S
Mr 247.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 11.1342 (2), 10.2330 (2), 23.3990 (5)
β (°) 102.724 (1)
V3) 2600.52 (9)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.23
Crystal size (mm) 0.35 × 0.15 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD area detector
Absorption correction Multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])
Tmin, Tmax 0.902, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 39942, 5952, 4615
Rint 0.050
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.116, 1.02
No. of reflections 5952
No. of parameters 318
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.41
Computer programs: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]), HKL, DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]), Crystal Explorer (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: HKL and SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL, DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006) and Crystal Explorer (Wolff et al., 2012); software used to prepare material for publication: publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

N-Ethyl-2-(1,2,3,4-tetrahydronaphthalen-1-ylidene)hydrazinecarbothioamide top
Crystal data top
C13H17N3SF(000) = 1056
Mr = 247.36Dx = 1.264 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 42401 reflections
a = 11.1342 (2) Åθ = 2.9–27.5°
b = 10.2330 (2) ŵ = 0.23 mm1
c = 23.3990 (5) ÅT = 123 K
β = 102.724 (1)°Block, colourless
V = 2600.52 (9) Å30.35 × 0.15 × 0.05 mm
Z = 8
Data collection top
Nonius KappaCCD area detector
diffractometer
5952 independent reflections
Radiation source: fine-focus sealed tube, Nonius Kappa CCD4615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD rotation images, thick slices scansh = 1414
Absorption correction: multi-scan
(Blessing, 1995)
k = 1313
Tmin = 0.902, Tmax = 0.987l = 3028
39942 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0524P)2 + 1.4032P]
where P = (Fo2 + 2Fc2)/3
5952 reflections(Δ/σ)max < 0.001
318 parametersΔρmax = 0.48 e Å3
1 restraintΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.74029 (14)0.81156 (15)0.26519 (7)0.0204 (3)
C20.83649 (16)0.73161 (17)0.30579 (7)0.0259 (4)
H10.90950.72290.28840.031*
H20.80340.64290.30920.031*
C30.87661 (18)0.7906 (2)0.36697 (8)0.0338 (4)
H30.93010.72790.39310.041*
H40.92480.87110.36500.041*
C40.76544 (19)0.8229 (2)0.39190 (8)0.0356 (4)
H50.72110.74130.39700.043*
H60.79300.86410.43090.043*
C50.67946 (16)0.91465 (17)0.35168 (8)0.0271 (4)
C60.61121 (17)1.00840 (19)0.37437 (9)0.0331 (4)
H70.61971.01460.41560.040*
C70.53164 (17)1.09221 (18)0.33808 (9)0.0338 (4)
H80.48641.15560.35430.041*
C80.51821 (16)1.08314 (17)0.27784 (9)0.0302 (4)
H90.46271.13970.25270.036*
C90.58507 (15)0.99229 (16)0.25425 (8)0.0255 (4)
H100.57580.98720.21300.031*
