research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of rubidium peroxide ammonia disolvate

CROSSMARK_Color_square_no_text.svg

aInstitut für Anorganische Chemie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
*Correspondence e-mail: nikolaus.korber@chemie.uni-regensburg.de

Edited by T. J. Prior, University of Hull, England (Received 6 December 2016; accepted 9 January 2017; online 17 January 2017)

The title compound, Rb2O2·2NH3, has been obtained as a reaction product of rubidium metal dissolved in liquid ammonia and glucuronic acid. As a result of the low-temperature crystallization, a disolvate was formed. To our knowledge, only one other solvate of an alkali metal peroxide is known: Na2O2·8H2O has been reported by Grehl et al. [Acta Cryst. (1995), C51, 1038–1040]. We determined the peroxide bond length to be 1.530 (11) Å, which is in accordance with the length reported by Bremm & Jansen [Z. Anorg. Allg. Chem. (1992), 610, 64–66]. One of the ammonia solvate molecules is disordered relative to a mirror plane, with 0.5 occupancy for the corresponding nitrogen atom.

1. Chemical context

The crystal structure of the title compound was determined in the course of investigations regarding the reactivity of carbohydrates towards alkali metals and NH3 in solutions where liquid ammonia itself is used as solvent. The source of the peroxide anion could not be explicitly traced back but it seems to have its origin in oxygen gas from intruding atmosphere due to undetected leakage in the reaction vessel.

2. Structural commentary

The asymmetric unit contains one peroxide anion, two charge-compensating rubidium cations and two ammonia mol­ecules (Fig. 1[link]). Except for one nitrogen atom (N1, showing half-occupancy) and one hydrogen atom (H2B), all other atoms are located on mirror planes. The anion is surrounded by four rubidium cations located around the girth of the peroxide ion (Fig. 2[link]). This unit forms one-dimensional infinite strands by sharing one common edge of a distorted plane of four Rb ions (Fig. 3[link]). This structural motif can also be observed in potassium acetyl­ide K2C2 (Hamberger et al., 2012[Hamberger, M., Liebig, S., Friedrich, U., Korber, N. & Ruschewitz, U. (2012). Angew. Chem. 124, 13181-13185.]). The peroxide bond length was determined to be 1.530 (11) Å. The anion–cation contacts range between 2.790 (5) Å and 2.917 (6) Å. The coordination number of the cations is 8.

[Figure 1]
Figure 1
The asymmetric unit of the title compound, with the atom labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The environment of the peroxide anion. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) −1 + x, y, z.]
[Figure 3]
Figure 3
One-dimensional infinite strands formed by peroxide anions and rubidium cations. Displacement ellipsoids are drawn at the 50% probability level.

The O—O bond length of the peroxide anion is longer than the value found in the literature based on the work of Föppl which is approximately 1.49 Å. In Fig. 4[link], a comparative view of bond lengths is presented based on the work of Bremm & Jansen (1992[Bremm, Th. & Jansen, M. (1992). Z. Anorg. Allg. Chem. 610, 64-66.]), Föppl (1954[Föppl, H. (1954). Angew. Chem. 66, 335-335.], 1955[Föppl, H. (1955). Angew. Chem. 67, 712-712.], 1957[Föppl, H. (1957). Z. Anorg. Allg. Chem. 291, 12-49.]) and Grehl et al. (1995[Grehl, M., Fröhlich, R. & Thiele, S. (1995). Acta Cryst. C51, 1038-1040.]).

[Figure 4]
Figure 4
Comparison of peroxide bond lengths in different compounds. The vertical line shows the peroxide bond length commonly used in the literature. Each data point is shown with its standard uncertainties.

3. Supra­molecular features

Despite the low ammonia content, numerous hydrogen bonds can be observed and the NH3 molecules bridge the peroxide anions. The peroxide anion shows five contacts to ammonia molecules, forming a three-dimensional network in the packing. The distances between donor and acceptor atoms ranges from 2.926(15) Angstrom to 3.597(16) Angstrom, which is commonly observed in ammoniates. Numerical details of the hydrogen-bonding inter­actions are given in Table 1[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 1.05 (14) 1.98 (15) 2.941 (16) 151 (8)
N1—H1B⋯O2i 0.97 (13) 2.04 (15) 2.926 (15) 151 (8)
N1—H1C⋯O1ii 0.82 (14) 3.07 (16) 3.597 (16) 125 (11)
N2—H2A⋯N2iii 0.74 (16) 3.03 (12) 3.57 (2) 131 (6)
N2—H2A⋯N2iv 0.74 (16) 3.03 (12) 3.57 (2) 131 (6)
N2—H2A⋯N2v 0.74 (16) 3.03 (12) 3.57 (2) 131 (6)
N2—H2B⋯O1ii 1.01 (11) 1.95 (11) 2.955 (10) 173 (8)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+1]; (v) [-x+1, y+{\script{1\over 2}}, -z+1].

4. Synthesis and crystallization

500 mg (2.58 mmol) D-glucuronic acid and 880 mg (10.29 mmol) rubidium were placed under an argon atmosphere in a reaction vessel and 25 ml of dry liquid ammonia were condensed. The mixture was stored at 237 K for five days. The flask was then stored at 161 K for several months. After that period, clear needle-shaped colorless crystals of the title compound could be found at the wall of the flask.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The nitro­gen atom N1 is disordered with 0.5 as the site occupation factor. All hydrogen atoms could be located in difference map and and their positions were refined freely with a common Uiso(H) parameter. The isotropic displacement parameters were fixed to 0.025.

Table 2
Experimental details

Crystal data
Chemical formula Rb2O2·2NH3
Mr 237.01
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 123
a, b, c (Å) 7.3957 (7), 4.0932 (6), 18.1873 (17)
V3) 550.57 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 17.66
Crystal size (mm) 0.24 × 0.09 × 0.08
 
Data collection
Diffractometer Agilent SuperNova Dual Source diffractometer with an Eos detector
Absorption correction Analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.064, 0.354
No. of measured, independent and observed [I > 2σ(I)] reflections 2921, 641, 570
Rint 0.057
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.118, 1.35
No. of reflections 641
No. of parameters 51
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 1.12, −1.79
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), olex2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Rubidium peroxide ammonia disolvate top
Crystal data top
Rb2O2·2NH3Dx = 2.859 Mg m3
Mr = 237.01Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1711 reflections
a = 7.3957 (7) Åθ = 3.4–28.3°
b = 4.0932 (6) ŵ = 17.66 mm1
c = 18.1873 (17) ÅT = 123 K
V = 550.57 (11) Å3Block, clear colourless
Z = 40.24 × 0.09 × 0.08 mm
F(000) = 440
Data collection top
Agilent SuperNova Dual Source
diffractometer with an Eos detector
641 independent reflections
Mirror monochromator570 reflections with I > 2σ(I)
Detector resolution: 7.9851 pixels mm-1Rint = 0.057
phi and ω scansθmax = 26.4°, θmin = 3.6°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
h = 99
Tmin = 0.064, Tmax = 0.354k = 54
2921 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Only H-atom coordinates refined
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0361P)2 + 7.6682P]
where P = (Fo2 + 2Fc2)/3
S = 1.35(Δ/σ)max < 0.001
641 reflectionsΔρmax = 1.12 e Å3
51 parametersΔρmin = 1.79 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rb10.11196 (14)0.25000.42075 (5)0.0164 (4)
Rb20.25614 (15)1.25000.28803 (5)0.0182 (4)
O10.1266 (11)0.75000.3825 (4)0.019 (2)
O20.0133 (11)0.75000.3206 (4)0.022 (2)
N20.6843 (16)0.25000.4710 (6)0.020 (3)
N10.4060 (18)0.650 (4)0.3327 (7)0.017 (4)0.5
H1A0.28 (2)0.75000.340 (8)0.025*
H1B0.42 (2)0.75000.285 (8)0.025*
H1C0.46 (2)0.75000.364 (8)0.025*
H2A0.58 (2)0.25000.472 (8)0.025*
H2B0.739 (13)0.43 (3)0.441 (5)0.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0107 (5)0.0268 (8)0.0116 (5)0.0000.0022 (4)0.000
Rb20.0088 (5)0.0345 (8)0.0113 (5)0.0000.0003 (4)0.000
O10.012 (4)0.027 (6)0.020 (4)0.0000.003 (3)0.000
O20.011 (4)0.040 (7)0.014 (4)0.0000.000 (3)0.000
N20.017 (5)0.025 (7)0.018 (5)0.0000.000 (4)0.000
N10.016 (6)0.019 (12)0.016 (6)0.007 (6)0.002 (5)0.000 (6)
Geometric parameters (Å, º) top
Rb1—Rb2i3.6383 (15)Rb2—N1x3.507 (15)
Rb1—O12.790 (5)Rb2—N1xiii2.988 (14)
Rb1—O1ii3.579 (8)Rb2—N1ix2.988 (14)
Rb1—O1i2.790 (6)O1—Rb1ii3.579 (8)
Rb1—O22.836 (5)O1—Rb1viii2.790 (5)
Rb1—O2i2.836 (5)O1—Rb2i2.839 (6)
Rb1—N2iii3.292 (12)O1—O21.530 (11)
Rb1—N2iv3.215 (8)O2—Rb1viii2.836 (5)
Rb1—N2v3.215 (8)O2—Rb2xiv3.316 (6)
Rb1—N2vi3.215 (8)O2—Rb2xv3.316 (6)
Rb1—N1vii3.157 (14)O2—Rb2i2.917 (6)
Rb1—N13.157 (14)N2—Rb1iv3.215 (8)
Rb2—O12.839 (6)N2—Rb1xvi3.292 (12)
Rb2—O1viii2.839 (6)N2—Rb1xvii3.215 (8)
Rb2—O2viii2.917 (6)N2—Rb2xviii3.356 (11)
Rb2—O2ix3.316 (6)N1—Rb1viii3.652 (15)
Rb2—O22.917 (6)N1—Rb2xiv2.988 (14)
Rb2—O2x3.316 (6)N1—Rb2xv3.507 (15)
Rb2—N2xi3.356 (11)N1—Rb2xvi3.598 (14)
Rb2—N1xi3.095 (15)N1—Rb2xviii3.095 (15)
Rb2—N1xii3.095 (15)N1—N1xix0.82 (3)
O1ii—Rb1—Rb2i133.30 (13)O2—Rb2—N1x53.2 (3)
O1i—Rb1—Rb2i50.32 (13)O2—Rb2—N1xi150.4 (3)
O1—Rb1—Rb2i50.32 (13)O2—Rb2—N1xii97.3 (3)
O1i—Rb1—O1ii105.56 (17)O2ix—Rb2—N1x103.6 (3)
O1—Rb1—O1i94.4 (2)O2viii—Rb2—N1ix59.4 (3)
O1—Rb1—O1ii105.56 (17)O2viii—Rb2—N1x112.7 (3)
O1i—Rb1—O2101.92 (19)O2viii—Rb2—N1xi97.3 (3)
O1i—Rb1—O2i31.5 (2)O2x—Rb2—N1x51.0 (3)
O1—Rb1—O231.5 (2)O2—Rb2—N1xiii59.4 (3)
O1—Rb1—O2i101.92 (19)O2viii—Rb2—N1xiii105.0 (3)
O1i—Rb1—N2v156.3 (3)O2—Rb2—N1ix105.0 (3)
O1i—Rb1—N2iii57.42 (17)N2xi—Rb2—N1x131.7 (3)
O1i—Rb1—N2iv156.3 (3)N1xi—Rb2—O2x93.8 (3)
O1—Rb1—N2v89.0 (2)N1xi—Rb2—O2ix54.2 (3)
O1—Rb1—N2iv89.0 (2)N1ix—Rb2—O2ix55.3 (3)
O1—Rb1—N2vi156.3 (3)N1xii—Rb2—O2ix93.8 (3)
O1—Rb1—N2iii57.42 (17)N1xiii—Rb2—O2x55.3 (3)
O1i—Rb1—N2vi88.98 (19)N1xii—Rb2—O2x54.2 (3)
O1—Rb1—N185.9 (3)N1xiii—Rb2—O2ix96.1 (3)
O1i—Rb1—N1vii85.9 (3)N1ix—Rb2—O2x96.1 (3)
O1i—Rb1—N1133.5 (3)N1xii—Rb2—N2xi68.5 (3)
O1—Rb1—N1vii133.5 (3)N1xiii—Rb2—N2xi141.3 (3)
O2i—Rb1—Rb2i51.77 (13)N1xi—Rb2—N2xi68.5 (3)
O2—Rb1—Rb2i51.77 (13)N1ix—Rb2—N2xi141.3 (3)
O2—Rb1—O1ii130.55 (13)N1xii—Rb2—N1xi63.8 (6)
O2i—Rb1—O1ii130.55 (13)N1ix—Rb2—N1xi103.1 (5)
O2—Rb1—O2i92.4 (2)N1ix—Rb2—N1xii143.7 (3)
O2—Rb1—N2v93.14 (17)N1xiii—Rb2—N1x11.3 (4)
O2i—Rb1—N2iv166.8 (2)N1xiii—Rb2—N1ix66.4 (6)
O2i—Rb1—N2vi93.14 (17)N1ix—Rb2—N1x77.7 (3)
O2—Rb1—N2iii86.0 (2)N1xiii—Rb2—N1xii103.1 (5)
O2—Rb1—N2iv93.14 (17)N1xii—Rb2—N1x94.0 (2)
O2—Rb1—N2vi166.8 (2)N1xiii—Rb2—N1xi143.7 (3)
O2i—Rb1—N2v166.8 (2)N1xi—Rb2—N1x144.2 (4)
O2i—Rb1—N2iii86.0 (2)Rb1viii—O1—Rb1ii74.44 (17)
O2—Rb1—N158.5 (3)Rb1—O1—Rb1viii94.4 (2)
O2—Rb1—N1vii103.0 (3)Rb1—O1—Rb1ii74.44 (17)
O2i—Rb1—N1103.0 (3)Rb1—O1—Rb2i80.53 (7)
O2i—Rb1—N1vii58.5 (3)Rb1viii—O1—Rb280.53 (7)
N2iii—Rb1—Rb2i57.66 (19)Rb1viii—O1—Rb2i153.3 (3)
N2vi—Rb1—Rb2i139.21 (14)Rb1—O1—Rb2153.3 (3)
N2iv—Rb1—Rb2i139.21 (14)Rb2—O1—Rb1ii127.97 (15)
N2v—Rb1—Rb2i139.21 (14)Rb2i—O1—Rb1ii127.97 (15)
N2iv—Rb1—O1ii51.21 (19)Rb2i—O1—Rb292.3 (2)
N2v—Rb1—O1ii51.21 (19)O2—O1—Rb1ii135.7 (5)
N2iii—Rb1—O1ii75.6 (2)O2—O1—Rb175.9 (3)
N2vi—Rb1—O1ii51.21 (19)O2—O1—Rb1viii75.9 (3)
N2v—Rb1—N2iii106.3 (2)O2—O1—Rb277.4 (3)
N2vi—Rb1—N2iii106.3 (2)O2—O1—Rb2i77.4 (3)
N2iv—Rb1—N2iii106.3 (2)Rb1—O2—Rb1viii92.4 (2)
N2v—Rb1—N2vi79.1 (2)Rb1viii—O2—Rb278.45 (8)
N2v—Rb1—N2iv0.0 (5)Rb1—O2—Rb2144.3 (3)
N2iv—Rb1—N2vi79.1 (2)Rb1viii—O2—Rb2xiv134.1 (3)
N1vii—Rb1—Rb2i100.3 (2)Rb1—O2—Rb2xiv78.75 (10)
N1—Rb1—Rb2i100.3 (2)Rb1—O2—Rb2i78.45 (8)
N1—Rb1—O1ii119.1 (3)Rb1—O2—Rb2xv134.1 (3)
N1vii—Rb1—O1ii119.1 (3)Rb1viii—O2—Rb2i144.3 (3)
N1—Rb1—N2v70.0 (3)Rb1viii—O2—Rb2xv78.75 (10)
N1vii—Rb1—N2vi70.0 (3)Rb2i—O2—Rb289.1 (2)
N1—Rb1—N2iv70.0 (3)Rb2xiv—O2—Rb2xv76.22 (17)
N1vii—Rb1—N2iv108.5 (3)Rb2—O2—Rb2xv78.31 (10)
N1—Rb1—N2vi108.5 (3)Rb2i—O2—Rb2xiv78.32 (10)
N1—Rb1—N2iii143.4 (3)Rb2—O2—Rb2xiv131.6 (3)
N1vii—Rb1—N2iii143.4 (3)Rb2i—O2—Rb2xv131.6 (3)
N1vii—Rb1—N2v108.5 (3)O1—O2—Rb172.6 (3)
N1—Rb1—N1vii62.4 (6)O1—O2—Rb1viii72.6 (3)
O1—Rb2—O1viii92.3 (2)O1—O2—Rb271.8 (3)
O1viii—Rb2—O2ix95.11 (15)O1—O2—Rb2xv141.86 (9)
O1—Rb2—O2viii98.78 (18)O1—O2—Rb2xiv141.86 (9)
O1—Rb2—O2x95.11 (15)O1—O2—Rb2i71.8 (3)
O1viii—Rb2—O2x168.22 (18)Rb1iv—N2—Rb1xvi73.7 (2)
O1—Rb2—O2ix168.22 (18)Rb1iv—N2—Rb1xvii79.1 (2)
O1viii—Rb2—O2viii30.8 (2)Rb1xvii—N2—Rb1xvi73.7 (2)
O1viii—Rb2—O298.77 (18)Rb1xvi—N2—Rb2xviii66.4 (2)
O1—Rb2—O230.8 (2)Rb1xvii—N2—Rb2xviii123.1 (3)
O1—Rb2—N2xi56.23 (17)Rb1iv—N2—Rb2xviii123.1 (3)
O1viii—Rb2—N2xi56.23 (17)Rb1—N1—Rb1viii73.5 (3)
O1viii—Rb2—N1ix85.1 (3)Rb1—N1—Rb2xvi161.2 (5)
O1—Rb2—N1ix134.7 (3)Rb1—N1—Rb2xv116.4 (4)
O1—Rb2—N1x76.0 (3)Rb2xiv—N1—Rb179.2 (4)
O1—Rb2—N1xi119.6 (3)Rb2xvi—N1—Rb1viii93.0 (4)
O1—Rb2—N1xii74.5 (3)Rb2xv—N1—Rb1viii66.4 (3)
O1viii—Rb2—N1xiii134.7 (3)Rb2xviii—N1—Rb1114.5 (5)
O1viii—Rb2—N1xii119.6 (3)Rb2xiv—N1—Rb1viii116.9 (4)
O1viii—Rb2—N1xi74.5 (3)Rb2xviii—N1—Rb1viii162.1 (5)
O1viii—Rb2—N1x140.3 (3)Rb2xviii—N1—Rb2xvi75.0 (3)
O1—Rb2—N1xiii85.1 (3)Rb2xviii—N1—Rb2xv118.8 (4)
O2x—Rb2—O2ix76.22 (17)Rb2xv—N1—Rb2xvi67.5 (3)
O2—Rb2—O2ix154.83 (12)Rb2xiv—N1—Rb2xv77.7 (3)
O2viii—Rb2—O2ix92.24 (11)Rb2xiv—N1—Rb2xvi119.1 (4)
O2viii—Rb2—O289.1 (2)Rb2xiv—N1—Rb2xviii80.9 (4)
O2viii—Rb2—O2x154.83 (12)N1xix—N1—Rb1viii47.7 (2)
O2—Rb2—O2x92.24 (11)N1xix—N1—Rb1121.2 (3)
O2viii—Rb2—N2xi83.6 (2)N1xix—N1—Rb2xv45.5 (2)
O2ix—Rb2—N2xi121.53 (19)N1xix—N1—Rb2xvi46.9 (3)
O2x—Rb2—N2xi121.53 (19)N1xix—N1—Rb2xiv123.2 (3)
O2—Rb2—N2xi83.6 (2)N1xix—N1—Rb2xviii121.9 (3)
O2viii—Rb2—N1xii150.4 (3)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y+1/2, z+1; (vi) x+1, y1/2, z+1; (vii) x, y+1/2, z; (viii) x, y+1, z; (ix) x1/2, y+1, z+1/2; (x) x1/2, y, z+1/2; (xi) x1, y+1, z; (xii) x1, y+3/2, z; (xiii) x1/2, y+3/2, z+1/2; (xiv) x+1/2, y1, z+1/2; (xv) x+1/2, y, z+1/2; (xvi) x+1, y, z; (xvii) x+1, y, z+1; (xviii) x+1, y1, z; (xix) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O21.05 (14)1.98 (15)2.941 (16)151 (8)
N1—H1B···O2xx0.97 (13)2.04 (15)2.926 (15)151 (8)
N1—H1C···O1xvi0.82 (14)3.07 (16)3.597 (16)125 (11)
N2—H2A···N2iv0.74 (16)3.03 (12)3.57 (2)131 (6)
N2—H2A···N2vi0.74 (16)3.03 (12)3.57 (2)131 (6)
N2—H2A···N2v0.74 (16)3.03 (12)3.57 (2)131 (6)
N2—H2B···O1xvi1.01 (11)1.95 (11)2.955 (10)173 (8)
Symmetry codes: (iv) x+1, y+1, z+1; (v) x+1, y+1/2, z+1; (vi) x+1, y1/2, z+1; (xvi) x+1, y, z; (xx) x+1/2, y+3/2, z+1/2.
 

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBremm, Th. & Jansen, M. (1992). Z. Anorg. Allg. Chem. 610, 64–66.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFöppl, H. (1954). Angew. Chem. 66, 335–335.  Google Scholar
First citationFöppl, H. (1955). Angew. Chem. 67, 712–712.  Google Scholar
First citationFöppl, H. (1957). Z. Anorg. Allg. Chem. 291, 12–49.  Google Scholar
First citationGrehl, M., Fröhlich, R. & Thiele, S. (1995). Acta Cryst. C51, 1038–1040.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHamberger, M., Liebig, S., Friedrich, U., Korber, N. & Ruschewitz, U. (2012). Angew. Chem. 124, 13181–13185.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds