research communications
of rubidium peroxide ammonia disolvate
aInstitut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
*Correspondence e-mail: nikolaus.korber@chemie.uni-regensburg.de
The title compound, Rb2O2·2NH3, has been obtained as a reaction product of rubidium metal dissolved in liquid ammonia and glucuronic acid. As a result of the low-temperature crystallization, a disolvate was formed. To our knowledge, only one other solvate of an alkali metal peroxide is known: Na2O2·8H2O has been reported by Grehl et al. [Acta Cryst. (1995), C51, 1038–1040]. We determined the peroxide bond length to be 1.530 (11) Å, which is in accordance with the length reported by Bremm & Jansen [Z. Anorg. Allg. Chem. (1992), 610, 64–66]. One of the ammonia solvate molecules is disordered relative to a mirror plane, with 0.5 occupancy for the corresponding nitrogen atom.
Keywords: crystal structure; rubidium; peroxide; ammonia disolvate.
CCDC reference: 1526250
1. Chemical context
The 3 in solutions where liquid ammonia itself is used as solvent. The source of the peroxide anion could not be explicitly traced back but it seems to have its origin in oxygen gas from intruding atmosphere due to undetected leakage in the reaction vessel.
of the title compound was determined in the course of investigations regarding the reactivity of towards alkali metals and NH2. Structural commentary
The ). Except for one nitrogen atom (N1, showing half-occupancy) and one hydrogen atom (H2B), all other atoms are located on mirror planes. The anion is surrounded by four rubidium cations located around the girth of the peroxide ion (Fig. 2). This unit forms one-dimensional infinite strands by sharing one common edge of a distorted plane of four Rb ions (Fig. 3). This structural motif can also be observed in potassium acetylide K2C2 (Hamberger et al., 2012). The peroxide bond length was determined to be 1.530 (11) Å. The anion–cation contacts range between 2.790 (5) Å and 2.917 (6) Å. The of the cations is 8.
contains one peroxide anion, two charge-compensating rubidium cations and two ammonia molecules (Fig. 1The O—O bond length of the peroxide anion is longer than the value found in the literature based on the work of Föppl which is approximately 1.49 Å. In Fig. 4, a comparative view of bond lengths is presented based on the work of Bremm & Jansen (1992), Föppl (1954, 1955, 1957) and Grehl et al. (1995).
3. Supramolecular features
Despite the low ammonia content, numerous hydrogen bonds can be observed and the NH3 molecules bridge the peroxide anions. The peroxide anion shows five contacts to ammonia molecules, forming a three-dimensional network in the packing. The distances between donor and acceptor atoms ranges from 2.926(15) Angstrom to 3.597(16) Angstrom, which is commonly observed in ammoniates. Numerical details of the hydrogen-bonding interactions are given in Table 1.
4. Synthesis and crystallization
500 mg (2.58 mmol) D-glucuronic acid and 880 mg (10.29 mmol) rubidium were placed under an argon atmosphere in a reaction vessel and 25 ml of dry liquid ammonia were condensed. The mixture was stored at 237 K for five days. The flask was then stored at 161 K for several months. After that period, clear needle-shaped colorless crystals of the title compound could be found at the wall of the flask.
5. Refinement
Crystal data, data collection and structure . The nitrogen atom N1 is disordered with 0.5 as the site occupation factor. All hydrogen atoms could be located in difference map and and their positions were refined freely with a common Uiso(H) parameter. The isotropic displacement parameters were fixed to 0.025.
details are summarized in Table 2
|
Supporting information
CCDC reference: 1526250
https://doi.org/10.1107/S2056989017000354/pj2039sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017000354/pj2039Isup2.hkl
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).Rb2O2·2NH3 | Dx = 2.859 Mg m−3 |
Mr = 237.01 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pnma | Cell parameters from 1711 reflections |
a = 7.3957 (7) Å | θ = 3.4–28.3° |
b = 4.0932 (6) Å | µ = 17.66 mm−1 |
c = 18.1873 (17) Å | T = 123 K |
V = 550.57 (11) Å3 | Block, clear colourless |
Z = 4 | 0.24 × 0.09 × 0.08 mm |
F(000) = 440 |
Agilent SuperNova Dual Source diffractometer with an Eos detector | 641 independent reflections |
Mirror monochromator | 570 reflections with I > 2σ(I) |
Detector resolution: 7.9851 pixels mm-1 | Rint = 0.057 |
phi and ω scans | θmax = 26.4°, θmin = 3.6° |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] | h = −9→9 |
Tmin = 0.064, Tmax = 0.354 | k = −5→4 |
2921 measured reflections | l = −22→22 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Only H-atom coordinates refined |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0361P)2 + 7.6682P] where P = (Fo2 + 2Fc2)/3 |
S = 1.35 | (Δ/σ)max < 0.001 |
641 reflections | Δρmax = 1.12 e Å−3 |
51 parameters | Δρmin = −1.79 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Rb1 | 0.11196 (14) | 0.2500 | 0.42075 (5) | 0.0164 (4) | |
Rb2 | −0.25614 (15) | 1.2500 | 0.28803 (5) | 0.0182 (4) | |
O1 | −0.1266 (11) | 0.7500 | 0.3825 (4) | 0.019 (2) | |
O2 | 0.0133 (11) | 0.7500 | 0.3206 (4) | 0.022 (2) | |
N2 | 0.6843 (16) | 0.2500 | 0.4710 (6) | 0.020 (3) | |
N1 | 0.4060 (18) | 0.650 (4) | 0.3327 (7) | 0.017 (4) | 0.5 |
H1A | 0.28 (2) | 0.7500 | 0.340 (8) | 0.025* | |
H1B | 0.42 (2) | 0.7500 | 0.285 (8) | 0.025* | |
H1C | 0.46 (2) | 0.7500 | 0.364 (8) | 0.025* | |
H2A | 0.58 (2) | 0.2500 | 0.472 (8) | 0.025* | |
H2B | 0.739 (13) | 0.43 (3) | 0.441 (5) | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Rb1 | 0.0107 (5) | 0.0268 (8) | 0.0116 (5) | 0.000 | −0.0022 (4) | 0.000 |
Rb2 | 0.0088 (5) | 0.0345 (8) | 0.0113 (5) | 0.000 | 0.0003 (4) | 0.000 |
O1 | 0.012 (4) | 0.027 (6) | 0.020 (4) | 0.000 | 0.003 (3) | 0.000 |
O2 | 0.011 (4) | 0.040 (7) | 0.014 (4) | 0.000 | 0.000 (3) | 0.000 |
N2 | 0.017 (5) | 0.025 (7) | 0.018 (5) | 0.000 | 0.000 (4) | 0.000 |
N1 | 0.016 (6) | 0.019 (12) | 0.016 (6) | −0.007 (6) | −0.002 (5) | 0.000 (6) |
Rb1—Rb2i | 3.6383 (15) | Rb2—N1x | 3.507 (15) |
Rb1—O1 | 2.790 (5) | Rb2—N1xiii | 2.988 (14) |
Rb1—O1ii | 3.579 (8) | Rb2—N1ix | 2.988 (14) |
Rb1—O1i | 2.790 (6) | O1—Rb1ii | 3.579 (8) |
Rb1—O2 | 2.836 (5) | O1—Rb1viii | 2.790 (5) |
Rb1—O2i | 2.836 (5) | O1—Rb2i | 2.839 (6) |
Rb1—N2iii | 3.292 (12) | O1—O2 | 1.530 (11) |
Rb1—N2iv | 3.215 (8) | O2—Rb1viii | 2.836 (5) |
Rb1—N2v | 3.215 (8) | O2—Rb2xiv | 3.316 (6) |
Rb1—N2vi | 3.215 (8) | O2—Rb2xv | 3.316 (6) |
Rb1—N1vii | 3.157 (14) | O2—Rb2i | 2.917 (6) |
Rb1—N1 | 3.157 (14) | N2—Rb1iv | 3.215 (8) |
Rb2—O1 | 2.839 (6) | N2—Rb1xvi | 3.292 (12) |
Rb2—O1viii | 2.839 (6) | N2—Rb1xvii | 3.215 (8) |
Rb2—O2viii | 2.917 (6) | N2—Rb2xviii | 3.356 (11) |
Rb2—O2ix | 3.316 (6) | N1—Rb1viii | 3.652 (15) |
Rb2—O2 | 2.917 (6) | N1—Rb2xiv | 2.988 (14) |
Rb2—O2x | 3.316 (6) | N1—Rb2xv | 3.507 (15) |
Rb2—N2xi | 3.356 (11) | N1—Rb2xvi | 3.598 (14) |
Rb2—N1xi | 3.095 (15) | N1—Rb2xviii | 3.095 (15) |
Rb2—N1xii | 3.095 (15) | N1—N1xix | 0.82 (3) |
O1ii—Rb1—Rb2i | 133.30 (13) | O2—Rb2—N1x | 53.2 (3) |
O1i—Rb1—Rb2i | 50.32 (13) | O2—Rb2—N1xi | 150.4 (3) |
O1—Rb1—Rb2i | 50.32 (13) | O2—Rb2—N1xii | 97.3 (3) |
O1i—Rb1—O1ii | 105.56 (17) | O2ix—Rb2—N1x | 103.6 (3) |
O1—Rb1—O1i | 94.4 (2) | O2viii—Rb2—N1ix | 59.4 (3) |
O1—Rb1—O1ii | 105.56 (17) | O2viii—Rb2—N1x | 112.7 (3) |
O1i—Rb1—O2 | 101.92 (19) | O2viii—Rb2—N1xi | 97.3 (3) |
O1i—Rb1—O2i | 31.5 (2) | O2x—Rb2—N1x | 51.0 (3) |
O1—Rb1—O2 | 31.5 (2) | O2—Rb2—N1xiii | 59.4 (3) |
O1—Rb1—O2i | 101.92 (19) | O2viii—Rb2—N1xiii | 105.0 (3) |
O1i—Rb1—N2v | 156.3 (3) | O2—Rb2—N1ix | 105.0 (3) |
O1i—Rb1—N2iii | 57.42 (17) | N2xi—Rb2—N1x | 131.7 (3) |
O1i—Rb1—N2iv | 156.3 (3) | N1xi—Rb2—O2x | 93.8 (3) |
O1—Rb1—N2v | 89.0 (2) | N1xi—Rb2—O2ix | 54.2 (3) |
O1—Rb1—N2iv | 89.0 (2) | N1ix—Rb2—O2ix | 55.3 (3) |
O1—Rb1—N2vi | 156.3 (3) | N1xii—Rb2—O2ix | 93.8 (3) |
O1—Rb1—N2iii | 57.42 (17) | N1xiii—Rb2—O2x | 55.3 (3) |
O1i—Rb1—N2vi | 88.98 (19) | N1xii—Rb2—O2x | 54.2 (3) |
O1—Rb1—N1 | 85.9 (3) | N1xiii—Rb2—O2ix | 96.1 (3) |
O1i—Rb1—N1vii | 85.9 (3) | N1ix—Rb2—O2x | 96.1 (3) |
O1i—Rb1—N1 | 133.5 (3) | N1xii—Rb2—N2xi | 68.5 (3) |
O1—Rb1—N1vii | 133.5 (3) | N1xiii—Rb2—N2xi | 141.3 (3) |
O2i—Rb1—Rb2i | 51.77 (13) | N1xi—Rb2—N2xi | 68.5 (3) |
O2—Rb1—Rb2i | 51.77 (13) | N1ix—Rb2—N2xi | 141.3 (3) |
O2—Rb1—O1ii | 130.55 (13) | N1xii—Rb2—N1xi | 63.8 (6) |
O2i—Rb1—O1ii | 130.55 (13) | N1ix—Rb2—N1xi | 103.1 (5) |
O2—Rb1—O2i | 92.4 (2) | N1ix—Rb2—N1xii | 143.7 (3) |
O2—Rb1—N2v | 93.14 (17) | N1xiii—Rb2—N1x | 11.3 (4) |
O2i—Rb1—N2iv | 166.8 (2) | N1xiii—Rb2—N1ix | 66.4 (6) |
O2i—Rb1—N2vi | 93.14 (17) | N1ix—Rb2—N1x | 77.7 (3) |
O2—Rb1—N2iii | 86.0 (2) | N1xiii—Rb2—N1xii | 103.1 (5) |
O2—Rb1—N2iv | 93.14 (17) | N1xii—Rb2—N1x | 94.0 (2) |
O2—Rb1—N2vi | 166.8 (2) | N1xiii—Rb2—N1xi | 143.7 (3) |
O2i—Rb1—N2v | 166.8 (2) | N1xi—Rb2—N1x | 144.2 (4) |
O2i—Rb1—N2iii | 86.0 (2) | Rb1viii—O1—Rb1ii | 74.44 (17) |
O2—Rb1—N1 | 58.5 (3) | Rb1—O1—Rb1viii | 94.4 (2) |
O2—Rb1—N1vii | 103.0 (3) | Rb1—O1—Rb1ii | 74.44 (17) |
O2i—Rb1—N1 | 103.0 (3) | Rb1—O1—Rb2i | 80.53 (7) |
O2i—Rb1—N1vii | 58.5 (3) | Rb1viii—O1—Rb2 | 80.53 (7) |
N2iii—Rb1—Rb2i | 57.66 (19) | Rb1viii—O1—Rb2i | 153.3 (3) |
N2vi—Rb1—Rb2i | 139.21 (14) | Rb1—O1—Rb2 | 153.3 (3) |
N2iv—Rb1—Rb2i | 139.21 (14) | Rb2—O1—Rb1ii | 127.97 (15) |
N2v—Rb1—Rb2i | 139.21 (14) | Rb2i—O1—Rb1ii | 127.97 (15) |
N2iv—Rb1—O1ii | 51.21 (19) | Rb2i—O1—Rb2 | 92.3 (2) |
N2v—Rb1—O1ii | 51.21 (19) | O2—O1—Rb1ii | 135.7 (5) |
N2iii—Rb1—O1ii | 75.6 (2) | O2—O1—Rb1 | 75.9 (3) |
N2vi—Rb1—O1ii | 51.21 (19) | O2—O1—Rb1viii | 75.9 (3) |
N2v—Rb1—N2iii | 106.3 (2) | O2—O1—Rb2 | 77.4 (3) |
N2vi—Rb1—N2iii | 106.3 (2) | O2—O1—Rb2i | 77.4 (3) |
N2iv—Rb1—N2iii | 106.3 (2) | Rb1—O2—Rb1viii | 92.4 (2) |
N2v—Rb1—N2vi | 79.1 (2) | Rb1viii—O2—Rb2 | 78.45 (8) |
N2v—Rb1—N2iv | 0.0 (5) | Rb1—O2—Rb2 | 144.3 (3) |
N2iv—Rb1—N2vi | 79.1 (2) | Rb1viii—O2—Rb2xiv | 134.1 (3) |
N1vii—Rb1—Rb2i | 100.3 (2) | Rb1—O2—Rb2xiv | 78.75 (10) |
N1—Rb1—Rb2i | 100.3 (2) | Rb1—O2—Rb2i | 78.45 (8) |
N1—Rb1—O1ii | 119.1 (3) | Rb1—O2—Rb2xv | 134.1 (3) |
N1vii—Rb1—O1ii | 119.1 (3) | Rb1viii—O2—Rb2i | 144.3 (3) |
N1—Rb1—N2v | 70.0 (3) | Rb1viii—O2—Rb2xv | 78.75 (10) |
N1vii—Rb1—N2vi | 70.0 (3) | Rb2i—O2—Rb2 | 89.1 (2) |
N1—Rb1—N2iv | 70.0 (3) | Rb2xiv—O2—Rb2xv | 76.22 (17) |
N1vii—Rb1—N2iv | 108.5 (3) | Rb2—O2—Rb2xv | 78.31 (10) |
N1—Rb1—N2vi | 108.5 (3) | Rb2i—O2—Rb2xiv | 78.32 (10) |
N1—Rb1—N2iii | 143.4 (3) | Rb2—O2—Rb2xiv | 131.6 (3) |
N1vii—Rb1—N2iii | 143.4 (3) | Rb2i—O2—Rb2xv | 131.6 (3) |
N1vii—Rb1—N2v | 108.5 (3) | O1—O2—Rb1 | 72.6 (3) |
N1—Rb1—N1vii | 62.4 (6) | O1—O2—Rb1viii | 72.6 (3) |
O1—Rb2—O1viii | 92.3 (2) | O1—O2—Rb2 | 71.8 (3) |
O1viii—Rb2—O2ix | 95.11 (15) | O1—O2—Rb2xv | 141.86 (9) |
O1—Rb2—O2viii | 98.78 (18) | O1—O2—Rb2xiv | 141.86 (9) |
O1—Rb2—O2x | 95.11 (15) | O1—O2—Rb2i | 71.8 (3) |
O1viii—Rb2—O2x | 168.22 (18) | Rb1iv—N2—Rb1xvi | 73.7 (2) |
O1—Rb2—O2ix | 168.22 (18) | Rb1iv—N2—Rb1xvii | 79.1 (2) |
O1viii—Rb2—O2viii | 30.8 (2) | Rb1xvii—N2—Rb1xvi | 73.7 (2) |
O1viii—Rb2—O2 | 98.77 (18) | Rb1xvi—N2—Rb2xviii | 66.4 (2) |
O1—Rb2—O2 | 30.8 (2) | Rb1xvii—N2—Rb2xviii | 123.1 (3) |
O1—Rb2—N2xi | 56.23 (17) | Rb1iv—N2—Rb2xviii | 123.1 (3) |
O1viii—Rb2—N2xi | 56.23 (17) | Rb1—N1—Rb1viii | 73.5 (3) |
O1viii—Rb2—N1ix | 85.1 (3) | Rb1—N1—Rb2xvi | 161.2 (5) |
O1—Rb2—N1ix | 134.7 (3) | Rb1—N1—Rb2xv | 116.4 (4) |
O1—Rb2—N1x | 76.0 (3) | Rb2xiv—N1—Rb1 | 79.2 (4) |
O1—Rb2—N1xi | 119.6 (3) | Rb2xvi—N1—Rb1viii | 93.0 (4) |
O1—Rb2—N1xii | 74.5 (3) | Rb2xv—N1—Rb1viii | 66.4 (3) |
O1viii—Rb2—N1xiii | 134.7 (3) | Rb2xviii—N1—Rb1 | 114.5 (5) |
O1viii—Rb2—N1xii | 119.6 (3) | Rb2xiv—N1—Rb1viii | 116.9 (4) |
O1viii—Rb2—N1xi | 74.5 (3) | Rb2xviii—N1—Rb1viii | 162.1 (5) |
O1viii—Rb2—N1x | 140.3 (3) | Rb2xviii—N1—Rb2xvi | 75.0 (3) |
O1—Rb2—N1xiii | 85.1 (3) | Rb2xviii—N1—Rb2xv | 118.8 (4) |
O2x—Rb2—O2ix | 76.22 (17) | Rb2xv—N1—Rb2xvi | 67.5 (3) |
O2—Rb2—O2ix | 154.83 (12) | Rb2xiv—N1—Rb2xv | 77.7 (3) |
O2viii—Rb2—O2ix | 92.24 (11) | Rb2xiv—N1—Rb2xvi | 119.1 (4) |
O2viii—Rb2—O2 | 89.1 (2) | Rb2xiv—N1—Rb2xviii | 80.9 (4) |
O2viii—Rb2—O2x | 154.83 (12) | N1xix—N1—Rb1viii | 47.7 (2) |
O2—Rb2—O2x | 92.24 (11) | N1xix—N1—Rb1 | 121.2 (3) |
O2viii—Rb2—N2xi | 83.6 (2) | N1xix—N1—Rb2xv | 45.5 (2) |
O2ix—Rb2—N2xi | 121.53 (19) | N1xix—N1—Rb2xvi | 46.9 (3) |
O2x—Rb2—N2xi | 121.53 (19) | N1xix—N1—Rb2xiv | 123.2 (3) |
O2—Rb2—N2xi | 83.6 (2) | N1xix—N1—Rb2xviii | 121.9 (3) |
O2viii—Rb2—N1xii | 150.4 (3) |
Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1; (iii) x−1, y, z; (iv) −x+1, −y+1, −z+1; (v) −x+1, y+1/2, −z+1; (vi) −x+1, y−1/2, −z+1; (vii) x, −y+1/2, z; (viii) x, y+1, z; (ix) x−1/2, y+1, −z+1/2; (x) x−1/2, y, −z+1/2; (xi) x−1, y+1, z; (xii) x−1, −y+3/2, z; (xiii) x−1/2, −y+3/2, −z+1/2; (xiv) x+1/2, y−1, −z+1/2; (xv) x+1/2, y, −z+1/2; (xvi) x+1, y, z; (xvii) −x+1, −y, −z+1; (xviii) x+1, y−1, z; (xix) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2 | 1.05 (14) | 1.98 (15) | 2.941 (16) | 151 (8) |
N1—H1B···O2xx | 0.97 (13) | 2.04 (15) | 2.926 (15) | 151 (8) |
N1—H1C···O1xvi | 0.82 (14) | 3.07 (16) | 3.597 (16) | 125 (11) |
N2—H2A···N2iv | 0.74 (16) | 3.03 (12) | 3.57 (2) | 131 (6) |
N2—H2A···N2vi | 0.74 (16) | 3.03 (12) | 3.57 (2) | 131 (6) |
N2—H2A···N2v | 0.74 (16) | 3.03 (12) | 3.57 (2) | 131 (6) |
N2—H2B···O1xvi | 1.01 (11) | 1.95 (11) | 2.955 (10) | 173 (8) |
Symmetry codes: (iv) −x+1, −y+1, −z+1; (v) −x+1, y+1/2, −z+1; (vi) −x+1, y−1/2, −z+1; (xvi) x+1, y, z; (xx) x+1/2, −y+3/2, −z+1/2. |
References
Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England. Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bremm, Th. & Jansen, M. (1992). Z. Anorg. Allg. Chem. 610, 64–66. CrossRef CAS Web of Science Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Föppl, H. (1954). Angew. Chem. 66, 335–335. Google Scholar
Föppl, H. (1955). Angew. Chem. 67, 712–712. Google Scholar
Föppl, H. (1957). Z. Anorg. Allg. Chem. 291, 12–49. Google Scholar
Grehl, M., Fröhlich, R. & Thiele, S. (1995). Acta Cryst. C51, 1038–1040. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hamberger, M., Liebig, S., Friedrich, U., Korber, N. & Ruschewitz, U. (2012). Angew. Chem. 124, 13181–13185. CrossRef Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.