C100.66681 (15)0.90726 (16)0.29086 (7)0.0223 (3)
C110.76692 (15)0.72188 (16)0.12327 (7)0.0233 (3)
C120.64454 (19)0.8165 (2)0.03189 (8)0.0359 (4)
H130.72070.81300.01660.043*
H140.60770.90420.02310.043*
C130.5557 (2)0.7151 (3)0.00106 (9)0.0498 (6)
H150.59060.62780.01060.075*
H160.54070.72900.04140.075*
H170.47790.72240.01380.075*
C140.23948 (14)0.74836 (15)0.25873 (7)0.0195 (3)
C150.32438 (16)0.83155 (17)0.30316 (7)0.0261 (4)
H180.31730.92350.28970.031*
H190.41030.80320.30550.031*
C160.29737 (17)0.82471 (18)0.36413 (8)0.0294 (4)
H200.36410.86860.39260.035*
H210.21930.87090.36430.035*
C170.28738 (16)0.68370 (18)0.38210 (7)0.0280 (4)
H220.36670.63870.38370.034*
H230.26940.68040.42170.034*
C180.18651 (15)0.61472 (16)0.33905 (7)0.0221 (3)
C190.11481 (16)0.51819 (17)0.35743 (8)0.0269 (4)
H240.12740.49840.39800.032*
C200.02604 (16)0.45102 (17)0.31785 (8)0.0285 (4)
H250.02210.38580.33110.034*
C210.00738 (15)0.47942 (17)0.25843 (8)0.0265 (4)
H260.05250.43220.23100.032*
C220.07550 (15)0.57592 (16)0.23918 (7)0.0227 (3)
H270.06150.59550.19860.027*
C230.16531 (14)0.64538 (15)0.27924 (7)0.0192 (3)
C240.28275 (18)0.86401 (18)0.12330 (8)0.0309 (4)
C25A0.1525 (3)0.8000 (3)0.02723 (10)0.0733 (9)0.705 (5)
H300.21620.84480.01080.088*0.705 (5)
H310.07510.85040.01570.088*0.705 (5)
C26A0.1331 (4)0.6658 (4)0.00242 (14)0.0625 (12)0.705 (5)
H340.10600.67090.04030.094*0.705 (5)
H350.07000.62130.01860.094*0.705 (5)
H360.21040.61660.01270.094*0.705 (5)
C25B0.1525 (3)0.8000 (3)0.02723 (10)0.0733 (9)0.295 (5)
H320.11670.71500.01200.088*0.295 (5)
H330.22320.81990.00930.088*0.295 (5)
C26B0.0497 (8)0.9155 (8)0.0132 (3)0.053 (3)0.295 (5)
H370.01850.92240.02920.080*0.295 (5)
H380.08710.99870.02850.080*0.295 (5)
H390.01850.89480.03200.080*0.295 (5)
N10.71417 (12)0.80254 (13)0.20897 (6)0.0214 (3)
N20.78106 (13)0.71646 (13)0.18298 (6)0.0231 (3)
H110.83140.65960.20410.028*
N30.67615 (13)0.79765 (14)0.09517 (6)0.0260 (3)
H120.63200.83940.11620.031*
N40.22574 (12)0.75948 (13)0.20292 (6)0.0217 (3)
N50.29620 (13)0.85150 (14)0.18236 (6)0.0262 (3)
H280.34850.90090.20670.031*
N60.19103 (18)0.79705 (17)0.09097 (7)0.0409 (4)
H290.14920.74570.10970.049*
S10.86369 (4)0.63602 (5)0.091362 (19)0.03122 (13)
S20.38000 (5)0.96310 (6)0.09740 (2)0.04411 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0202 (8)0.0188 (8)0.0229 (8)0.0027 (6)0.0061 (6)0.0006 (6)
C20.0298 (9)0.0260 (9)0.0223 (8)0.0062 (7)0.0067 (7)0.0012 (7)
C30.0368 (11)0.0373 (11)0.0252 (9)0.0077 (8)0.0022 (8)0.0006 (8)
C40.0457 (12)0.0378 (11)0.0242 (9)0.0063 (9)0.0094 (8)0.0017 (8)
C50.0264 (9)0.0261 (9)0.0302 (9)0.0026 (7)0.0089 (7)0.0033 (7)
C60.0333 (10)0.0349 (10)0.0341 (10)0.0053 (8)0.0134 (8)0.0111 (8)
C70.0260 (9)0.0250 (9)0.0541 (12)0.0028 (7)0.0169 (9)0.0104 (9)
C80.0209 (8)0.0221 (9)0.0487 (11)0.0008 (7)0.0099 (8)0.0002 (8)
C90.0212 (8)0.0221 (8)0.0344 (9)0.0026 (7)0.0087 (7)0.0014 (7)
C100.0199 (8)0.0199 (8)0.0287 (9)0.0030 (6)0.0089 (7)0.0007 (7)
C110.0260 (9)0.0228 (8)0.0206 (8)0.0047 (7)0.0044 (7)0.0001 (6)
C120.0400 (11)0.0446 (12)0.0222 (9)0.0059 (9)0.0048 (8)0.0087 (8)
C130.0402 (12)0.0742 (17)0.0295 (11)0.0016 (11)0.0039 (9)0.0083 (11)
C140.0180 (7)0.0202 (8)0.0210 (8)0.0027 (6)0.0057 (6)0.0000 (6)
C150.0244 (9)0.0262 (9)0.0270 (9)0.0068 (7)0.0041 (7)0.0011 (7)
C160.0291 (9)0.0308 (9)0.0267 (9)0.0023 (7)0.0025 (7)0.0054 (7)
C170.0293 (9)0.0330 (10)0.0209 (8)0.0013 (7)0.0038 (7)0.0001 (7)
C180.0210 (8)0.0231 (8)0.0230 (8)0.0035 (6)0.0064 (6)0.0012 (6)
C190.0263 (9)0.0283 (9)0.0285 (9)0.0049 (7)0.0108 (7)0.0071 (7)
C200.0224 (9)0.0221 (8)0.0433 (11)0.0013 (7)0.0123 (8)0.0068 (7)
C210.0186 (8)0.0215 (8)0.0386 (10)0.0012 (6)0.0045 (7)0.0034 (7)
C220.0187 (8)0.0239 (8)0.0252 (8)0.0030 (6)0.0040 (6)0.0021 (7)
C230.0169 (7)0.0185 (8)0.0230 (8)0.0034 (6)0.0060 (6)0.0000 (6)
C240.0393 (11)0.0284 (9)0.0293 (9)0.0125 (8)0.0172 (8)0.0089 (8)
C25A0.126 (3)0.0721 (19)0.0224 (11)0.0116 (18)0.0169 (14)0.0022 (11)
C26A0.082 (3)0.063 (2)0.0323 (17)0.003 (2)0.0089 (17)0.0075 (16)
C25B0.126 (3)0.0721 (19)0.0224 (11)0.0116 (18)0.0169 (14)0.0022 (11)
C26B0.066 (6)0.064 (6)0.025 (4)0.011 (4)0.001 (3)0.008 (3)
N10.0218 (7)0.0190 (7)0.0239 (7)0.0011 (5)0.0062 (5)0.0004 (5)
N20.0270 (7)0.0211 (7)0.0208 (7)0.0036 (6)0.0045 (6)0.0009 (5)
N30.0275 (8)0.0282 (8)0.0217 (7)0.0006 (6)0.0044 (6)0.0013 (6)
N40.0222 (7)0.0209 (7)0.0238 (7)0.0027 (5)0.0091 (6)0.0033 (5)
N50.0284 (8)0.0263 (8)0.0257 (7)0.0002 (6)0.0099 (6)0.0053 (6)
N60.0652 (12)0.0371 (9)0.0223 (8)0.0036 (9)0.0137 (8)0.0017 (7)
S10.0346 (3)0.0357 (3)0.0240 (2)0.0030 (2)0.00759 (18)0.00517 (18)
S20.0437 (3)0.0503 (3)0.0441 (3)0.0090 (2)0.0224 (2)0.0260 (2)
Geometric parameters (Å, º) top
C1—N11.287 (2)C15—H190.9900
C1—C101.485 (2)C16—C171.514 (3)
C1—C21.507 (2)C16—H200.9900
C2—C31.527 (2)C16—H210.9900
C2—H10.9900C17—C181.509 (2)
C2—H20.9900C17—H220.9900
C3—C41.516 (3)C17—H230.9900
C3—H30.9900C18—C191.396 (2)
C3—H40.9900C18—C231.403 (2)
C4—C51.513 (3)C19—C201.380 (3)
C4—H50.9900C19—H240.9500
C4—H60.9900C20—C211.391 (3)
C5—C61.399 (2)C20—H250.9500
C5—C101.401 (2)C21—C221.380 (2)
C6—C71.382 (3)C21—H260.9500
C6—H70.9500C22—C231.404 (2)
C7—C81.387 (3)C22—H270.9500
C7—H80.9500C24—N61.321 (3)
C8—C91.380 (2)C24—N51.363 (2)
C8—H90.9500C24—S21.6904 (19)
C9—C101.406 (2)C25A—N61.458 (3)
C9—H100.9500C25A—C26A1.489 (4)
C11—N31.327 (2)C25A—H300.9900
C11—N21.372 (2)C25A—H310.9900
C11—S11.6866 (17)C26A—H340.9800
C12—N31.457 (2)C26A—H350.9800
C12—C131.503 (3)C26A—H360.9800
C12—H130.9900C26B—H370.9800
C12—H140.9900C26B—H380.9800
C13—H150.9800C26B—H390.9800
C13—H160.9800N1—N21.3785 (18)
C13—H170.9800N2—H110.8800
C14—N41.286 (2)N3—H120.8800
C14—C231.482 (2)N4—N51.3785 (19)
C14—C151.505 (2)N5—H280.8800
C15—C161.523 (2)N6—H290.8800
C15—H180.9900
N1—C1—C10116.11 (14)C17—C16—C15110.22 (15)
N1—C1—C2125.09 (14)C17—C16—H20109.6
C10—C1—C2118.78 (14)C15—C16—H20109.6
C1—C2—C3113.38 (14)C17—C16—H21109.6
C1—C2—H1108.9C15—C16—H21109.6
C3—C2—H1108.9H20—C16—H21108.1
C1—C2—H2108.9C18—C17—C16110.49 (14)
C3—C2—H2108.9C18—C17—H22109.6
H1—C2—H2107.7C16—C17—H22109.6
C4—C3—C2110.59 (16)C18—C17—H23109.6
C4—C3—H3109.5C16—C17—H23109.6
C2—C3—H3109.5H22—C17—H23108.1
C4—C3—H4109.5C19—C18—C23118.92 (15)
C2—C3—H4109.5C19—C18—C17121.17 (15)
H3—C3—H4108.1C23—C18—C17119.90 (15)
C5—C4—C3110.73 (15)C20—C19—C18121.30 (16)
C5—C4—H5109.5C20—C19—H24119.4
C3—C4—H5109.5C18—C19—H24119.4
C5—C4—H6109.5C19—C20—C21119.62 (16)
C3—C4—H6109.5C19—C20—H25120.2
H5—C4—H6108.1C21—C20—H25120.2
C6—C5—C10118.75 (17)C22—C21—C20120.27 (16)
C6—C5—C4120.79 (16)C22—C21—H26119.9
C10—C5—C4120.46 (15)C20—C21—H26119.9
C7—C6—C5121.38 (18)C21—C22—C23120.42 (16)
C7—C6—H7119.3C21—C22—H27119.8
C5—C6—H7119.3C23—C22—H27119.8
C6—C7—C8119.59 (17)C18—C23—C22119.44 (15)
C6—C7—H8120.2C18—C23—C14119.92 (14)
C8—C7—H8120.2C22—C23—C14120.63 (14)
C9—C8—C7120.30 (18)N6—C24—N5115.50 (16)
C9—C8—H9119.8N6—C24—S2125.54 (14)
C7—C8—H9119.8N5—C24—S2118.95 (15)
C8—C9—C10120.47 (17)N6—C25A—C26A111.4 (2)
C8—C9—H10119.8N6—C25A—H30109.4
C10—C9—H10119.8C26A—C25A—H30109.4
C5—C10—C9119.51 (15)N6—C25A—H31109.4
C5—C10—C1120.35 (15)C26A—C25A—H31109.4
C9—C10—C1120.14 (15)H30—C25A—H31108.0
N3—C11—N2115.60 (15)C25A—C26A—H34109.5
N3—C11—S1125.16 (13)C25A—C26A—H35109.5
N2—C11—S1119.24 (13)H34—C26A—H35109.5
N3—C12—C13112.49 (17)C25A—C26A—H36109.5
N3—C12—H13109.1H34—C26A—H36109.5
C13—C12—H13109.1H35—C26A—H36109.5
N3—C12—H14109.1H37—C26B—H38109.5
C13—C12—H14109.1H37—C26B—H39109.5
H13—C12—H14107.8H38—C26B—H39109.5
C12—C13—H15109.5C1—N1—N2118.32 (14)
C12—C13—H16109.5C11—N2—N1118.12 (14)
H15—C13—H16109.5C11—N2—H11120.9
C12—C13—H17109.5N1—N2—H11120.9
H15—C13—H17109.5C11—N3—C12124.58 (15)
H16—C13—H17109.5C11—N3—H12117.7
N4—C14—C23116.20 (14)C12—N3—H12117.7
N4—C14—C15124.57 (15)C14—N4—N5117.74 (14)
C23—C14—C15119.23 (14)C24—N5—N4118.31 (15)
C14—C15—C16113.42 (14)C24—N5—H28120.8
C14—C15—H18108.9N4—N5—H28120.8
C16—C15—H18108.9C24—N6—C25A126.23 (19)
C14—C15—H19108.9C24—N6—H29116.9
C16—C15—H19108.9C25A—N6—H29116.9
H18—C15—H19107.7
N1—C1—C2—C3161.54 (16)C18—C19—C20—C210.1 (3)
C10—C1—C2—C319.7 (2)C19—C20—C21—C221.2 (3)
C1—C2—C3—C450.9 (2)C20—C21—C22—C230.8 (2)
C2—C3—C4—C557.0 (2)C19—C18—C23—C221.9 (2)
C3—C4—C5—C6146.70 (17)C17—C18—C23—C22176.74 (15)
C3—C4—C5—C1033.3 (2)C19—C18—C23—C14179.44 (14)
C10—C5—C6—C70.5 (3)C17—C18—C23—C141.9 (2)
C4—C5—C6—C7179.51 (18)C21—C22—C23—C180.8 (2)
C5—C6—C7—C80.4 (3)C21—C22—C23—C14179.48 (14)
C6—C7—C8—C90.9 (3)N4—C14—C23—C18171.47 (14)
C7—C8—C9—C100.5 (3)C15—C14—C23—C188.4 (2)
C6—C5—C10—C90.9 (2)N4—C14—C23—C227.2 (2)
C4—C5—C10—C9179.10 (16)C15—C14—C23—C22172.93 (15)
C6—C5—C10—C1178.29 (15)C10—C1—N1—N2179.05 (13)
C4—C5—C10—C11.7 (2)C2—C1—N1—N22.1 (2)
C8—C9—C10—C50.4 (2)N3—C11—N2—N19.4 (2)
C8—C9—C10—C1178.77 (15)S1—C11—N2—N1170.01 (11)
N1—C1—C10—C5173.40 (15)C1—N1—N2—C11169.76 (14)
C2—C1—C10—C55.5 (2)N2—C11—N3—C12179.47 (16)
N1—C1—C10—C97.4 (2)S1—C11—N3—C121.2 (3)
C2—C1—C10—C9173.72 (15)C13—C12—N3—C1187.5 (2)
N4—C14—C15—C16163.89 (16)C23—C14—N4—N5177.99 (13)
C23—C14—C15—C1616.2 (2)C15—C14—N4—N51.9 (2)
C14—C15—C16—C1749.6 (2)N6—C24—N5—N48.3 (2)
C15—C16—C17—C1858.95 (19)S2—C24—N5—N4172.76 (11)
C16—C17—C18—C19145.52 (16)C14—N4—N5—C24179.83 (15)
C16—C17—C18—C2335.9 (2)N5—C24—N6—C25A175.9 (2)
C23—C18—C19—C201.4 (2)S2—C24—N6—C25A3.0 (3)
C17—C18—C19—C20177.19 (16)C26A—C25A—N6—C24133.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H12···S20.883.023.7172 (16)138
C9—H10···S20.953.093.8835 (19)142
N6—H29···S1i0.883.314.002 (2)138
C22—H27···S1i0.952.983.7828 (17)143
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We gratefully acknowledge the financial support by the State of North Rhine–Westphalia, Germany. ABO is an associate researcher in the project `Di­nitrosyl complexes containing thiol and/or thio­semicarbazone: synthesis, characterization and treatment against cancer', founded by FAPESP, Proc. 2015/12098–0, and acknowledges Professor José C. M. Pereira (UNESP, Brazil) for his support. BRSF thanks CNPq for the award of a PIBIC scholarship and RLF thanks the CAPES foundation for the PhD scholarship.

Funding information

Funding for this research was provided by: Fundação de Amparo à Pesquisa do Estado de São Paulo (award No. 2015/12098–0); Conselho Nacional de Desenvolvimento Científico e TecnológicoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDomagk, G., Behnisch, R., Mietzsch, F. & Schmidt, H. (1946). Naturwissenschaften, 33, 315.  CrossRef Google Scholar
First citationFreund, M. & Schander, A. (1902). Chem. Ber. 35, 2602–2606.  CrossRef CAS Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationMishra, P., Kumar, A., Mamidi, P., Kumar, S., Basantray, I., Saswat, T., Das, I., Nayak, T. K., Chattopadhyay, S., Subudhi, B. B. & Chattopadhyay, S. (2016). Sci. Rep. 6, 20122.  Web of Science CrossRef Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014a). Acta Cryst. E70, o301–o302.  CrossRef IUCr Journals Google Scholar
First citationOliveira, A. B. de, Feitosa, B. R. S., Näther, C. & Jess, I. (2014b). Acta Cryst. E70, o205.  CrossRef IUCr Journals Google Scholar
First citationOliveira, A. B. de, Silva, C. S., Feitosa, B. R. S., Näther, C. & Jess, I. (2012). Acta Cryst. E68, o2581.  CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRowland, R. S. & Taylor, R. (1996). J. Phys. Chem. 100, 7384–7391.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds