research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of N2,N3,N5,N6-tetra­kis­(pyridin-2-ylmeth­yl)pyrazine-2,3,5,6-tetra­carboxamide and N2,N3,N5,N6-tetra­kis­(pyridin-4-ylmeth­yl)pyrazine-2,3,5,6-tetra­carboxamide

CROSSMARK_Color_square_no_text.svg

aDebiopharm International S.A., Chemin Messidor 5-7, CP 5911, CH-1002 Lausanne, Switzerland, and bInsitute of Physics, University of Neuchâtel, rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by A. J. Lough, University of Toronto, Canada (Received 20 January 2017; accepted 25 January 2017; online 31 January 2017)

The title compounds, C32H28N10O4· unknown solvent, (I), and C32H28N10O4, (II), are pyrazine-2,3,5,6-tetra­carboxamide derivatives. In (I), the substituents are (pyridin-2-ylmeth­yl)carboxamide, while in (II), the substituents are (pyridin-4-ylmeth­yl)carboxamide. Both compounds crystallize in the monoclinic space group P21/n, with Z′ = 1 for (I), and Z′ = 0.5 for (II). The whole mol­ecule of (II) is generated by inversion symmetry, the pyrazine ring being situated about a center of inversion. In (I), the four pyridine rings are inclined to the pyrazine ring by 83.9 (2), 82.16 (18), 82.73 (19) and 17.65 (19)°. This last dihedral angle involves a pyridine ring that is linked to the adjacent carboxamide O atom by an intra­molecular C—H⋯O hydrogen bond. In compound (II), the unique pyridine rings are inclined to the pyrazine ring by 33.3 (3) and 81.71 (10)°. There are two symmetrical intra­molecular C—H⋯O hydrogen bonds present in (II). In the crystal of (I), mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming layers parallel to (10-1). The layers are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional framework. In the crystal of (II), mol­ecules are linked by N—H⋯N hydrogen bonds, forming chains propagating along the [010] direction. The chains are linked by a weaker N—H⋯N hydrogen bond, forming layers parallel to the (101) plane, which are in turn linked by C—H⋯O hydrogen bonds, forming a three-dimensional structure. In the crystal of compound (I), a region of disordered electron density was treated with the SQUEEZE routine in PLATON [Spek (2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Acta Cryst. C71, 9–18]. Their contribution was not taken into account during refinement. In compound (II), one of the pyridine rings is positionally disordered, and the refined occupancy ratio for the disordered Car—Car—Npy atoms is 0.58 (3):0.42 (3).

1. Chemical context

Tetra­kis-substituted pyrazine ligands for coordination chemistry, excluding tetra­methyl­pyrazine or pyrazine-2,3,5,6-tetra­carbo­nitrile, are almost exclusively limited to tetra­kis­(2′-pyrid­yl)pyrazine (tppz) and tetra­kis­(carb­oxy­lic acid)pyrazine (H4pztc). Tppz was first synthesized by Goodwin & Lions (1959[Goodwin, H. A. & Lions, F. (1959). J. Am. Chem. Soc. 81, 6415-6422.]). The crystal structure of the first coordination compound of tppz to be reported was a binucluear copper(II) complex, bis­{di­aqua­[μ2-2,3,5,6-tetra­kis­(2-pyrid­yl)pyrazine-N,N′,N′′,N′′′,N′′′′,N′′′′′]copper(II)} tetra­perchlorate dihydrate, with the ligand coordinating in a bis-tridentate manner (Graf et al., 1993[Graf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239-246.]). H4pztc is a much older compound, whose synthesis was first reported by Wolf (1887[Wolf, L. (1887). Ber. Deutsch Chem. Ges. 20, 425-433.], 1893[Wolf, L. (1893). Ber. Deutsch Chem. Ges. 26, 721-725.]). The first published complex of H4pztc is a one-dimensional iron(II) coordination polymer, catena-[μ2-(2,5-di­carb­oxy­pyrazine-3,6-di­carboxyl­ato-N,O)-trans-di­aqua­diiron(II)] dihydrate (Marioni et al., 1986[Marioni, P.-A., Stoeckli-Evans, H., Marty, W., Güdel, H.-U. & Williams, A. F. (1986). Helv. Chim. Acta, 69, 1004-1011.]), in which the ligand coordinates in a bis-bidentate manner. There are of course a number of complexes in which H4pztc coordinates in a bis-tridentate manner (Cambridge Structural Database; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Recently, the first pyrazine-2,3,5,6-tetra­carboxamide ligand was reported, namely, N,N′,N′′,N′′′-tetra­ethyl­pyrazine-2,3,5,6-tetra­carboxamide, together with its binculear palladium(II) acetate complex (Lohrman et al., 2016[Lohrman, J., Telikepalli, H., Johnson, T. S., Jackson, T. A., Day, V. W. & Bowman-James, K. (2016). Inorg. Chem. 55, 5098-5100.]), in which the ligand coordinates in a bis-tridentate manner.

[Scheme 1]

The title compounds are part of a series of mono-, bis- and tetra­kis-substituted carboxamide pyrazine ligands synthesized in order to study their coordination chemistry with first row transition metals and the magnetic exchange properties of the complexes (Cati, 2002[Cati, D. (2002). PhD thesis, University of Neuchâtel, Switzerland.]; Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]). One such ligand is N,N′-bis­(2-pyridyl­meth­yl)pyrazine-2,3-dicarboxamide, for which two polymorphs have been reported: ortho­rhom­bic (Cati & Stoeckli-Evans, 2004[Cati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, o210-o212.]) and triclinic (Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]). The reaction of this ligand with copper perchlorate and nickel chloride lead to the formation of [2×2] grid-like structures (Cati et al., 2004[Cati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021-1030.]), with multiple encapsulation of the anions. Klingele et al. (2007[Klingele, J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633-645.]) have also reported the crystal structures of Cu(BF4)2 and Ni(BF4)2 complexes of the same ligand, which also form [2×2] grid-like structures, but this time no encapsulation of the anions was observed. Herein, we report on the synthesis and crystal structures of the title pyrazine-2,3,5,6-tetra­carboxamide derivatives, N2,N3,N5,N6-tetra­kis(pyridin-2-ylmeth­yl)pyrazine-2,3,5,6-tetra­carboxamide (I)[link] and N2,N3,N5,N6-tetra­kis­(pyridin-4-ylmeth­yl)pyrazine-2,3,5,6-tetra­carboxamide (II)[link], potential bis-tridentate coordinating ligands.

2. Structural commentary

Both title compounds, (I)[link] and (II)[link], crystallize in the monoclinic space group P21/n, with Z′ = 1 for (I)[link], and Z′ = 0.5 for (II)[link]. The whole mol­ecule of (II)[link] is generated by inversion symmetry; the pyrazine ring being situated about a center of inversion.

The mol­ecular structure of compound (I)[link], in which the substituents are (pyridin-2-ylmeth­yl)carboxamide, is illustrated in Fig. 1[link]. Pyridine rings N4/C7–C11, N6/C14–C18 and N8/C21–C25 are inclined to the pyrazine ring by 83.9 (2), 82.16 (18) and 82.73 (19)°, respectively. Pyridine ring N10/C28–C32 is inclined to the pyrazine ring by only 17.65 (19)°, and it is involved in an intra­molecular C29—H20⋯O3 hydrogen bond (Fig. 1[link], Table 1[link]). Adjacent pyridine rings are inclined to one another by 13.7 (2)° for rings N4/C7–C11 and N6/C14–C18, and by 84.5 (2)° for rings N8/C21–C25 and N10/C28–C32.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C29—H29⋯O3 0.95 2.48 3.389 (5) 160
N3—H3N⋯O3i 0.97 (5) 1.91 (5) 2.829 (4) 158 (4)
N5—H5N⋯O1ii 0.79 (4) 2.17 (4) 2.932 (4) 162 (3)
N7—H7N⋯O1ii 0.86 (4) 2.14 (4) 2.967 (4) 161 (4)
N9—H9N⋯N6iii 0.92 (4) 1.96 (5) 2.864 (4) 169 (5)
C13—H13A⋯N1ii 0.99 2.62 3.554 (5) 158
C20—H20A⋯O2ii 0.99 2.54 3.433 (4) 149
C22—H22⋯O2ii 0.95 2.57 3.418 (5) 149
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 1]
Figure 1
A view of the mol­ecular structure of compound (I)[link], with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular C—H⋯O hydrogen bond is shown as a blue dashed line (see Table 1[link]).

The mol­ecular structure of compound (II)[link], in which the substituents are (pyridin-4-ylmeth­yl)carboxamide, is shown in Fig. 2[link]. Here, the unique pyridine rings N3A/C5–C7/C8A/C9A [A indicates the major component of the disordered atoms] and N5/C12–C16 are inclined to the pyrazine ring by 33.3 (3) and 81.71 (10)°, respectively, and by 68.4 (3)° to one another. In (II)[link] there are also intra­molecular C—H⋯O hydrogen bonds present, as shown in Fig. 2[link] (see also Table 2[link]).

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9A—H9A⋯O2i 0.95 2.46 3.316 (15) 150
[C9B—H9B⋯O2]i 0.95 2.43 3.375 (18) 178
N2—H2N⋯N5ii 0.93 (3) 1.93 (3) 2.845 (3) 167 (2)
N4—H4N⋯N3Aiii 0.90 (3) 2.65 (3) 3.184 (13) 119 (2)
C6—H6⋯O1iii 0.95 2.58 3.414 (3) 146
C11—H11B⋯O1iv 0.99 2.56 3.301 (2) 132
C14—H14⋯O2v 0.95 2.58 3.442 (3) 151
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y+2, -z+2; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x-1, -y+2, -z+2.
[Figure 2]
Figure 2
A view of the mol­ecular structure of compound (II)[link], with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Unlabelled atoms are related to the labelled atoms by the symmetry operation (−x, −y + 1, −z + 2) and the intra­molecular C—H⋯O hydrogen bonds are shown as blue dashed lines (see Table 2[link]). The minor component of the disordered pyridine ring, involving atom N3, is shown with black dashed lines.

There are no intra­molecular N—H⋯O hydrogen bonds present in either structure and the shortest O⋯O distances, involving adjacent carboxamide groups, are O1⋯O2 = 3.039 (3) Å in (I)[link], and O1⋯O2(−x, −y + 1, −z + 2) = 3.088 (2) Å in (II)[link]. In (I)[link], the amide groups in positions 2- and 6- (N3—C5=O1 and N9—C26=O4) are inclined to the pyrazine ring by 67.1 (4) and 83.7 (4)°, respectively, while those in positions 3- and 5- (N5—C12=O2 and N7—C19=O3) are inclined to the pyrazine ring by 14.2 (4) and 21.6 (4)°, respectively.

In (II)[link], the amide group N2—C3=O1, in position 2- (and 5- by symmetry), is inclined to the pyrazine ring by 81.0 (3)°, while the amide group N4—C10=O2, in position 3- (and 6- by symmetry), lies in the plane of the pyrazine ring [dihedral angle = 1.91 (2)°]. Hence, from the various dihedral angles commented on above it can be seen that the conformations of the two mol­ecules are significantly different (cf. Fig. 1[link] and Fig. 2[link]).

3. Supra­molecular features

In the crystal of (I)[link], mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming layers parallel to (10[\overline{1}]); see Fig. 3[link] and Table 1[link]. The layers are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming a three-dimensional framework (Table 1[link], Fig. 4[link]).

[Figure 3]
Figure 3
A view along the b axis, of the crystal packing of compound (I)[link]. The hydrogen bonds are shown as dashed lines (see Table 1[link]). In this figure, and the following figures, only the H atoms involved in hydrogen bonding have been included.
[Figure 4]
Figure 4
A view along the b axis, of the crystal packing of compound (I)[link]. The hydrogen bonds are shown as dashed lines (see Table 1[link]).

In the crystal of (II)[link], mol­ecules are linked by N—H⋯N hydrogen bonds (Table 2[link]), forming chains propagating along [010], as shown in Fig. 5[link]. The chains are linked by weaker N—H⋯N hydrogen bonds, forming layers (Table 2[link], Fig. 6[link]), parallel to (101). The layers are in turn linked by C—H⋯O hydrogen bonds, forming a three-dimensional framework (Table 2[link], Fig. 7[link]).

[Figure 5]
Figure 5
A partial view along the c axis, of the crystal packing of compound (II)[link]. The hydrogen bonds are shown as dashed lines (see Table 2[link]).
[Figure 6]
Figure 6
A view normal to plane (101), of the crystal packing of compound (II)[link]. The hydrogen bonds are shown as dashed lines (see Table 2[link]).
[Figure 7]
Figure 7
A view along the a axis of the crystal packing of compound (II)[link]. The hydrogen bonds are shown as dashed lines (see Table 2[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.38, first update November 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for tetra­kis-substituted pyrazines, excluding tetra­methyl­pyrazine or pyrazine-2,3,5,6-tetra­carbo­nitrile, gave over 550 hits. 255 of these structures concern the ligand tppz, while 88 concern the ligand H4pztc. As noted above, only one example of a pyrazine-2,3,5,6-tetra­carboxamide compound has been reported, viz. N,N′,N′′,N′′′-tetra­ethyl­pyrazine-2,3,5,6-tetra­carboxamide (CSD refcode: OSUTIH; Lohrman et al., 2016[Lohrman, J., Telikepalli, H., Johnson, T. S., Jackson, T. A., Day, V. W. & Bowman-James, K. (2016). Inorg. Chem. 55, 5098-5100.]). It crystallizes in the triclinic space group P[\overline{1}], with eleven independent mol­ecules in the asymmetric unit. It is inter­esting to note that the general orientation of the amide groups resembles that observed in compound (I)[link]. Those in positions 2- and 6- are inclined to the pyrazine ring by more than ca 60 °, while those at positions 3- and 5- lie close to the plane of the pyrazine ring.

5. Synthesis and crystallization

Tetra­methyl pyrazine-2,3,5,6-tetra­carboxyl­ate (L) was synthesized by the method of Mager & Berends (1960[Mager, H. I. X. & Berends, W. (1960). Recl Trav. Chim. Pays Bas, 79, 282-284.]).

Compound (I)[link]: A mixture of L (0.16 g, 0.5 mmol) and an excess of 2-(amino­meth­yl)pyridine (0.27 g, 2.5 mmol) in 20 ml of methanol were refluxed for 6 h in a two-necked flask (50 ml). The ligand H4L8 precipitated as a white solid during the reaction. The suspension was cooled to room temperature and then filtered and washed with 10 ml of cold methanol [yield 90%, m.p. 497 K(decomposition)] . 1H NMR (400 MHz, DMSO-d6): 9.52 (t, 1H, Jhg = 6.1, Hh); 8.53 (ddd, 1H, Jbc = 4.8, Jbd = 1.8, Jbe = 0.9, Hb); 7.76 (td, 1H, Jdc = 7.7, Jdb = 1.8, Hd); 7.51 (d, 1H, Jed = 7.8, He); 7.29 (ddd, 1H, Jcd = 7.7, Jcb = 4.8, Jce = 1.0, Hc); 4.64 (d, 2H, Jgh = 6.1, Hg). 13C NMR (400 MHz, DMSO-d6): 164.5, 158.9, 149.7, 146.3, 137.6, 123.2, 122.2, 45.3. IR (KBr pellet, cm−1): 3279 (s), 3054 (m), 1672 (vs), 1592 (vs), 1571 (vs), 1548 (vs), 1477 (s), 1437 (vs), 1354 (m), 1290 (m), 1247 (s), 1179 (m), 1157 (s), 1099 (w), 1049 (w), 996 (m), 799 (w), 754 (s), 684 (m), 632 (m), 608 (m), 544 (w), 521 (w). Analysis for [C32H28N10O4]·H2O (Mr = 634.65 g mol−1): calculated (%) C: 60.56 H: 4.76 N: 22.07, found (%) C: 60.46 H: 4.58 N: 21.79.

Compound (II)[link]: This compound was synthesized following the same procedure as used to prepare compound (I)[link]. A mixture of L (0.5 g, 1.36 mmol) and an excess of 4-(amino­meth­yl)pyridine (1.17 g, 10.8 mmol) were refluxed in 20 ml of methanol for 44 h in a two-necked flask (50 ml). The solution was red when hot and then turned to a brown–yellow colour on cooling to rt. The brown–yellow solid crystallized out, was filtered off and washed with cold aceto­nitrile (m.p. 508 K, yield 90%). 1H NMR (400 MHz, DMSO-d6): 9.50 (t, 1H, Jhg = 6.2, Hh); 8.50 (dd, 2H, Jba = 4.5, Jbe = 1.6, Hb = Hd); 7.41 (dd, 2H, Jab = 4.5, Jad = Jeb = 1.6, Ha = He); 4.59 (d, 2H, Jgh = 6.2, Hg). 13C NMR (400 MHz, DMSO-d6): 164.7, 150.4, 148.7, 146.4, 123.1, 42.3. IR (KBr pellet, cm−1): 3238 (s), 3033 (m), 1677 (vs), 1604 (vs), 1521 (vs), 1418 (vs), 1364 (s), 1317 (s), 1239 (s), 1174 (s), 1151 (s), 1069 (s), 994 (s), 781 (s), 616 (s), 501 (w), 475 (s). Analysis for [C32H28N10O4]·0.5CH3OH (Mr = 648.68 g mol−1): calculated (%) C: 61.10 H: 4.97 N: 21.59, found (%) C: 61.42 H: 4.62 N: 22.27.

Colourless block-like crystals of both compounds were obtained by slow evaporation of methanol solutions of the respective compounds. The elemental analysis for compound (I)[link] required the addition of a water mol­ecule, which possibly explains the region of disordered electron density in the crystal, and half a mol­ecule of methanol for (II)[link], which was not detected in the final difference Fourier map of the crystal used for the X-ray diffraction analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. For both mol­ecules the NH H atoms were located in difference-Fourier maps and freely refined. The C-bound H atoms were included in calculated positions and refined as riding: C—H = 0.95–0.99 Å with Uiso(H) = 1.2Ueq(C). In the crystal of compound (I)[link], a region of disordered electron density was treated with the SQUEEZE routine in PLATON (Spek, 2015[Spek, A. L. (2015). Acta Cryst. C71, 9-18.]). Their contribution (93 electrons for a solvent-accessible volume of 268 Å3) was not taken into account during refinement. The crystal of (I)[link] did not diffract significantly beyond 20 ° in θ and hence the Rint value is high (> 0.2), and only 35% of the data can be considered to be observed [I > 2σ(I)]. In compound (II)[link], pyridine ring (N3/C5–C9) is positionally disordered (see Fig. 2[link]), and the refined occupancy ratio for the disordered atoms, N3A:N3B, C8A:C8B, C9A:C9B is 0.58 (3):0.42 (3).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C32H28N10O4 C32H28N10O4
Mr 616.64 616.64
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 153 153
a, b, c (Å) 16.0754 (19), 11.8602 (10), 18.495 (2) 9.8592 (6), 10.6511 (6), 14.8089 (9)
β (°) 115.503 (13) 102.306 (7)
V3) 3182.6 (7) 1519.37 (16)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.09 0.09
Crystal size (mm) 0.40 × 0.20 × 0.20 0.45 × 0.35 × 0.20
 
Data collection
Diffractometer Stoe IPDS 1 Stoe IPDS 1
Absorption correction Multi-scan (MULABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Multi-scan (MULABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])
Tmin, Tmax 0.865, 1.000 0.666, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 26683, 6150, 2219 11450, 2924, 1815
Rint 0.211 0.090
(sin θ/λ)max−1) 0.616 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.129, 0.72 0.051, 0.134, 0.89
No. of reflections 6150 2924
No. of parameters 432 244
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.30 0.26, −0.24
Computer programs: EXPOSE, CELL and INTEGRATE in IPDS-I (Stoe & Cie, 2000[Stoe & Cie (2000). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: EXPOSE in IPDS-I (Stoe & Cie, 2000); cell refinement: CELL in IPDS-I (Stoe & Cie, 2000); data reduction: INTEGRATE in IPDS-I (Stoe & Cie, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016 (Sheldrick, 2015), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(I) N2,N3,N5,N6-Tetrakis(pyridin-2-ylmethyl)pyrazine-2,3,5,6-tetracarboxamide top
Crystal data top
C32H28N10O4F(000) = 1288
Mr = 616.64Dx = 1.287 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 16.0754 (19) ÅCell parameters from 6905 reflections
b = 11.8602 (10) Åθ = 2.1–26.0°
c = 18.495 (2) ŵ = 0.09 mm1
β = 115.503 (13)°T = 153 K
V = 3182.6 (7) Å3Block, colourless
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Stoe IPDS 1
diffractometer
6150 independent reflections
Radiation source: fine-focus sealed tube2219 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.211
φ rotation scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 1919
Tmin = 0.865, Tmax = 1.000k = 1414
26683 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0393P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.72(Δ/σ)max < 0.001
6150 reflectionsΔρmax = 0.28 e Å3
432 parametersΔρmin = 0.30 e Å3
0 restraintsExtinction correction: SHELXL2016 (Sheldrick 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.17252 (16)0.2650 (2)0.25371 (13)0.0262 (6)
O20.11731 (16)0.4901 (2)0.29838 (13)0.0270 (6)
O30.15003 (16)0.6495 (2)0.05042 (13)0.0248 (6)
O40.03328 (16)0.4184 (2)0.10516 (13)0.0296 (7)
N10.10335 (18)0.3788 (2)0.07667 (15)0.0209 (7)
N20.17209 (18)0.5881 (2)0.14404 (15)0.0196 (7)
N30.0179 (2)0.2690 (3)0.17069 (17)0.0238 (7)
H3N0.029 (3)0.307 (4)0.125 (3)0.084 (17)*
N40.0867 (2)0.0255 (3)0.10199 (18)0.0424 (10)
N50.1965 (2)0.6453 (3)0.29048 (18)0.0235 (8)
H5N0.222 (2)0.680 (3)0.269 (2)0.019 (11)*
N60.1542 (2)0.8767 (3)0.39734 (17)0.0260 (8)
N70.2429 (2)0.7300 (3)0.07033 (18)0.0225 (7)
H7N0.265 (3)0.723 (4)0.121 (2)0.053 (14)*
N80.3666 (2)0.7102 (3)0.02182 (18)0.0329 (8)
N90.1864 (2)0.3770 (3)0.04837 (17)0.0216 (7)
H9N0.236 (3)0.367 (4)0.000 (3)0.082 (17)*
N100.2190 (2)0.3237 (3)0.23133 (17)0.0308 (8)
C10.1173 (2)0.4044 (3)0.15150 (18)0.0184 (8)
C20.1486 (2)0.5109 (3)0.18446 (18)0.0187 (8)
C30.1582 (2)0.5635 (3)0.06870 (19)0.0197 (8)
C40.1232 (2)0.4582 (3)0.03481 (19)0.0175 (8)
C50.1034 (2)0.3081 (3)0.19780 (19)0.0207 (8)
C60.0042 (3)0.1650 (3)0.2026 (2)0.0279 (9)
H6A0.0657500.1728430.2021550.033*
H6B0.0415040.1542380.2588350.033*
C70.0039 (3)0.0627 (3)0.1541 (2)0.0294 (10)
C80.0768 (3)0.0094 (4)0.1648 (3)0.0503 (12)
H80.1345320.0368000.2031620.060*
C90.0729 (4)0.0836 (4)0.1195 (3)0.0677 (16)
H90.1276950.1210590.1255620.081*
C100.0118 (5)0.1218 (4)0.0652 (3)0.0646 (16)
H100.0165080.1863990.0332540.078*
C110.0891 (4)0.0651 (4)0.0579 (3)0.0578 (15)
H110.1473850.0911760.0196420.069*
C120.1531 (2)0.5463 (3)0.26412 (19)0.0221 (9)
C130.2021 (2)0.6979 (3)0.36311 (19)0.0245 (9)
H13A0.2636660.7327200.3918420.029*
H13B0.1955600.6391110.3983310.029*
C140.1290 (2)0.7871 (3)0.34741 (19)0.0229 (9)
C150.0409 (3)0.7782 (4)0.2867 (2)0.0392 (11)
H150.0245420.7159570.2508960.047*
C160.0228 (3)0.8602 (4)0.2787 (2)0.0408 (12)
H160.0843860.8532600.2387030.049*
C170.0024 (2)0.9522 (3)0.3285 (2)0.0269 (9)
H170.0402911.0107740.3227410.032*
C180.0917 (3)0.9572 (3)0.3872 (2)0.0300 (10)
H180.1097261.0205170.4219820.036*
C190.1827 (2)0.6525 (3)0.0241 (2)0.0223 (9)
C200.2835 (2)0.8163 (3)0.0381 (2)0.0240 (9)
H20A0.2944280.8863300.0700750.029*
H20B0.2403260.8339070.0179220.029*
C210.3727 (2)0.7740 (3)0.04113 (19)0.0215 (8)
C220.4560 (3)0.7938 (3)0.1066 (2)0.0312 (10)
H220.4582950.8387500.1499230.037*
C230.5354 (3)0.7478 (4)0.1084 (2)0.0377 (11)
H230.5931580.7612890.1526090.045*
C240.5298 (3)0.6823 (4)0.0454 (2)0.0389 (11)
H240.5835630.6491710.0452080.047*
C250.4446 (3)0.6654 (4)0.0177 (2)0.0391 (11)
H250.4412000.6190990.0607610.047*
C260.1097 (2)0.4191 (3)0.04760 (19)0.0223 (8)
C270.1859 (3)0.3171 (3)0.1166 (2)0.0271 (9)
H27A0.1234250.2858020.1475700.033*
H27B0.2289370.2525440.0964910.033*
C280.2120 (2)0.3846 (3)0.17289 (19)0.0227 (9)
C290.2268 (3)0.5004 (3)0.1660 (2)0.0320 (10)
H290.2210460.5417810.1243590.038*
C300.2501 (3)0.5542 (4)0.2215 (2)0.0387 (11)
H300.2619800.6329340.2175230.046*
C310.2560 (3)0.4926 (4)0.2820 (2)0.0361 (11)
H310.2707930.5278690.3211490.043*
C320.2399 (3)0.3788 (4)0.2844 (2)0.0341 (10)
H320.2438530.3364220.3263730.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (14)0.0249 (16)0.0236 (13)0.0019 (12)0.0064 (11)0.0010 (11)
O20.0316 (15)0.0256 (16)0.0252 (13)0.0051 (13)0.0135 (12)0.0022 (12)
O30.0269 (14)0.0254 (16)0.0177 (13)0.0006 (12)0.0053 (11)0.0021 (11)
O40.0226 (14)0.0369 (17)0.0216 (13)0.0002 (12)0.0021 (11)0.0022 (11)
N10.0173 (15)0.0232 (19)0.0199 (15)0.0024 (14)0.0059 (12)0.0000 (13)
N20.0152 (15)0.0207 (18)0.0209 (15)0.0015 (13)0.0059 (12)0.0024 (13)
N30.0235 (17)0.0194 (19)0.0245 (16)0.0016 (15)0.0067 (14)0.0016 (14)
N40.046 (2)0.029 (2)0.0347 (19)0.0138 (18)0.0013 (17)0.0013 (16)
N50.0273 (18)0.022 (2)0.0244 (17)0.0036 (16)0.0138 (15)0.0035 (15)
N60.0277 (17)0.0223 (19)0.0279 (16)0.0003 (15)0.0119 (14)0.0080 (14)
N70.0257 (17)0.0192 (19)0.0218 (17)0.0020 (15)0.0095 (14)0.0009 (14)
N80.037 (2)0.029 (2)0.0394 (19)0.0022 (17)0.0225 (16)0.0027 (15)
N90.0240 (17)0.0223 (19)0.0192 (16)0.0021 (15)0.0101 (14)0.0003 (13)
N100.0328 (19)0.034 (2)0.0282 (17)0.0031 (16)0.0155 (15)0.0050 (15)
C10.0132 (17)0.022 (2)0.0170 (17)0.0016 (16)0.0038 (14)0.0009 (15)
C20.0160 (18)0.018 (2)0.0207 (18)0.0020 (16)0.0064 (14)0.0011 (16)
C30.0160 (18)0.020 (2)0.0206 (18)0.0017 (16)0.0050 (14)0.0021 (15)
C40.0155 (18)0.016 (2)0.0209 (18)0.0001 (16)0.0075 (14)0.0000 (15)
C50.024 (2)0.015 (2)0.0237 (19)0.0059 (17)0.0107 (17)0.0020 (15)
C60.035 (2)0.023 (2)0.0256 (19)0.0068 (19)0.0124 (18)0.0025 (16)
C70.035 (2)0.025 (2)0.026 (2)0.011 (2)0.0107 (17)0.0034 (17)
C80.046 (3)0.037 (3)0.078 (3)0.008 (2)0.037 (2)0.018 (3)
C90.089 (4)0.032 (3)0.110 (4)0.007 (3)0.070 (4)0.019 (3)
C100.121 (5)0.025 (3)0.062 (3)0.030 (3)0.052 (3)0.020 (2)
C110.083 (4)0.036 (3)0.041 (3)0.020 (3)0.015 (3)0.011 (2)
C120.0189 (18)0.025 (2)0.0177 (18)0.0023 (17)0.0034 (15)0.0007 (16)
C130.025 (2)0.028 (2)0.0184 (18)0.0028 (17)0.0075 (15)0.0034 (15)
C140.024 (2)0.022 (2)0.0224 (18)0.0007 (17)0.0094 (15)0.0014 (16)
C150.034 (2)0.032 (3)0.037 (2)0.005 (2)0.0007 (19)0.0133 (19)
C160.027 (2)0.038 (3)0.039 (2)0.005 (2)0.0025 (18)0.014 (2)
C170.027 (2)0.024 (2)0.0287 (19)0.0009 (18)0.0104 (17)0.0002 (17)
C180.032 (2)0.026 (2)0.032 (2)0.003 (2)0.0143 (18)0.0066 (17)
C190.0191 (19)0.022 (2)0.024 (2)0.0024 (17)0.0075 (16)0.0022 (16)
C200.029 (2)0.020 (2)0.0253 (19)0.0029 (17)0.0137 (17)0.0028 (16)
C210.027 (2)0.015 (2)0.0255 (19)0.0026 (17)0.0144 (16)0.0014 (16)
C220.033 (2)0.025 (2)0.033 (2)0.0001 (19)0.0120 (18)0.0038 (17)
C230.029 (2)0.041 (3)0.043 (2)0.003 (2)0.0160 (18)0.005 (2)
C240.036 (2)0.034 (3)0.056 (3)0.006 (2)0.029 (2)0.011 (2)
C250.040 (3)0.037 (3)0.048 (3)0.002 (2)0.025 (2)0.007 (2)
C260.022 (2)0.024 (2)0.0205 (18)0.0008 (18)0.0086 (16)0.0017 (16)
C270.030 (2)0.025 (2)0.025 (2)0.0003 (18)0.0103 (17)0.0021 (16)
C280.0208 (19)0.022 (2)0.0223 (18)0.0013 (17)0.0062 (15)0.0027 (16)
C290.037 (2)0.027 (3)0.033 (2)0.006 (2)0.0155 (18)0.0059 (19)
C300.041 (3)0.031 (3)0.041 (2)0.007 (2)0.014 (2)0.002 (2)
C310.033 (2)0.043 (3)0.030 (2)0.007 (2)0.0113 (18)0.003 (2)
C320.037 (2)0.043 (3)0.028 (2)0.007 (2)0.0195 (18)0.0001 (19)
Geometric parameters (Å, º) top
O1—C51.256 (4)C8—H80.9500
O2—C121.220 (4)C9—C101.375 (7)
O3—C191.246 (4)C9—H90.9500
O4—C261.231 (4)C10—C111.368 (7)
N1—C11.338 (4)C10—H100.9500
N1—C41.342 (4)C11—H110.9500
N2—C21.336 (4)C13—C141.513 (5)
N2—C31.345 (4)C13—H13A0.9900
N3—C51.327 (4)C13—H13B0.9900
N3—C61.475 (5)C14—C151.382 (5)
N3—H3N0.97 (5)C15—C161.374 (5)
N4—C71.338 (5)C15—H150.9500
N4—C111.339 (6)C16—C171.372 (5)
N5—C121.346 (5)C16—H160.9500
N5—C131.448 (4)C17—C181.378 (5)
N5—H5N0.79 (4)C17—H170.9500
N6—C181.339 (5)C18—H180.9500
N6—C141.350 (4)C20—C211.498 (5)
N7—C191.342 (4)C20—H20A0.9900
N7—C201.470 (5)C20—H20B0.9900
N7—H7N0.86 (4)C21—C221.385 (5)
N8—C251.333 (5)C22—C231.374 (6)
N8—C211.356 (5)C22—H220.9500
N9—C261.336 (4)C23—C241.372 (6)
N9—C271.445 (4)C23—H230.9500
N9—H9N0.92 (4)C24—C251.380 (5)
N10—C321.336 (5)C24—H240.9500
N10—C281.345 (5)C25—H250.9500
C1—C21.399 (5)C27—C281.509 (5)
C1—C51.501 (5)C27—H27A0.9900
C2—C121.504 (5)C27—H27B0.9900
C3—C41.402 (5)C28—C291.391 (5)
C3—C191.494 (5)C29—C301.390 (5)
C4—C261.516 (5)C29—H290.9500
C6—C71.511 (5)C30—C311.374 (6)
C6—H6A0.9900C30—H300.9500
C6—H6B0.9900C31—C321.372 (6)
C7—C81.379 (6)C31—H310.9500
C8—C91.369 (6)C32—H320.9500
C1—N1—C4117.5 (3)N6—C14—C15121.1 (4)
C2—N2—C3118.0 (3)N6—C14—C13116.1 (3)
C5—N3—C6122.0 (3)C15—C14—C13122.8 (3)
C5—N3—H3N117 (3)C16—C15—C14119.3 (4)
C6—N3—H3N120 (3)C16—C15—H15120.4
C7—N4—C11117.5 (4)C14—C15—H15120.4
C12—N5—C13121.8 (3)C17—C16—C15119.9 (4)
C12—N5—H5N124 (3)C17—C16—H16120.0
C13—N5—H5N114 (3)C15—C16—H16120.0
C18—N6—C14118.6 (3)C16—C17—C18118.0 (4)
C19—N7—C20122.9 (3)C16—C17—H17121.0
C19—N7—H7N119 (3)C18—C17—H17121.0
C20—N7—H7N118 (3)N6—C18—C17123.0 (4)
C25—N8—C21117.0 (3)N6—C18—H18118.5
C26—N9—C27122.3 (3)C17—C18—H18118.5
C26—N9—H9N117 (3)O3—C19—N7124.7 (3)
C27—N9—H9N118 (3)O3—C19—C3120.3 (3)
C32—N10—C28117.5 (4)N7—C19—C3114.9 (3)
N1—C1—C2121.6 (3)N7—C20—C21109.7 (3)
N1—C1—C5114.7 (3)N7—C20—H20A109.7
C2—C1—C5123.5 (3)C21—C20—H20A109.7
N2—C2—C1120.7 (3)N7—C20—H20B109.7
N2—C2—C12116.8 (3)C21—C20—H20B109.7
C1—C2—C12122.4 (3)H20A—C20—H20B108.2
N2—C3—C4120.8 (3)N8—C21—C22122.0 (4)
N2—C3—C19117.0 (3)N8—C21—C20116.1 (3)
C4—C3—C19122.2 (3)C22—C21—C20121.7 (3)
N1—C4—C3121.1 (3)C23—C22—C21119.5 (4)
N1—C4—C26113.5 (3)C23—C22—H22120.3
C3—C4—C26125.3 (3)C21—C22—H22120.3
O1—C5—N3125.0 (3)C24—C23—C22119.0 (4)
O1—C5—C1118.9 (3)C24—C23—H23120.5
N3—C5—C1115.8 (3)C22—C23—H23120.5
N3—C6—C7111.8 (3)C23—C24—C25118.5 (4)
N3—C6—H6A109.3C23—C24—H24120.7
C7—C6—H6A109.3C25—C24—H24120.7
N3—C6—H6B109.3N8—C25—C24123.9 (4)
C7—C6—H6B109.3N8—C25—H25118.0
H6A—C6—H6B107.9C24—C25—H25118.0
N4—C7—C8122.4 (4)O4—C26—N9124.8 (3)
N4—C7—C6115.8 (4)O4—C26—C4122.0 (3)
C8—C7—C6121.8 (3)N9—C26—C4113.0 (3)
C9—C8—C7119.2 (4)N9—C27—C28116.3 (3)
C9—C8—H8120.4N9—C27—H27A108.2
C7—C8—H8120.4C28—C27—H27A108.2
C8—C9—C10118.9 (5)N9—C27—H27B108.2
C8—C9—H9120.5C28—C27—H27B108.2
C10—C9—H9120.5H27A—C27—H27B107.4
C11—C10—C9118.8 (5)N10—C28—C29122.3 (3)
C11—C10—H10120.6N10—C28—C27114.5 (3)
C9—C10—H10120.6C29—C28—C27123.2 (3)
N4—C11—C10123.2 (5)C30—C29—C28118.4 (4)
N4—C11—H11118.4C30—C29—H29120.8
C10—C11—H11118.4C28—C29—H29120.8
O2—C12—N5125.1 (3)C31—C30—C29119.6 (4)
O2—C12—C2121.5 (3)C31—C30—H30120.2
N5—C12—C2113.4 (3)C29—C30—H30120.2
N5—C13—C14113.0 (3)C32—C31—C30118.0 (4)
N5—C13—H13A109.0C32—C31—H31121.0
C14—C13—H13A109.0C30—C31—H31121.0
N5—C13—H13B109.0N10—C32—C31124.2 (4)
C14—C13—H13B109.0N10—C32—H32117.9
H13A—C13—H13B107.8C31—C32—H32117.9
C4—N1—C1—C22.1 (5)N5—C13—C14—N6145.5 (3)
C4—N1—C1—C5173.8 (3)N5—C13—C14—C1535.5 (5)
C3—N2—C2—C14.9 (5)N6—C14—C15—C162.0 (6)
C3—N2—C2—C12172.1 (3)C13—C14—C15—C16176.9 (4)
N1—C1—C2—N25.0 (5)C14—C15—C16—C172.8 (7)
C5—C1—C2—N2170.5 (3)C15—C16—C17—C181.9 (6)
N1—C1—C2—C12171.9 (3)C14—N6—C18—C170.7 (6)
C5—C1—C2—C1212.7 (5)C16—C17—C18—N60.1 (6)
C2—N2—C3—C42.3 (5)C20—N7—C19—O35.1 (5)
C2—N2—C3—C19178.5 (3)C20—N7—C19—C3172.8 (3)
C1—N1—C4—C30.5 (5)N2—C3—C19—O3160.7 (3)
C1—N1—C4—C26177.1 (3)C4—C3—C19—O320.1 (5)
N2—C3—C4—N10.4 (5)N2—C3—C19—N721.3 (5)
C19—C3—C4—N1178.7 (3)C4—C3—C19—N7157.9 (3)
N2—C3—C4—C26176.5 (3)C19—N7—C20—C2192.0 (4)
C19—C3—C4—C262.6 (5)C25—N8—C21—C220.9 (6)
C6—N3—C5—O12.6 (5)C25—N8—C21—C20175.6 (3)
C6—N3—C5—C1171.2 (3)N7—C20—C21—N885.3 (4)
N1—C1—C5—O1108.5 (4)N7—C20—C21—C2291.2 (4)
C2—C1—C5—O167.2 (5)N8—C21—C22—C230.1 (6)
N1—C1—C5—N365.6 (4)C20—C21—C22—C23176.4 (4)
C2—C1—C5—N3118.6 (4)C21—C22—C23—C240.7 (6)
C5—N3—C6—C793.0 (4)C22—C23—C24—C250.3 (6)
C11—N4—C7—C81.9 (6)C21—N8—C25—C241.4 (6)
C11—N4—C7—C6180.0 (4)C23—C24—C25—N80.8 (7)
N3—C6—C7—N4101.2 (4)C27—N9—C26—O45.2 (6)
N3—C6—C7—C880.6 (5)C27—N9—C26—C4168.9 (3)
N4—C7—C8—C91.5 (7)N1—C4—C26—O481.6 (4)
C6—C7—C8—C9179.5 (4)C3—C4—C26—O4102.1 (4)
C7—C8—C9—C100.7 (8)N1—C4—C26—N992.6 (4)
C8—C9—C10—C110.4 (8)C3—C4—C26—N983.7 (4)
C7—N4—C11—C101.6 (7)C26—N9—C27—C2897.9 (4)
C9—C10—C11—N40.9 (8)C32—N10—C28—C290.9 (5)
C13—N5—C12—O22.3 (5)C32—N10—C28—C27178.6 (3)
C13—N5—C12—C2175.4 (3)N9—C27—C28—N10174.1 (3)
N2—C2—C12—O2166.2 (3)N9—C27—C28—C296.4 (5)
C1—C2—C12—O210.7 (5)N10—C28—C29—C300.4 (5)
N2—C2—C12—N511.6 (4)C27—C28—C29—C30179.8 (3)
C1—C2—C12—N5171.5 (3)C28—C29—C30—C311.4 (6)
C12—N5—C13—C1497.1 (4)C29—C30—C31—C321.1 (6)
C18—N6—C14—C150.3 (5)C28—N10—C32—C311.2 (6)
C18—N6—C14—C13178.7 (3)C30—C31—C32—N100.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C29—H29···O30.952.483.389 (5)160
N3—H3N···O3i0.97 (5)1.91 (5)2.829 (4)158 (4)
N5—H5N···O1ii0.79 (4)2.17 (4)2.932 (4)162 (3)
N7—H7N···O1ii0.86 (4)2.14 (4)2.967 (4)161 (4)
N9—H9N···N6iii0.92 (4)1.96 (5)2.864 (4)169 (5)
C13—H13A···N1ii0.992.623.554 (5)158
C20—H20A···O2ii0.992.543.433 (4)149
C22—H22···O2ii0.952.573.418 (5)149
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y1/2, z+1/2.
(II) N2,N3,N5,N6-Tetrakis(pyridin-4-ylmethyl)pyrazine-2,3,5,6-tetracarboxamide top
Crystal data top
C32H28N10O4F(000) = 644
Mr = 616.64Dx = 1.348 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8592 (6) ÅCell parameters from 7048 reflections
b = 10.6511 (6) Åθ = 2.3–25.9°
c = 14.8089 (9) ŵ = 0.09 mm1
β = 102.306 (7)°T = 153 K
V = 1519.37 (16) Å3Block, colourless
Z = 20.45 × 0.35 × 0.20 mm
Data collection top
Stoe IPDS 1
diffractometer
2924 independent reflections
Radiation source: fine-focus sealed tube1815 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.090
φ rotation scansθmax = 25.9°, θmin = 2.3°
Absorption correction: multi-scan
(MULABS in PLATON; Spek, 2009)
h = 1212
Tmin = 0.666, Tmax = 1.000k = 1313
11450 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: mixed
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0843P)2]
where P = (Fo2 + 2Fc2)/3
2924 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.03421 (18)0.58335 (15)0.92721 (11)0.0272 (4)
N20.22670 (19)0.60099 (18)0.84892 (13)0.0302 (4)
H2N0.244 (3)0.658 (3)0.898 (2)0.055 (8)*
N40.2443 (2)0.74564 (17)0.91134 (12)0.0299 (4)
H4N0.182 (3)0.738 (2)0.8753 (18)0.040 (7)*
N50.2772 (2)1.19617 (19)1.02333 (13)0.0430 (5)
O10.09946 (16)0.43306 (14)0.78401 (10)0.0357 (4)
O20.29807 (17)0.67310 (16)1.04302 (10)0.0435 (5)
C10.0706 (2)0.50299 (19)0.93128 (13)0.0251 (5)
C20.1056 (2)0.58116 (19)0.99495 (13)0.0257 (5)
C30.1375 (2)0.5078 (2)0.84783 (13)0.0264 (5)
C40.2840 (2)0.6340 (2)0.76899 (15)0.0350 (5)
H4A0.2988500.7259740.7693950.042*
H4B0.2143620.6133420.7122700.042*
C50.4176 (2)0.5708 (2)0.76382 (14)0.0369 (6)
C60.5084 (2)0.6284 (3)0.71674 (16)0.0428 (6)
H60.4885820.7100180.6914240.051*
C70.6260 (3)0.5674 (4)0.7070 (2)0.0638 (9)
H70.6958360.6115270.6846600.077*
N3A0.6459 (12)0.4293 (17)0.7318 (7)0.061 (3)0.58 (3)
C8A0.5525 (14)0.3778 (16)0.7738 (7)0.057 (3)0.58 (3)
H8A0.5654360.2930850.7937450.068*0.58 (3)
C9A0.4378 (16)0.4420 (15)0.7897 (9)0.049 (2)0.58 (3)
H9A0.3724040.4001530.8178220.059*0.58 (3)
N3B0.6817 (19)0.4827 (19)0.7509 (12)0.055 (4)0.42 (3)
C8B0.603 (2)0.429 (2)0.8028 (15)0.061 (5)0.42 (3)
H8B0.6386130.3552120.8356760.073*0.42 (3)
C9B0.474 (2)0.469 (2)0.8135 (13)0.045 (4)0.42 (3)
H9B0.4264970.4273460.8542730.054*0.42 (3)
C100.2250 (2)0.67050 (19)0.98583 (14)0.0292 (5)
C110.3563 (2)0.8358 (2)0.89116 (14)0.0302 (5)
H11A0.4392560.7988040.9085740.036*
H11B0.3795340.8509720.8236700.036*
C120.3255 (2)0.9596 (2)0.93967 (13)0.0280 (5)
C130.4219 (2)1.0556 (2)0.91948 (15)0.0335 (5)
H130.5067211.0422060.8761220.040*
C140.3951 (2)1.1701 (2)0.96208 (16)0.0377 (6)
H140.4634421.2341220.9474990.045*
C150.1850 (3)1.1033 (2)1.04220 (17)0.0462 (6)
H150.1005411.1193811.0852620.055*
C160.2041 (2)0.9855 (2)1.00334 (15)0.0374 (6)
H160.1348410.9227531.0200040.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0310 (9)0.0273 (10)0.0236 (8)0.0014 (8)0.0069 (7)0.0008 (7)
N20.0327 (10)0.0303 (11)0.0297 (9)0.0008 (8)0.0114 (8)0.0023 (8)
N40.0361 (10)0.0311 (11)0.0236 (9)0.0061 (8)0.0087 (8)0.0028 (7)
N50.0529 (13)0.0374 (12)0.0396 (11)0.0010 (10)0.0121 (10)0.0045 (9)
O10.0419 (9)0.0411 (9)0.0250 (8)0.0056 (7)0.0090 (6)0.0069 (7)
O20.0489 (10)0.0523 (11)0.0356 (9)0.0206 (8)0.0228 (8)0.0139 (7)
C10.0293 (11)0.0238 (11)0.0224 (10)0.0008 (9)0.0060 (8)0.0023 (8)
C20.0294 (11)0.0252 (11)0.0230 (10)0.0006 (9)0.0063 (8)0.0019 (8)
C30.0269 (11)0.0284 (12)0.0244 (10)0.0051 (9)0.0063 (8)0.0011 (8)
C40.0346 (12)0.0404 (13)0.0321 (11)0.0008 (11)0.0113 (9)0.0066 (10)
C50.0378 (13)0.0516 (16)0.0224 (11)0.0022 (11)0.0088 (9)0.0042 (10)
C60.0399 (13)0.0584 (16)0.0330 (12)0.0071 (12)0.0138 (10)0.0140 (11)
C70.0480 (17)0.107 (3)0.0429 (16)0.0061 (18)0.0232 (13)0.0043 (17)
N3A0.053 (4)0.085 (7)0.052 (4)0.023 (4)0.027 (3)0.000 (4)
C8A0.063 (5)0.074 (6)0.039 (4)0.026 (5)0.024 (4)0.011 (4)
C9A0.045 (6)0.072 (6)0.031 (5)0.017 (4)0.011 (4)0.005 (4)
N3B0.062 (7)0.062 (8)0.052 (6)0.019 (6)0.035 (5)0.013 (5)
C8B0.066 (8)0.070 (9)0.055 (8)0.032 (7)0.029 (7)0.027 (7)
C9B0.048 (8)0.068 (9)0.025 (6)0.023 (6)0.019 (5)0.022 (6)
C100.0352 (12)0.0274 (12)0.0258 (10)0.0036 (9)0.0082 (9)0.0012 (8)
C110.0312 (11)0.0311 (12)0.0266 (10)0.0047 (9)0.0023 (8)0.0034 (9)
C120.0313 (12)0.0313 (12)0.0223 (10)0.0032 (9)0.0074 (8)0.0037 (8)
C130.0308 (12)0.0345 (13)0.0347 (12)0.0047 (10)0.0059 (9)0.0042 (10)
C140.0401 (13)0.0349 (13)0.0413 (12)0.0090 (11)0.0158 (10)0.0047 (10)
C150.0470 (15)0.0456 (16)0.0408 (14)0.0020 (12)0.0021 (11)0.0085 (11)
C160.0375 (13)0.0367 (14)0.0337 (12)0.0078 (11)0.0018 (10)0.0019 (10)
Geometric parameters (Å, º) top
N1—C11.333 (3)C7—N3B1.177 (12)
N1—C21.343 (3)C7—N3A1.518 (17)
N2—C31.324 (3)C7—H70.9500
N2—C41.459 (3)N3A—C8A1.334 (12)
N2—H2N0.93 (3)C8A—C9A1.384 (16)
N4—C101.343 (3)C8A—H8A0.9500
N4—C111.446 (3)C9A—H9A0.9500
N4—H4N0.90 (3)N3B—C8B1.336 (16)
N5—C151.333 (3)C8B—C9B1.38 (2)
N5—C141.342 (3)C8B—H8B0.9500
O1—C31.232 (2)C9B—H9B0.9500
O2—C101.224 (3)C11—C121.502 (3)
C1—C2i1.398 (3)C11—H11A0.9900
C1—C31.521 (3)C11—H11B0.9900
C2—C101.497 (3)C12—C161.384 (3)
C4—C51.495 (3)C12—C131.385 (3)
C4—H4A0.9900C13—C141.373 (3)
C4—H4B0.9900C13—H130.9500
C5—C9B1.360 (18)C14—H140.9500
C5—C61.389 (3)C15—C161.376 (3)
C5—C9A1.427 (16)C15—H150.9500
C6—C71.363 (4)C16—H160.9500
C6—H60.9500
C1—N1—C2118.66 (17)N3A—C8A—H8A118.4
C3—N2—C4122.83 (19)C9A—C8A—H8A118.4
C3—N2—H2N120.4 (17)C8A—C9A—C5120.1 (12)
C4—N2—H2N115.9 (17)C8A—C9A—H9A120.0
C10—N4—C11122.25 (19)C5—C9A—H9A120.0
C10—N4—H4N116.1 (16)C7—N3B—C8B112.7 (11)
C11—N4—H4N121.6 (16)N3B—C8B—C9B126.5 (12)
C15—N5—C14116.3 (2)N3B—C8B—H8B116.7
N1—C1—C2i120.44 (19)C9B—C8B—H8B116.7
N1—C1—C3114.06 (17)C5—C9B—C8B117.8 (13)
C2i—C1—C3125.39 (18)C5—C9B—H9B121.1
N1—C2—C1i120.89 (19)C8B—C9B—H9B121.1
N1—C2—C10116.66 (17)O2—C10—N4123.6 (2)
C1i—C2—C10122.44 (18)O2—C10—C2121.30 (18)
O1—C3—N2125.93 (19)N4—C10—C2115.08 (19)
O1—C3—C1119.20 (19)N4—C11—C12114.61 (17)
N2—C3—C1114.69 (18)N4—C11—H11A108.6
N2—C4—C5115.50 (18)C12—C11—H11A108.6
N2—C4—H4A108.4N4—C11—H11B108.6
C5—C4—H4A108.4C12—C11—H11B108.6
N2—C4—H4B108.4H11A—C11—H11B107.6
C5—C4—H4B108.4C16—C12—C13117.0 (2)
H4A—C4—H4B107.5C16—C12—C11123.95 (19)
C9B—C5—C6113.0 (8)C13—C12—C11119.04 (18)
C6—C5—C9A119.4 (6)C14—C13—C12120.0 (2)
C9B—C5—C4126.4 (8)C14—C13—H13120.0
C6—C5—C4119.7 (2)C12—C13—H13120.0
C9A—C5—C4119.6 (6)N5—C14—C13123.2 (2)
C7—C6—C5119.7 (3)N5—C14—H14118.4
C7—C6—H6120.1C13—C14—H14118.4
C5—C6—H6120.1N5—C15—C16124.2 (2)
N3B—C7—C6128.0 (6)N5—C15—H15117.9
C6—C7—N3A120.4 (5)C16—C15—H15117.9
C6—C7—H7119.8C15—C16—C12119.2 (2)
N3A—C7—H7119.8C15—C16—H16120.4
C8A—N3A—C7116.4 (7)C12—C16—H16120.4
N3A—C8A—C9A123.1 (10)
C2—N1—C1—C2i0.4 (3)C4—C5—C9A—C8A171.5 (5)
C2—N1—C1—C3176.06 (18)C6—C7—N3B—C8B13.7 (16)
C1—N1—C2—C1i0.4 (3)C7—N3B—C8B—C9B5.4 (18)
C1—N1—C2—C10178.23 (17)C6—C5—C9B—C8B7.3 (13)
C4—N2—C3—O15.4 (3)C4—C5—C9B—C8B176.3 (10)
C4—N2—C3—C1169.63 (18)N3B—C8B—C9B—C53.0 (19)
N1—C1—C3—O195.4 (2)C11—N4—C10—O21.2 (3)
C2i—C1—C3—O180.8 (3)C11—N4—C10—C2178.84 (18)
N1—C1—C3—N280.0 (2)N1—C2—C10—O2178.2 (2)
C2i—C1—C3—N2103.8 (2)C1i—C2—C10—O20.4 (3)
C3—N2—C4—C591.4 (2)N1—C2—C10—N41.8 (3)
N2—C4—C5—C9B14.7 (13)C1i—C2—C10—N4179.59 (19)
N2—C4—C5—C6153.7 (2)C10—N4—C11—C1284.7 (3)
N2—C4—C5—C9A39.5 (7)N4—C11—C12—C163.9 (3)
C9B—C5—C6—C714.2 (11)N4—C11—C12—C13175.06 (19)
C9A—C5—C6—C79.1 (7)C16—C12—C13—C140.1 (3)
C4—C5—C6—C7175.9 (2)C11—C12—C13—C14179.1 (2)
C5—C6—C7—N3B19.6 (17)C15—N5—C14—C130.5 (4)
C5—C6—C7—N3A11.0 (7)C12—C13—C14—N50.6 (4)
C6—C7—N3A—C8A8.4 (9)C14—N5—C15—C160.1 (4)
C7—N3A—C8A—C9A4.0 (11)N5—C15—C16—C120.6 (4)
N3A—C8A—C9A—C52.3 (11)C13—C12—C16—C150.5 (3)
C6—C5—C9A—C8A4.6 (9)C11—C12—C16—C15178.5 (2)
Symmetry code: (i) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9A—H9A···O2i0.952.463.316 (15)150
[C9B—H9B···O2]i0.952.433.375 (18)178
N2—H2N···N5ii0.93 (3)1.93 (3)2.845 (3)167 (2)
N4—H4N···N3Aiii0.90 (3)2.65 (3)3.184 (13)119 (2)
C6—H6···O1iii0.952.583.414 (3)146
C11—H11B···O1iv0.992.563.301 (2)132
C14—H14···O2v0.952.583.442 (3)151
Symmetry codes: (i) x, y+1, z+2; (ii) x, y+2, z+2; (iii) x+1/2, y+1/2, z+3/2; (iv) x1/2, y+1/2, z+3/2; (v) x1, y+2, z+2.
 

Funding information

Funding for this research was provided by: Swiss National Science FoundationUniversity of Neuchâtel

References

First citationCati, D. (2002). PhD thesis, University of Neuchâtel, Switzerland.  Google Scholar
First citationCati, D. S., Ribas, J., Ribas-Ariño, J. & Stoeckli-Evans, H. (2004). Inorg. Chem. 43, 1021–1030.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCati, D. S. & Stoeckli-Evans, H. (2004). Acta Cryst. E60, o210–o212.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoodwin, H. A. & Lions, F. (1959). J. Am. Chem. Soc. 81, 6415–6422.  CrossRef CAS Web of Science Google Scholar
First citationGraf, M., Greaves, B. & Stoeckli-Evans, H. (1993). Inorg. Chim. Acta, 204, 239–246.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKlingele, J., Boas, J. F., Pilbrow, J. R., Moubaraki, B., Murray, K. S., Berry, K. J., Hunter, K. A., Jameson, G. B., Boyd, P. D. W. & Brooker, S. (2007). Dalton Trans. pp. 633–645.  Google Scholar
First citationLohrman, J., Telikepalli, H., Johnson, T. S., Jackson, T. A., Day, V. W. & Bowman-James, K. (2016). Inorg. Chem. 55, 5098–5100.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMager, H. I. X. & Berends, W. (1960). Recl Trav. Chim. Pays Bas, 79, 282–284.  CrossRef CAS Google Scholar
First citationMarioni, P.-A., Stoeckli-Evans, H., Marty, W., Güdel, H.-U. & Williams, A. F. (1986). Helv. Chim. Acta, 69, 1004–1011.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2015). Acta Cryst. C71, 9–18.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoe & Cie (2000). IPDSI Bedienungshandbuch. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolf, L. (1887). Ber. Deutsch Chem. Ges. 20, 425–433.  Google Scholar
First citationWolf, L. (1893). Ber. Deutsch Chem. Ges. 26, 721–725.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds