research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­{(S)-1-[2-(di­phenyl­phosphan­yl)ferrocen­yl]-(R)-eth­yl}ammonium bromide di­chloro­methane monosolvate

CROSSMARK_Color_square_no_text.svg

aInstitute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, A-1060 Vienna, Austria, and bX-Ray Centre, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria
*Correspondence e-mail: berthold.stoeger@tuwien.ac.at

Edited by S. Parkin, University of Kentucky, USA (Received 12 December 2016; accepted 22 December 2016; online 13 January 2017)

During the synthesis of an FeBr2 complex with the PNP ligand (R,R,SFc,SFc)-[Fe2(C5H5)2(C38H35NP2)] (1), single crystals of the di­chloro­methane monosolvate of the Br salt of the protonated ligand 1H+ were obtained serendipitously, i.e. [Fe2(C5H5)2(C38H36NP2)]Br·CH2Cl2. The crystal structure of 1H·Br·CH2Cl2 was determined by single-crystal X-ray diffraction. The mean bond lengths in the ferrocene units are Fe—C = 2.049 (3) Å and C—C = 1.422 (4) Å within the cyclo­penta­dienyl rings. The mean C—N bond length is 1.523 (4) Å. The inter­planar angle between the two connected cyclo­penta­dienyl rings is 49.2 (2)°. One ferrocene moiety adopts a staggered conformation, whereas the other is between staggered and eclipsed. The Br ions and the CH2Cl2 mol­ecules are located in channels extending along <100>. One ammonium H atom forms a hydrogen bond with the Br ion [H⋯Br = 2.32 (4) Å and C—H⋯Br = 172 (3)°]. The second ammonium H atom is not involved in hydrogen bonding.

1. Chemical context

During the last decade, chiral non-racemic substituted ferrocene derivatives have found broad applications in a number of different fields, including asymmetric catalysis, and an increasing number of new catalysts and ligands have been reported progressively (Helmchen & Pfaltz, 2000[Helmchen, G. & Pfaltz, A. (2000). Acc. Chem. Res. 33, 336-345.]; Dai et al., 2003[Dai, L. X., Tu, T., You, S. L., Deng, W. P. & Hou, X. L. (2003). Acc. Chem. Res. 36, 659-667.]; Sutcliffe & Bryce, 2003[Sutcliffe, O. B. & Bryce, M. R. (2003). Tetrahedron Asymmetry, 14, 2297-2325.]; McManus & Guiry, 2004[McManus, H. A. & Guiry, P. J. (2004). Chem. Rev. 104, 4151-4202.]; Miyake et al., 2008[Miyake, Y., Nishibayashi, Y. & Uemura, S. (2008). Synlett, pp. 1747-1758.]; Štěpnička, 2008[Štěpnička, P. (2008). Editor. Ferrocenes: Ligands, Materials and Biomolecules. Chichester: Wiley.]; Hargaden & Guiry, 2009[Hargaden, G. C. & Guiry, P. J. (2009). Chem. Rev. 109, 2505-2550.]). During the synthesis of chiral PNP pincer ligands [tridentate ligands coordinating to a central metal atom via P, N and P (Szabo & Wendt, 2014[Szabo, K. J. & Wendt, O. F. (2014). In Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis. Weinheim: Wiley-VCH.])] with a ferrocene scaffold and their FeII complexes (Hargaden & Guiry, 2009[Hargaden, G. C. & Guiry, P. J. (2009). Chem. Rev. 109, 2505-2550.]), the salt 1H·Br was crystallized as its CH2Cl2 solvate (Fig. 1[link]) instead of the expected [Fe(PNP)Br2] complex (Fig. 2[link]). However, neither the crystal structure of any salt of 1H+, nor of any of its solvates, has been reported up to now. The crystal structure of 1H·Br·CH2Cl2 is reported in this communication with the aim of contributing to a deeper understanding of its mol­ecular structure and the crystal packing.

[Scheme 1]
[Figure 1]
Figure 1
The structures of the molecular entities in 1H·Br·CH2Cl2. Non-H atoms are represented by ellipsoids drawn at the 50% probability level (C gray, N blue, P light orange, Cl green, Fe dark orange and Br brown). Ammonium H atoms are represented by white spheres and the hydrogen bond is represented by a red line. Other H atoms have been omitted for clarity.
[Figure 2]
Figure 2
Reaction scheme towards the formation of the title salt 1H·Br.

2. Structural commentary

The title salt 1H·Br crystallizes with one di­chloro­methane mol­ecule in space group P43, with one formula unit in the asymmetric unit. The correct space-group assignment, and by consequence absolute configuration, was confirmed by resonant scattering [Flack parameter 0.002 (3); Flack, 1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]]. It is in agreement with the expected absolute configuration as determined by the enanti­oselective synthesis (Zirakzadeh et al., 2016[Zirakzadeh, A., Kirchner, K., Roller, A., Stöger, B., Carvalho, M. D. & Ferreira, L. P. (2016). RSC Adv. 6, 11840-11847.]). In contrast to classical PNP complexes, where the lone pairs of the P and N atoms are directed towards the coordinated metal, the 1H+ ion adopts a distinctly more twisted conformation (Fig. 1[link]) [the angles of the C—N bonds to the least-squares planes of connected penta­dienyl moieties are 61.2 (2) and 81.9 (10)°]. Whereas the lone pairs of the P atoms are approximately in a face-to-face orientation, the hydrogen atoms of the secondary ammonium group are directed in a different direction towards distinct channels in the structure (see below). The ferrocene moieties adopt staggered (Fe2: average C—G—G—C torsion angle 30.1°, where C stands for a C atom of the ferrocene and G for the center of gravity of the C atoms of the corresponding ring) and somewhat more eclipsed (Fe1: 14.9°) conformations, respectively.

3. Supra­molecular features

One of the two ammonium H atoms forms a hydrogen bond with the Br ion (Table 1[link]). The second H atom is not involved in hydrogen bonding. Besides the hydrogen bonding, no further notable supra­molecular inter­actions are apparent. The 1H+ ions form a van der Waals-packed three-dimensional framework (Fig. 3[link]). The CH2Cl2 solvent mol­ecules and Br ions are located in channels of this network that extend along <100>. Without CH2Cl2 mol­ecules and Br ions, the packing index (fraction of filled space) is 62.4% [calculated with PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])]. Each CH2Cl2 solvent mol­ecule occupies 98 Å3 of the structure. In total, the solvent mol­ecules make up a 9.2% volume fraction of the structure.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—HN1⋯Br1 0.92 (4) 2.32 (4) 3.228 (3) 172 (3)
[Figure 3]
Figure 3
The crystal structure of 1H·Br·CH2Cl2 viewed down [010]. Atoms are as in Fig. 1[link]. H atoms have been omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (Version 5.37; last update March 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures of mol­ecules containing an analogous tridentate ferrocene PNP scaffold revealed no entries. However, three mol­ecules where the secondary amine functionality is replaced by a longer linker were found: AZAHED (amine substituted for imidazolium; Gischig & Togni, 2005[Gischig, S. & Togni, A. (2005). Eur. J. Inorg. Chem. pp. 4745-4754.]), ALEZMOS (2,6-pyridine dicarboxamide; Reddy et al., 2007[Reddy, P. A. N., Md, N. S. & Kim, T.-J. (2007). Acta Cryst. E63, m971-m972.]) and PEDTEX (piperazine; Zhou & Zhang, 2005[Zhou, Z.-M. & Zhang, Y.-M. (2005). Synth. Commun. 35, 2401-2408.]). Finally, in XARUD (You et al., 2000[You, S.-L., Hou, X.-L., Dai, L.-X., Cao, B.-X. & Sun, J. (2000). Chem. Commun. pp. 1933-1934.]) the amine functionality is substituted by a cyclo­hexa­nedi­amine unit. Moreover, the methyl groups are substituted by oxo groups, making XARUD a bis-formamide.

5. Synthesis and crystallization

All reactions were performed under an inert atmosphere of argon using Schlenk techniques. The solvents were purified according to standard procedures. The synthesis of 1 and the [Fe(PNP)Br2] complex was described in detail by our group (Zirakzadeh et al., 2016[Zirakzadeh, A., Kirchner, K., Roller, A., Stöger, B., Carvalho, M. D. & Ferreira, L. P. (2016). RSC Adv. 6, 11840-11847.]). Single crystals suitable for X-ray structure determination were grown by vapour diffusion of Et2O into a CH2Cl2 solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were placed in calculated positions and refined as riding atoms, with fixed bond lengths in the range 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(CMe). Ammonium H atoms were found in difference Fourier maps and were refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [Fe2(C5H5)2(C38H36NP2)]Br·CH2Cl2
Mr 975.33
Crystal system, space group Tetragonal, P43
Temperature (K) 100
a, c (Å) 11.2463 (7), 33.938 (2)
V3) 4292.5 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.84
Crystal size (mm) 0.35 × 0.17 × 0.11
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015[Bruker (2015). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.590, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 42331, 12559, 10851
Rint 0.043
(sin θ/λ)max−1) 0.704
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.063, 0.98
No. of reflections 12559
No. of parameters 524
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.85, −0.41
Absolute structure Flack x determined using 4530 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.002 (3)
Computer programs: APEX2 and SAINT-Plus (Bruker, 2015[Bruker (2015). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2015); cell refinement: SAINT-Plus (Bruker, 2015); data reduction: SAINT-Plus (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Bis{(S)-1-[2-(diphenylphosphanyl)ferrocenyl]-(R)-ethyl}ammonium bromide dichloromethane monosolvate top
Crystal data top
[Fe2(C5H5)2(C38H36NP2)]Br·CH2Cl2Dx = 1.509 Mg m3
Mr = 975.33Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 9938 reflections
a = 11.2463 (7) Åθ = 2.2–29.6°
c = 33.938 (2) ŵ = 1.84 mm1
V = 4292.5 (6) Å3T = 100 K
Z = 4Tabular, translucent yellow
F(000) = 20000.35 × 0.17 × 0.11 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
10851 reflections with I > 2σ(I)
ω– and φ–scansRint = 0.043
Absorption correction: multi-scan
(SADABS; Bruker, 2015)
θmax = 30.0°, θmin = 2.2°
Tmin = 0.590, Tmax = 0.746h = 1515
42331 measured reflectionsk = 1115
12559 independent reflectionsl = 4747
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0078P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max = 0.003
S = 0.98Δρmax = 0.85 e Å3
12559 reflectionsΔρmin = 0.41 e Å3
524 parametersAbsolute structure: Flack x determined using 4530 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.002 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0686 (3)0.4072 (3)0.58926 (11)0.0220 (7)
H1A0.12990.44970.57430.033*
H1B0.07810.42410.61740.033*
H1C0.07660.32150.58470.033*
C20.0537 (3)0.4481 (3)0.57579 (9)0.0137 (6)
H20.06040.43420.54680.016*
C30.1551 (3)0.3877 (3)0.59565 (9)0.0132 (6)
C40.2741 (3)0.3804 (3)0.57985 (8)0.0123 (6)
C50.3460 (3)0.3215 (3)0.60882 (9)0.0141 (6)
H50.43220.30140.60600.017*
C60.2736 (3)0.2951 (3)0.64204 (9)0.0164 (7)
H60.30030.25270.66640.020*
C70.1568 (3)0.3361 (3)0.63457 (8)0.0149 (6)
H70.08720.32850.65270.018*
C80.0747 (3)0.1189 (3)0.56528 (10)0.0215 (7)
H80.00630.14890.55820.026*
C90.1767 (3)0.1237 (3)0.54086 (9)0.0211 (7)
H90.18040.15720.51360.025*
C100.2732 (3)0.0718 (3)0.56207 (9)0.0193 (7)
H100.35660.06270.55230.023*
C110.2304 (3)0.0365 (3)0.59963 (9)0.0195 (7)
H110.27810.00220.62090.023*
C120.1073 (3)0.0660 (3)0.60168 (9)0.0200 (7)
H120.05330.05120.62460.024*
C130.4461 (3)0.3477 (3)0.51945 (8)0.0142 (6)
C140.5614 (3)0.3743 (3)0.53203 (9)0.0160 (6)
H140.57450.43950.54930.019*
C150.6571 (3)0.3055 (3)0.51942 (9)0.0194 (7)
H150.73550.32550.52750.023*
C160.6386 (3)0.2085 (3)0.49530 (9)0.0215 (7)
H160.70420.16120.48720.026*
C170.5253 (3)0.1799 (3)0.48301 (9)0.0225 (8)
H170.51250.11260.46660.027*
C180.4297 (3)0.2499 (3)0.49472 (9)0.0185 (7)
H180.35200.23080.48570.022*
C190.3763 (3)0.5819 (3)0.54381 (9)0.0149 (6)
C200.4276 (3)0.6117 (3)0.57988 (9)0.0210 (7)
H200.43060.55400.60030.025*
C210.4743 (3)0.7238 (3)0.58649 (10)0.0263 (8)
H210.51030.74170.61110.032*
C220.4687 (3)0.8100 (3)0.55753 (11)0.0247 (8)
H220.50140.88670.56210.030*
C230.4150 (3)0.7837 (3)0.52171 (10)0.0223 (7)
H230.40980.84290.50180.027*
C240.3691 (3)0.6711 (3)0.51496 (9)0.0179 (7)
H240.33220.65410.49040.021*
C250.0812 (3)0.7888 (3)0.56353 (10)0.0212 (7)
H25A0.08380.84440.54130.032*
H25B0.15780.78980.57730.032*
H25C0.01800.81250.58180.032*
C260.0566 (3)0.6644 (3)0.54835 (9)0.0146 (6)
H260.12200.64340.52960.017*
C270.0585 (3)0.6444 (3)0.52736 (9)0.0130 (6)
C280.0692 (3)0.5934 (3)0.48808 (9)0.0132 (6)
C290.1935 (3)0.5798 (3)0.48021 (9)0.0147 (6)
H290.22850.54800.45530.018*
C300.2590 (3)0.6198 (3)0.51351 (9)0.0177 (7)
H300.34760.62070.51590.021*
C310.1770 (3)0.6604 (3)0.54246 (9)0.0159 (7)
H310.19810.69470.56870.019*
C320.1196 (3)0.9296 (3)0.50030 (10)0.0210 (7)
H320.07710.96390.52360.025*
C330.0658 (3)0.8890 (3)0.46484 (10)0.0235 (8)
H330.02130.88990.45880.028*
C340.1575 (3)0.8482 (3)0.43933 (9)0.0211 (7)
H340.14630.81440.41230.025*
C350.2676 (3)0.8630 (3)0.45922 (9)0.0199 (7)
H350.34770.84100.44870.024*
C360.2440 (3)0.9129 (3)0.49689 (9)0.0200 (7)
H360.30460.93290.51740.024*
C370.0177 (3)0.6142 (3)0.40879 (9)0.0144 (6)
C380.0694 (3)0.5590 (3)0.38573 (9)0.0166 (7)
H380.10470.48670.39430.020*
C390.1043 (3)0.6099 (3)0.35028 (9)0.0186 (7)
H390.16450.57310.33490.022*
C400.0521 (3)0.7138 (3)0.33734 (9)0.0208 (7)
H400.07830.74950.31350.025*
C410.0376 (3)0.7662 (3)0.35875 (10)0.0222 (7)
H410.07480.83640.34920.027*
C420.0741 (3)0.7164 (3)0.39440 (9)0.0181 (7)
H420.13710.75180.40890.022*
C430.0615 (3)0.4026 (3)0.45190 (9)0.0151 (6)
C440.0287 (3)0.3254 (3)0.46356 (10)0.0202 (7)
H440.09850.35610.47560.024*
C450.0172 (3)0.2029 (3)0.45761 (10)0.0252 (8)
H450.07900.15060.46560.030*
C460.0841 (4)0.1580 (3)0.44007 (10)0.0246 (8)
H460.09180.07480.43610.030*
C470.1737 (3)0.2331 (3)0.42841 (9)0.0219 (8)
H470.24310.20190.41620.026*
C480.1627 (3)0.3538 (3)0.43439 (9)0.0198 (7)
H480.22540.40500.42640.024*
C490.4840 (4)0.6399 (4)0.41211 (16)0.0437 (11)
H49A0.41550.64890.39400.052*
H49B0.47730.70190.43270.052*
HN10.021 (3)0.607 (3)0.6044 (10)0.014 (9)*
HN20.136 (4)0.591 (3)0.5913 (11)0.020 (10)*
N10.0665 (3)0.5811 (2)0.58352 (7)0.0139 (5)
P10.31329 (7)0.43597 (7)0.53127 (2)0.01328 (16)
P20.06254 (7)0.56433 (7)0.45811 (2)0.01388 (16)
Cl10.47840 (9)0.49888 (9)0.43433 (3)0.0300 (2)
Cl20.61642 (9)0.66107 (8)0.38571 (2)0.0270 (2)
Fe10.20638 (4)0.21570 (4)0.59224 (2)0.01257 (9)
Fe20.15647 (4)0.75393 (4)0.49136 (2)0.01342 (10)
Br10.07213 (3)0.66115 (3)0.66249 (2)0.02449 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0133 (17)0.0182 (18)0.0344 (18)0.0009 (13)0.0002 (15)0.0018 (15)
C20.0139 (16)0.0101 (15)0.0172 (13)0.0002 (12)0.0008 (12)0.0009 (12)
C30.0137 (15)0.0093 (15)0.0165 (13)0.0003 (12)0.0018 (12)0.0006 (12)
C40.0129 (16)0.0090 (15)0.0151 (12)0.0034 (12)0.0002 (12)0.0026 (11)
C50.0134 (16)0.0106 (15)0.0184 (14)0.0012 (12)0.0027 (12)0.0011 (12)
C60.0209 (17)0.0133 (16)0.0151 (13)0.0011 (13)0.0042 (12)0.0005 (12)
C70.0169 (17)0.0142 (16)0.0136 (12)0.0019 (13)0.0014 (12)0.0028 (12)
C80.0223 (19)0.0150 (17)0.0270 (16)0.0029 (14)0.0110 (14)0.0044 (14)
C90.032 (2)0.0148 (17)0.0170 (14)0.0033 (14)0.0065 (14)0.0039 (12)
C100.0236 (19)0.0122 (16)0.0220 (15)0.0011 (14)0.0007 (14)0.0041 (13)
C110.0249 (19)0.0087 (16)0.0248 (16)0.0001 (13)0.0044 (14)0.0026 (13)
C120.0239 (19)0.0123 (16)0.0236 (15)0.0066 (14)0.0012 (14)0.0004 (13)
C130.0158 (16)0.0142 (16)0.0124 (12)0.0009 (13)0.0040 (12)0.0016 (12)
C140.0202 (17)0.0134 (16)0.0146 (13)0.0012 (13)0.0008 (13)0.0018 (12)
C150.0173 (17)0.0217 (18)0.0192 (14)0.0012 (14)0.0019 (13)0.0032 (13)
C160.0230 (19)0.0201 (18)0.0215 (15)0.0086 (14)0.0079 (14)0.0033 (14)
C170.028 (2)0.0195 (18)0.0198 (15)0.0017 (15)0.0061 (14)0.0035 (13)
C180.0191 (18)0.0196 (18)0.0168 (13)0.0024 (14)0.0008 (13)0.0009 (13)
C190.0138 (16)0.0110 (16)0.0199 (13)0.0015 (12)0.0023 (12)0.0004 (12)
C200.026 (2)0.0179 (18)0.0194 (14)0.0039 (14)0.0016 (14)0.0025 (13)
C210.031 (2)0.024 (2)0.0239 (16)0.0035 (16)0.0003 (15)0.0086 (15)
C220.026 (2)0.0141 (17)0.0345 (18)0.0043 (15)0.0063 (16)0.0048 (15)
C230.0215 (19)0.0136 (17)0.0320 (17)0.0019 (14)0.0048 (15)0.0046 (14)
C240.0162 (17)0.0181 (17)0.0195 (14)0.0038 (14)0.0029 (13)0.0002 (13)
C250.0213 (19)0.0170 (18)0.0251 (16)0.0028 (14)0.0058 (14)0.0026 (14)
C260.0139 (16)0.0143 (16)0.0154 (13)0.0001 (13)0.0000 (12)0.0003 (12)
C270.0124 (15)0.0117 (15)0.0150 (13)0.0000 (12)0.0002 (12)0.0027 (11)
C280.0137 (16)0.0091 (15)0.0169 (13)0.0026 (12)0.0005 (12)0.0011 (12)
C290.0144 (16)0.0096 (15)0.0201 (14)0.0015 (12)0.0023 (12)0.0002 (12)
C300.0122 (16)0.0151 (17)0.0259 (15)0.0023 (13)0.0003 (13)0.0049 (13)
C310.0151 (17)0.0140 (16)0.0187 (14)0.0014 (13)0.0019 (12)0.0035 (12)
C320.026 (2)0.0089 (16)0.0287 (17)0.0016 (14)0.0042 (15)0.0015 (13)
C330.0218 (19)0.0140 (17)0.0347 (18)0.0017 (14)0.0061 (15)0.0057 (15)
C340.030 (2)0.0162 (18)0.0171 (14)0.0043 (15)0.0030 (14)0.0036 (13)
C350.0238 (19)0.0151 (17)0.0209 (14)0.0055 (14)0.0052 (14)0.0015 (13)
C360.027 (2)0.0114 (16)0.0213 (15)0.0050 (14)0.0010 (14)0.0005 (13)
C370.0144 (16)0.0114 (15)0.0173 (13)0.0019 (12)0.0027 (12)0.0013 (12)
C380.0167 (17)0.0135 (16)0.0196 (14)0.0006 (13)0.0053 (13)0.0025 (13)
C390.0139 (17)0.0232 (18)0.0186 (14)0.0004 (14)0.0029 (12)0.0014 (13)
C400.0231 (19)0.0234 (19)0.0157 (13)0.0062 (15)0.0059 (13)0.0032 (13)
C410.0239 (19)0.0170 (18)0.0256 (16)0.0029 (15)0.0098 (14)0.0036 (14)
C420.0153 (17)0.0172 (17)0.0218 (15)0.0009 (14)0.0025 (13)0.0022 (13)
C430.0180 (17)0.0108 (16)0.0165 (13)0.0003 (13)0.0059 (12)0.0016 (12)
C440.0187 (18)0.0175 (18)0.0245 (15)0.0019 (14)0.0025 (14)0.0040 (14)
C450.032 (2)0.0130 (17)0.0310 (17)0.0080 (15)0.0105 (16)0.0059 (15)
C460.038 (2)0.0128 (17)0.0227 (16)0.0040 (15)0.0113 (16)0.0026 (14)
C470.029 (2)0.0181 (18)0.0185 (14)0.0077 (15)0.0044 (14)0.0031 (13)
C480.0231 (19)0.0166 (18)0.0197 (14)0.0013 (14)0.0003 (14)0.0000 (13)
C490.037 (3)0.021 (2)0.074 (3)0.0029 (18)0.023 (2)0.008 (2)
N10.0150 (15)0.0117 (13)0.0150 (12)0.0027 (11)0.0011 (11)0.0007 (10)
P10.0145 (4)0.0123 (4)0.0131 (3)0.0007 (3)0.0008 (3)0.0002 (3)
P20.0132 (4)0.0113 (4)0.0172 (3)0.0007 (3)0.0011 (3)0.0013 (3)
Cl10.0394 (6)0.0249 (5)0.0257 (4)0.0043 (4)0.0090 (4)0.0017 (4)
Cl20.0363 (6)0.0189 (4)0.0258 (4)0.0014 (4)0.0093 (4)0.0004 (3)
Fe10.0143 (2)0.0102 (2)0.01322 (17)0.00054 (18)0.00217 (17)0.00136 (17)
Fe20.0141 (2)0.0099 (2)0.01633 (19)0.00013 (18)0.00018 (18)0.00051 (17)
Br10.02010 (19)0.0307 (2)0.02272 (15)0.00139 (16)0.00429 (14)0.00784 (15)
Geometric parameters (Å, º) top
C1—C21.521 (4)C25—H25C0.9800
C1—H1A0.9800C26—C271.494 (4)
C1—H1B0.9800C26—N11.521 (4)
C1—H1C0.9800C26—H261.0000
C2—C31.488 (4)C27—C311.439 (4)
C2—N11.525 (4)C27—C281.456 (4)
C2—H21.0000C27—Fe22.055 (3)
C3—C71.443 (4)C28—C291.431 (4)
C3—C41.445 (4)C28—P21.826 (3)
C3—Fe12.022 (3)C28—Fe22.058 (3)
C4—C51.435 (4)C29—C301.422 (4)
C4—P11.818 (3)C29—Fe22.038 (3)
C4—Fe12.046 (3)C29—H291.0000
C5—C61.422 (4)C30—C311.423 (5)
C5—Fe12.049 (3)C30—Fe22.042 (3)
C5—H51.0000C30—H301.0000
C6—C71.415 (5)C31—Fe22.041 (3)
C6—Fe12.055 (3)C31—H311.0000
C6—H61.0000C32—C361.416 (5)
C7—Fe12.051 (3)C32—C331.422 (5)
C7—H71.0000C32—Fe22.041 (3)
C8—C91.416 (5)C32—H321.0000
C8—C121.420 (5)C33—C341.423 (5)
C8—Fe12.053 (3)C33—Fe22.039 (3)
C8—H81.0000C33—H331.0000
C9—C101.427 (5)C34—C351.421 (5)
C9—Fe12.055 (3)C34—Fe22.060 (3)
C9—H91.0000C34—H341.0000
C10—C111.419 (5)C35—C361.421 (4)
C10—Fe12.058 (3)C35—Fe22.064 (3)
C10—H101.0000C35—H351.0000
C11—C121.425 (5)C36—Fe22.050 (3)
C11—Fe12.048 (3)C36—H361.0000
C11—H111.0000C37—C381.399 (5)
C12—Fe12.045 (3)C37—C421.401 (4)
C12—H121.0000C37—P21.836 (3)
C13—C181.396 (4)C38—C391.389 (4)
C13—C141.397 (4)C38—H380.9500
C13—P11.837 (3)C39—C401.380 (5)
C14—C151.393 (5)C39—H390.9500
C14—H140.9500C40—C411.376 (5)
C15—C161.380 (5)C40—H400.9500
C15—H150.9500C41—C421.394 (5)
C16—C171.379 (5)C41—H410.9500
C16—H160.9500C42—H420.9500
C17—C181.390 (5)C43—C441.393 (5)
C17—H170.9500C43—C481.396 (5)
C18—H180.9500C43—P21.831 (3)
C19—C201.394 (4)C44—C451.398 (5)
C19—C241.405 (4)C44—H440.9500
C19—P11.838 (3)C45—C461.381 (5)
C20—C211.384 (5)C45—H450.9500
C20—H200.9500C46—C471.373 (5)
C21—C221.382 (5)C46—H460.9500
C21—H210.9500C47—C481.378 (5)
C22—C231.389 (5)C47—H470.9500
C22—H220.9500C48—H480.9500
C23—C241.386 (5)C49—Cl21.754 (4)
C23—H230.9500C49—Cl11.758 (4)
C24—H240.9500C49—H49A0.9900
C25—C261.516 (4)C49—H49B0.9900
C25—H25A0.9800N1—HN10.92 (4)
C25—H25B0.9800N1—HN20.83 (4)
C2—C1—H1A109.5C35—C34—C33107.8 (3)
C2—C1—H1B109.5C35—C34—Fe270.00 (18)
H1A—C1—H1B109.5C33—C34—Fe268.92 (19)
C2—C1—H1C109.5C35—C34—H34126.1
H1A—C1—H1C109.5C33—C34—H34126.1
H1B—C1—H1C109.5Fe2—C34—H34126.1
C3—C2—C1114.7 (3)C34—C35—C36108.1 (3)
C3—C2—N1107.3 (2)C34—C35—Fe269.70 (19)
C1—C2—N1109.3 (3)C36—C35—Fe269.25 (18)
C3—C2—H2108.5C34—C35—H35126.0
C1—C2—H2108.5C36—C35—H35126.0
N1—C2—H2108.5Fe2—C35—H35126.0
C7—C3—C4107.7 (3)C32—C36—C35108.1 (3)
C7—C3—C2127.5 (3)C32—C36—Fe269.42 (19)
C4—C3—C2124.6 (3)C35—C36—Fe270.32 (18)
C7—C3—Fe170.33 (17)C32—C36—H36126.0
C4—C3—Fe170.09 (17)C35—C36—H36126.0
C2—C3—Fe1129.0 (2)Fe2—C36—H36126.0
C5—C4—C3107.1 (3)C38—C37—C42119.1 (3)
C5—C4—P1130.1 (2)C38—C37—P2124.5 (2)
C3—C4—P1122.8 (2)C42—C37—P2116.4 (2)
C5—C4—Fe169.62 (18)C39—C38—C37119.9 (3)
C3—C4—Fe168.32 (17)C39—C38—H38120.0
P1—C4—Fe1126.02 (15)C37—C38—H38120.0
C6—C5—C4108.5 (3)C40—C39—C38120.3 (3)
C6—C5—Fe169.96 (18)C40—C39—H39119.8
C4—C5—Fe169.37 (17)C38—C39—H39119.8
C6—C5—H5125.8C41—C40—C39120.4 (3)
C4—C5—H5125.8C41—C40—H40119.8
Fe1—C5—H5125.8C39—C40—H40119.8
C7—C6—C5108.7 (3)C40—C41—C42120.2 (3)
C7—C6—Fe169.68 (17)C40—C41—H41119.9
C5—C6—Fe169.50 (17)C42—C41—H41119.9
C7—C6—H6125.6C41—C42—C37119.9 (3)
C5—C6—H6125.6C41—C42—H42120.0
Fe1—C6—H6125.6C37—C42—H42120.0
C6—C7—C3107.9 (3)C44—C43—C48118.0 (3)
C6—C7—Fe170.01 (18)C44—C43—P2126.2 (3)
C3—C7—Fe168.18 (16)C48—C43—P2115.8 (3)
C6—C7—H7126.0C43—C44—C45120.4 (3)
C3—C7—H7126.0C43—C44—H44119.8
Fe1—C7—H7126.0C45—C44—H44119.8
C9—C8—C12108.4 (3)C46—C45—C44119.9 (3)
C9—C8—Fe169.90 (19)C46—C45—H45120.0
C12—C8—Fe169.41 (19)C44—C45—H45120.0
C9—C8—H8125.8C47—C46—C45120.3 (3)
C12—C8—H8125.8C47—C46—H46119.8
Fe1—C8—H8125.8C45—C46—H46119.8
C8—C9—C10107.8 (3)C46—C47—C48119.8 (4)
C8—C9—Fe169.76 (19)C46—C47—H47120.1
C10—C9—Fe169.80 (18)C48—C47—H47120.1
C8—C9—H9126.1C47—C48—C43121.6 (3)
C10—C9—H9126.1C47—C48—H48119.2
Fe1—C9—H9126.1C43—C48—H48119.2
C11—C10—C9108.0 (3)Cl2—C49—Cl1111.8 (2)
C11—C10—Fe169.42 (19)Cl2—C49—H49A109.2
C9—C10—Fe169.58 (19)Cl1—C49—H49A109.2
C11—C10—H10126.0Cl2—C49—H49B109.2
C9—C10—H10126.0Cl1—C49—H49B109.2
Fe1—C10—H10126.0H49A—C49—H49B107.9
C10—C11—C12108.0 (3)C26—N1—C2117.5 (2)
C10—C11—Fe170.14 (19)C26—N1—HN1112 (2)
C12—C11—Fe169.49 (19)C2—N1—HN1113 (2)
C10—C11—H11126.0C26—N1—HN2104 (3)
C12—C11—H11126.0C2—N1—HN2106 (3)
Fe1—C11—H11126.0HN1—N1—HN2103 (3)
C8—C12—C11107.8 (3)C4—P1—C13102.08 (14)
C8—C12—Fe170.0 (2)C4—P1—C19100.99 (14)
C11—C12—Fe169.77 (18)C13—P1—C19102.68 (14)
C8—C12—H12126.1C28—P2—C43103.69 (15)
C11—C12—H12126.1C28—P2—C37103.33 (14)
Fe1—C12—H12126.1C43—P2—C37101.34 (14)
C18—C13—C14118.3 (3)C3—Fe1—C12128.57 (14)
C18—C13—P1116.7 (2)C3—Fe1—C441.59 (12)
C14—C13—P1124.9 (2)C12—Fe1—C4168.69 (13)
C15—C14—C13120.3 (3)C3—Fe1—C11166.34 (13)
C15—C14—H14119.8C12—Fe1—C1140.74 (14)
C13—C14—H14119.8C4—Fe1—C11150.05 (13)
C16—C15—C14120.4 (3)C3—Fe1—C569.36 (13)
C16—C15—H15119.8C12—Fe1—C5148.54 (13)
C14—C15—H15119.8C4—Fe1—C541.02 (12)
C17—C16—C15120.2 (3)C11—Fe1—C5115.89 (13)
C17—C16—H16119.9C3—Fe1—C741.49 (12)
C15—C16—H16119.9C12—Fe1—C7106.61 (13)
C16—C17—C18119.7 (3)C4—Fe1—C769.37 (12)
C16—C17—H17120.1C11—Fe1—C7126.83 (13)
C18—C17—H17120.1C5—Fe1—C768.45 (13)
C17—C18—C13121.1 (3)C3—Fe1—C8109.07 (13)
C17—C18—H18119.4C12—Fe1—C840.54 (13)
C13—C18—H18119.4C4—Fe1—C8131.05 (13)
C20—C19—C24117.7 (3)C11—Fe1—C868.17 (14)
C20—C19—P1125.3 (3)C5—Fe1—C8169.44 (13)
C24—C19—P1117.0 (2)C7—Fe1—C8117.77 (14)
C21—C20—C19121.2 (3)C3—Fe1—C9118.93 (13)
C21—C20—H20119.4C12—Fe1—C968.27 (14)
C19—C20—H20119.4C4—Fe1—C9109.98 (13)
C22—C21—C20120.5 (3)C11—Fe1—C968.29 (13)
C22—C21—H21119.8C5—Fe1—C9130.53 (14)
C20—C21—H21119.8C7—Fe1—C9151.94 (14)
C21—C22—C23119.5 (3)C8—Fe1—C940.34 (14)
C21—C22—H22120.2C3—Fe1—C669.05 (12)
C23—C22—H22120.2C12—Fe1—C6115.44 (13)
C24—C23—C22120.1 (3)C4—Fe1—C668.83 (12)
C24—C23—H23120.0C11—Fe1—C6106.15 (13)
C22—C23—H23120.0C5—Fe1—C640.54 (12)
C23—C24—C19121.0 (3)C7—Fe1—C640.32 (13)
C23—C24—H24119.5C8—Fe1—C6149.55 (14)
C19—C24—H24119.5C9—Fe1—C6167.46 (14)
C26—C25—H25A109.5C3—Fe1—C10152.29 (13)
C26—C25—H25B109.5C12—Fe1—C1068.23 (14)
H25A—C25—H25B109.5C4—Fe1—C10118.27 (13)
C26—C25—H25C109.5C11—Fe1—C1040.44 (13)
H25A—C25—H25C109.5C5—Fe1—C10108.27 (14)
H25B—C25—H25C109.5C7—Fe1—C10165.26 (13)
C27—C26—C25117.3 (3)C8—Fe1—C1067.96 (15)
C27—C26—N1110.1 (3)C9—Fe1—C1040.62 (13)
C25—C26—N1106.8 (2)C6—Fe1—C10128.06 (14)
C27—C26—H26107.4C29—Fe2—C33137.41 (13)
C25—C26—H26107.4C29—Fe2—C32177.84 (13)
N1—C26—H26107.4C33—Fe2—C3240.80 (13)
C31—C27—C28107.4 (3)C29—Fe2—C3168.86 (13)
C31—C27—C26127.8 (3)C33—Fe2—C31144.63 (14)
C28—C27—C26124.6 (3)C32—Fe2—C31113.29 (13)
C31—C27—Fe268.90 (17)C29—Fe2—C3040.80 (13)
C28—C27—Fe269.37 (17)C33—Fe2—C30174.39 (14)
C26—C27—Fe2131.1 (2)C32—Fe2—C30140.80 (14)
C29—C28—C27107.1 (3)C31—Fe2—C3040.78 (13)
C29—C28—P2132.0 (2)C29—Fe2—C36139.24 (14)
C27—C28—P2120.9 (2)C33—Fe2—C3668.33 (14)
C29—C28—Fe268.79 (18)C32—Fe2—C3640.51 (14)
C27—C28—Fe269.17 (17)C31—Fe2—C36108.50 (13)
P2—C28—Fe2125.03 (16)C30—Fe2—C36109.85 (14)
C30—C29—C28108.9 (3)C29—Fe2—C2769.13 (12)
C30—C29—Fe269.77 (18)C33—Fe2—C27116.16 (14)
C28—C29—Fe270.31 (18)C32—Fe2—C27112.51 (13)
C30—C29—H29125.5C31—Fe2—C2741.14 (12)
C28—C29—H29125.5C30—Fe2—C2768.97 (13)
Fe2—C29—H29125.5C36—Fe2—C27136.55 (13)
C29—C30—C31108.3 (3)C29—Fe2—C2840.91 (12)
C29—C30—Fe269.43 (18)C33—Fe2—C28113.02 (14)
C31—C30—Fe269.57 (18)C32—Fe2—C28139.47 (13)
C29—C30—H30125.8C31—Fe2—C2869.39 (12)
C31—C30—H30125.8C30—Fe2—C2868.98 (13)
Fe2—C30—H30125.8C36—Fe2—C28177.83 (12)
C30—C31—C27108.3 (3)C27—Fe2—C2841.46 (12)
C30—C31—Fe269.65 (18)C29—Fe2—C34109.54 (13)
C27—C31—Fe269.96 (17)C33—Fe2—C3440.61 (14)
C30—C31—H31125.8C32—Fe2—C3468.31 (13)
C27—C31—H31125.8C31—Fe2—C34173.18 (14)
Fe2—C31—H31125.8C30—Fe2—C34133.84 (14)
C36—C32—C33108.0 (3)C36—Fe2—C3468.09 (13)
C36—C32—Fe270.07 (19)C27—Fe2—C34145.19 (13)
C33—C32—Fe269.54 (19)C28—Fe2—C34114.07 (13)
C36—C32—H32126.0C29—Fe2—C35110.46 (13)
C33—C32—H32126.0C33—Fe2—C3568.08 (15)
Fe2—C32—H32126.0C32—Fe2—C3568.05 (14)
C32—C33—C34108.0 (3)C31—Fe2—C35133.38 (14)
C32—C33—Fe269.66 (19)C30—Fe2—C35106.95 (14)
C34—C33—Fe270.47 (19)C36—Fe2—C3540.43 (12)
C32—C33—H33126.0C27—Fe2—C35174.50 (13)
C34—C33—H33126.0C28—Fe2—C35141.44 (13)
Fe2—C33—H33126.0C34—Fe2—C3540.30 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—HN1···Br10.92 (4)2.32 (4)3.228 (3)172 (3)
 

Acknowledgements

The X-ray centre of TU Wien is acknowledged for financial support and for providing access to the single-crystal diffractometer.

Funding information

Funding for this research was provided by: Austrian Science Fund (award No. T 631-N28).

References

First citationBruker (2015). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, L. X., Tu, T., You, S. L., Deng, W. P. & Hou, X. L. (2003). Acc. Chem. Res. 36, 659–667.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGischig, S. & Togni, A. (2005). Eur. J. Inorg. Chem. pp. 4745–4754.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHargaden, G. C. & Guiry, P. J. (2009). Chem. Rev. 109, 2505–2550.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHelmchen, G. & Pfaltz, A. (2000). Acc. Chem. Res. 33, 336–345.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcManus, H. A. & Guiry, P. J. (2004). Chem. Rev. 104, 4151–4202.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMiyake, Y., Nishibayashi, Y. & Uemura, S. (2008). Synlett, pp. 1747–1758.  Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationReddy, P. A. N., Md, N. S. & Kim, T.-J. (2007). Acta Cryst. E63, m971–m972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationŠtěpnička, P. (2008). Editor. Ferrocenes: Ligands, Materials and Biomolecules. Chichester: Wiley.  Google Scholar
First citationSutcliffe, O. B. & Bryce, M. R. (2003). Tetrahedron Asymmetry, 14, 2297–2325.  Web of Science CrossRef CAS Google Scholar
First citationSzabo, K. J. & Wendt, O. F. (2014). In Pincer and Pincer-Type Complexes: Applications in Organic Synthesis and Catalysis. Weinheim: Wiley-VCH.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYou, S.-L., Hou, X.-L., Dai, L.-X., Cao, B.-X. & Sun, J. (2000). Chem. Commun. pp. 1933–1934.  Web of Science CrossRef Google Scholar
First citationZhou, Z.-M. & Zhang, Y.-M. (2005). Synth. Commun. 35, 2401–2408.  Web of Science CSD CrossRef CAS Google Scholar
First citationZirakzadeh, A., Kirchner, K., Roller, A., Stöger, B., Carvalho, M. D. & Ferreira, L. P. (2016). RSC Adv. 6, 11840–11847.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds