research communications
cis and trans polymorphs of bis[μ-2-(1,3-benzothiazol-2-yl)phenolato]-κ3N,O:O;κ3O:N,O-bis[fac-tricarbonylrhenium(I)]1
of theaDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamil Nadu, India, and bDepartment of Chemistry, University of Hyderabad, South Campus, Hyderabad 500 046, Telengana, India
*Correspondence e-mail: mailtorvkk@yahoo.co.in
The title dinuclear complex, [Re2(C13H8NOS)2(CO)6], crystallizes in two polymorphs where the 2-(1,3-benzothiazol-2-yl)phenolate ligands and two carbonyl groups are trans- (I) or cis-arranged (II) with respect to the [Re2O2(CO)4] core. Polymorphs I and II exhibit a crystallographically imposed centre of symmetry and a twofold rotation axis, respectively. The structures may be described as being formed by two octahedrally distorted metal-coordinating units fused through μ-oxido bridges, leading to edge-sharing dimers. The crystal packing is governed by C—H⋯O hydrogen-bonding interactions, forming chains parallel to the c axis in I and a three-dimensional network in II.
Keywords: crystal structure; rhenium tricarbonyl complexes; polymorphism.
1. Chemical context
Organometallic complexes are regarded as interesting and important compounds owing to their versatile photophysical, photochemical and biological properties. In particular, the importance of the use of metal complexes in medicine began with the discovery of the anti-cancer activity of cis-platin (Rosenberg et al., 1965). Since then, attempts to synthesize and characterize novel organometallics with potential pharmaceutical applications remains the main focus of anticancer drug discovery.
While it has been discovered recently that some rhenium–indolato complexes exhibit light-induced anti-cancer activity (Kastl et al., 2013), a number of tricarbonyl–rhenium complexes are well known agents in the field of biomedical imaging (Lo et al., 2010, 2011). Several rhenium(I) tricarbonyl heterocyclic complexes are known to exhibit intense luminescence in the visible region and, owing to their stability to photodecomposition, are promising candidates for solar energy conversion applications (Wallace & Rillema, 1993). In the context of earlier works (Shi et al., 1996; Bradshaw & Westwell, 2004; Potgieter et al., 2012) suggesting benzothiazole derivatives to be promising ligands for rhenium which possess potential usefulness in radiotherapy, the intra- and intermolecular features of the crystal structures of the title compound may well be regarded as relevant. More recently, a host of rhenium–tricarbonyl complexes containing heterocyclic derivatives have been shown to exhibit antimicrobial properties (Kumar et al., 2016). In a recent review, a systematic evaluation of neutral ReI tricarbonyl complexes was undertaken for their suitability as organic light-emitting diodes (Zhao et al., 2016).
2. Structural commentary
The title compound, [Re(CO)3(L)]2 where L= 2-(1,3-benzothiazol-2-yl)phenolate, crystallizes in two different forms, viz. the trans form (I, Fig. 1) in the triclinic P and the cis form (II, Fig. 2) in the orthorhombic Pbca. The structure of the compound may be described as being composed of two octahedral metal-coordinating units fused through μ-oxido bridges leading to edge-sharing dimers. The presence of the inversion centre in I leads to Re—O-bridged centrosymmetric dimeric molecular units. In II, dimerization through Re—O bridging is achieved through a twofold rotation axis. In both I and II, coordination around the rhenium atom is similar, the metal exhibiting a distorted octahedral environment with atoms C16 and N1 occupying the apical sites and atoms C14, C15, O1 and O1i/O1ii at the equatorial plane [symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −x, y, − z]. The N1—Re01—O1i—C9i torsion angle associated with the Re—O bridging of symmetry-related molecules in trans polymorph I [137.1 (5)°] is distinctly different from the corresponding value in the cis polymorph II [−59.4 (3)°]. The Re⋯Re and O1⋯O1 separations in the Re2O2 core are 3.4799 (5) and 2.581 (8) Å, and 3.4332 (5) and 2.535 (4) Å in I and II, respectively.
The conformation of the ligand in I and II is significantly different. The dihedral angles between the planar benzothiazole unit and the benzene rings in I and II are 32.23 (18) and 22.78 (8)°, respectively. The value observed in II closely agrees with that observed in the of 2-(4-hydroxyphenyl)benzothiazole [18.49 (6)°; Teo et al., 1995], which interestingly crystallizes in the same The larger value observed in I may be attributed to the `flipping' of the twofold symmetry into an inversion centre.
3. Supramolecular features
The crystal structures of I and II are governed by C—H⋯O hydrogen bonds which significantly differ in their strengths and the mode of participation of the carbonyl O atoms. In I, the O3 atom of the apical carbonyl group C16=O3 plays a role in connecting the molecules across inversion centres into a chain along the c axis (Fig. 3, Table 1). In addition, a short O4⋯O4iii contact [symmetry code: (iii) –x + 1, –y + 2, –z + 1] involving centrosymmetrcally related carbonyl groups C15=O4 [2.792 (10) Å] is present, linking the chains along the b axis to form layers parallel to the bc plane.
In II, the oxygen atom of the equatorial carbonyl group C14=O2 links the molecules across the glide planes into a three-dimensional network (Fig. 4, Table 2). Similarly to that observed in I, a C—H⋯O hydrogen bond involving the O3 atom of the apical carbonyl group C16=O3 is present, which extends along the b axis through translation. Therefore it may be concluded that in both the trans and cis polymorphs, the mode of participation to the hydrogen-bonding network of the O atom of the apical carbonyl group is through simple translation, while there is a significant `switching' in the choice of the O atoms of the equatorial carbonyl groups. A common feature between the two structures is that one of the three carbonyl groups, namely C14=O2 in I and C15=O4 in II, forbids its O atom from participating in the intermolecular interactions.
4. Database survey
A search in the Cambridge structural Database (Version 5.35, November 2014 update; Groom et al., 2016) for μ-oxido bridging dinuclear complexes of rhenium having an octahedral coordination environment similar to that observed in the title compounds (i.e. involving three carbonyl C atoms, two oxygens and a nitrogen) was made. The search returned 45 crystal structures with three-dimensional coordinates determined, excluding duplicate structure determinations and having an R factor less than 0.075. Out of these 45 crystal structures, 25 crystallize in the monoclinic, nine in the triclinic, eight in the orthorhombic and three in the trigonal systems. In these compounds, the Re⋯Re distance ranges from 3.330 to 3.501 Å, the O⋯O separation within the Re2O2 core ranges from 2.485 to 2.701 Å, and Re—O bond lengths from 2.065 to 2.215 Å.
5. Synthesis and crystallization
For I:
A mixture of Re2(CO)10 (101.3 mg, 0.1552 mmol), 2-(1,3-benzothiazol-2-yl)phenol (69.7 mg, 0.307 mmol) and 2-phenyl-2-imidazoline (45.8 mg, 0.323 mmol) in toluene (10 ml) in a Teflon flask was placed in a steel bomb. The bomb was placed in an oven maintained at 433 K for 48 h and then cooled to 298 K. Pale-yellow crystals were obtained and separated by filtration.
For II:
A mixture of Re2(CO)10 (101.8 mg, 0.156 mmol), 2-(1,3-benzothiazol-2-yl)phenol (69.9 mg, 0.308 mmol) and 2-(pyridin-4-yl)-1-(2,4,6-trimethylbenzyl)-1H-benzo[d]imidazole (101.1 mg, 0.309 mmol) in toluene (10 ml) in a Teflon flask was placed in a steel bomb. The bomb was placed in an oven maintained at 433 K for 48 h and then cooled to 298 K. Pale-yellow crystals were obtained and separated by filtration.
6. Refinement
Crystal data, data collection and structure . In both I and II, the H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the in the riding-model approximation, with Uiso(H) set at 1.2–1.5Ueq(C). In I, two outliers (9 11 2, 2 2 4) were omitted in the last cycles of refinement.
details are summarized in Table 3Supporting information
https://doi.org/10.1107/S2056989017001347/rz5204sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989017001347/rz5204Isup6.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989017001347/rz5204IIsup7.hkl
For both compounds, data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLUTON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[Re2(C13H8NOS)2(CO)6] | Z = 1 |
Mr = 992.99 | F(000) = 468 |
Triclinic, P1 | Dx = 2.301 Mg m−3 |
a = 8.9250 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.7342 (12) Å | Cell parameters from 3113 reflections |
c = 10.0844 (12) Å | θ = 2.5–27.7° |
α = 66.438 (5)° | µ = 8.64 mm−1 |
β = 75.636 (5)° | T = 100 K |
γ = 63.585 (5)° | Needle, yellow |
V = 716.59 (16) Å3 | 0.28 × 0.18 × 0.15 mm |
Bruker SMART APEX CCD diffractometer | 3113 reflections with I > 2σ(I) |
ω scans | Rint = 0.105 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 27.7°, θmin = 2.5° |
Tmin = 0.168, Tmax = 0.357 | h = −11→11 |
23724 measured reflections | k = −12→12 |
3325 independent reflections | l = −13→13 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.088 | w = 1/[σ2(Fo2) + (0.0558P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3325 reflections | Δρmax = 2.91 e Å−3 |
208 parameters | Δρmin = −2.74 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component perfect inversion twin. |
x | y | z | Uiso*/Ueq | ||
Re01 | 0.36347 (2) | 0.70142 (2) | 0.47571 (2) | 0.01179 (10) | |
S1 | 0.5151 (2) | 0.69074 (18) | −0.00066 (15) | 0.0204 (3) | |
O1 | 0.3841 (5) | 0.4733 (5) | 0.4716 (4) | 0.0136 (7) | |
O2 | 0.0115 (6) | 0.9108 (6) | 0.3751 (5) | 0.0285 (11) | |
O3 | 0.2004 (7) | 0.6662 (7) | 0.7869 (5) | 0.0329 (12) | |
O4 | 0.3450 (7) | 1.0258 (6) | 0.4663 (8) | 0.0413 (14) | |
N1 | 0.4733 (6) | 0.7154 (5) | 0.2528 (5) | 0.0143 (9) | |
C1 | 0.6280 (7) | 0.7795 (7) | 0.0280 (6) | 0.0206 (12) | |
C2 | 0.7395 (9) | 0.8452 (8) | −0.0704 (7) | 0.0258 (14) | |
H2 | 0.7625 | 0.8448 | −0.1674 | 0.031* | |
C3 | 0.8153 (8) | 0.9111 (8) | −0.0215 (8) | 0.0283 (15) | |
H3 | 0.8930 | 0.9550 | −0.0856 | 0.034* | |
C4 | 0.7797 (8) | 0.9142 (8) | 0.1200 (8) | 0.0267 (14) | |
H4 | 0.8337 | 0.9599 | 0.1507 | 0.032* | |
C5 | 0.6676 (8) | 0.8521 (7) | 0.2161 (7) | 0.0201 (12) | |
H5 | 0.6427 | 0.8563 | 0.3120 | 0.024* | |
C6 | 0.5912 (7) | 0.7828 (6) | 0.1703 (6) | 0.0164 (11) | |
C7 | 0.4244 (7) | 0.6635 (6) | 0.1754 (6) | 0.0158 (10) | |
C8 | 0.3038 (7) | 0.5852 (7) | 0.2262 (6) | 0.0173 (11) | |
C9 | 0.2952 (7) | 0.4856 (6) | 0.3742 (6) | 0.0144 (10) | |
C10 | 0.1877 (8) | 0.4040 (7) | 0.4184 (7) | 0.0214 (12) | |
H10 | 0.1813 | 0.3356 | 0.5164 | 0.026* | |
C11 | 0.0890 (9) | 0.4215 (8) | 0.3198 (7) | 0.0255 (13) | |
H11 | 0.0175 | 0.3636 | 0.3513 | 0.031* | |
C12 | 0.0942 (8) | 0.5229 (8) | 0.1760 (7) | 0.0225 (12) | |
H12 | 0.0248 | 0.5369 | 0.1101 | 0.027* | |
C13 | 0.2023 (8) | 0.6028 (7) | 0.1310 (6) | 0.0208 (12) | |
H13 | 0.2073 | 0.6714 | 0.0329 | 0.025* | |
C14 | 0.1446 (8) | 0.8311 (7) | 0.4146 (6) | 0.0203 (12) | |
C15 | 0.3586 (8) | 0.9012 (7) | 0.4703 (7) | 0.0244 (13) | |
C16 | 0.2666 (8) | 0.6763 (7) | 0.6697 (6) | 0.0176 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re01 | 0.01088 (13) | 0.00927 (12) | 0.01551 (13) | −0.00340 (8) | −0.00144 (7) | −0.00480 (8) |
S1 | 0.0232 (7) | 0.0199 (7) | 0.0161 (6) | −0.0080 (6) | 0.0009 (5) | −0.0060 (5) |
O1 | 0.0121 (18) | 0.0103 (17) | 0.0185 (17) | −0.0032 (14) | 0.0007 (14) | −0.0074 (14) |
O2 | 0.016 (2) | 0.029 (2) | 0.032 (2) | 0.0011 (18) | −0.0068 (18) | −0.0100 (19) |
O3 | 0.027 (3) | 0.042 (3) | 0.025 (2) | −0.008 (2) | −0.0042 (19) | −0.012 (2) |
O4 | 0.030 (3) | 0.021 (2) | 0.083 (4) | −0.010 (2) | −0.001 (3) | −0.029 (3) |
N1 | 0.014 (2) | 0.010 (2) | 0.017 (2) | −0.0043 (17) | −0.0020 (17) | −0.0023 (16) |
C1 | 0.016 (3) | 0.013 (2) | 0.024 (3) | −0.004 (2) | −0.001 (2) | −0.001 (2) |
C2 | 0.024 (3) | 0.020 (3) | 0.022 (3) | −0.007 (2) | 0.002 (2) | 0.000 (2) |
C3 | 0.016 (3) | 0.021 (3) | 0.035 (3) | −0.009 (2) | 0.002 (2) | 0.003 (2) |
C4 | 0.020 (3) | 0.020 (3) | 0.036 (3) | −0.010 (2) | −0.005 (3) | −0.001 (2) |
C5 | 0.015 (3) | 0.017 (3) | 0.025 (3) | −0.007 (2) | −0.003 (2) | −0.003 (2) |
C6 | 0.014 (3) | 0.011 (2) | 0.021 (2) | −0.004 (2) | 0.0010 (19) | −0.0040 (19) |
C7 | 0.013 (3) | 0.010 (2) | 0.019 (2) | −0.0011 (19) | −0.0009 (19) | −0.0040 (19) |
C8 | 0.015 (3) | 0.016 (2) | 0.020 (2) | −0.005 (2) | 0.001 (2) | −0.009 (2) |
C9 | 0.012 (2) | 0.009 (2) | 0.021 (2) | −0.0012 (19) | −0.0004 (19) | −0.0073 (19) |
C10 | 0.018 (3) | 0.019 (3) | 0.027 (3) | −0.010 (2) | −0.004 (2) | −0.004 (2) |
C11 | 0.026 (3) | 0.025 (3) | 0.032 (3) | −0.014 (3) | −0.008 (3) | −0.009 (2) |
C12 | 0.022 (3) | 0.024 (3) | 0.028 (3) | −0.007 (2) | −0.009 (2) | −0.013 (2) |
C13 | 0.020 (3) | 0.018 (3) | 0.020 (2) | −0.003 (2) | −0.003 (2) | −0.007 (2) |
C14 | 0.028 (3) | 0.017 (3) | 0.017 (2) | −0.011 (2) | 0.002 (2) | −0.006 (2) |
C15 | 0.021 (3) | 0.015 (3) | 0.036 (3) | −0.004 (2) | 0.000 (2) | −0.012 (2) |
C16 | 0.014 (3) | 0.022 (3) | 0.018 (2) | −0.005 (2) | −0.006 (2) | −0.006 (2) |
Re01—C14 | 1.890 (7) | C2—H2 | 0.9500 |
Re01—C15 | 1.905 (7) | C3—C4 | 1.392 (11) |
Re01—C16 | 1.898 (6) | C3—H3 | 0.9500 |
Re01—O1 | 2.162 (4) | C4—C5 | 1.376 (8) |
Re01—O1i | 2.171 (4) | C4—H4 | 0.9500 |
Re01—N1 | 2.194 (5) | C5—C6 | 1.396 (9) |
S1—C1 | 1.722 (7) | C5—H5 | 0.9500 |
S1—C7 | 1.726 (6) | C7—C8 | 1.465 (8) |
O1—C9 | 1.348 (7) | C8—C13 | 1.390 (9) |
O1—Re01i | 2.171 (4) | C8—C9 | 1.424 (7) |
O2—C14 | 1.157 (8) | C9—C10 | 1.390 (8) |
O3—C16 | 1.170 (8) | C10—C11 | 1.400 (9) |
O4—C15 | 1.148 (9) | C10—H10 | 0.9500 |
N1—C7 | 1.317 (8) | C11—C12 | 1.394 (9) |
N1—C6 | 1.405 (7) | C11—H11 | 0.9500 |
C1—C2 | 1.398 (8) | C12—C13 | 1.382 (9) |
C1—C6 | 1.400 (8) | C12—H12 | 0.9500 |
C2—C3 | 1.384 (11) | C13—H13 | 0.9500 |
C14—Re01—C15 | 83.9 (3) | C5—C4—H4 | 119.4 |
C14—Re01—C16 | 87.9 (2) | C3—C4—H4 | 119.4 |
C15—Re01—C16 | 86.4 (3) | C4—C5—C6 | 118.8 (6) |
C14—Re01—O1 | 98.2 (2) | C4—C5—H5 | 120.6 |
C15—Re01—O1 | 176.1 (2) | C6—C5—H5 | 120.6 |
C16—Re01—O1 | 97.0 (2) | C5—C6—C1 | 119.8 (5) |
C14—Re01—O1i | 170.6 (2) | C5—C6—N1 | 126.5 (5) |
C15—Re01—O1i | 104.5 (2) | C1—C6—N1 | 113.7 (5) |
C16—Re01—O1i | 96.8 (2) | N1—C7—C8 | 125.9 (5) |
O1—Re01—O1i | 73.12 (18) | N1—C7—S1 | 115.5 (4) |
C14—Re01—N1 | 92.1 (2) | C8—C7—S1 | 118.6 (5) |
C15—Re01—N1 | 97.5 (2) | C13—C8—C9 | 119.9 (5) |
C16—Re01—N1 | 176.0 (2) | C13—C8—C7 | 120.9 (5) |
O1—Re01—N1 | 79.11 (16) | C9—C8—C7 | 119.1 (5) |
O1i—Re01—N1 | 82.68 (16) | O1—C9—C10 | 120.0 (5) |
C1—S1—C7 | 89.8 (3) | O1—C9—C8 | 121.6 (5) |
C9—O1—Re01 | 115.5 (3) | C10—C9—C8 | 118.3 (6) |
C9—O1—Re01i | 126.8 (3) | C9—C10—C11 | 120.6 (5) |
Re01—O1—Re01i | 106.88 (18) | C9—C10—H10 | 119.7 |
C7—N1—C6 | 110.7 (5) | C11—C10—H10 | 119.7 |
C7—N1—Re01 | 120.7 (4) | C12—C11—C10 | 120.8 (6) |
C6—N1—Re01 | 128.5 (4) | C12—C11—H11 | 119.6 |
C2—C1—C6 | 121.4 (6) | C10—C11—H11 | 119.6 |
C2—C1—S1 | 128.4 (5) | C13—C12—C11 | 118.8 (6) |
C6—C1—S1 | 110.2 (4) | C13—C12—H12 | 120.6 |
C3—C2—C1 | 117.7 (6) | C11—C12—H12 | 120.6 |
C3—C2—H2 | 121.2 | C12—C13—C8 | 121.4 (5) |
C1—C2—H2 | 121.2 | C12—C13—H13 | 119.3 |
C2—C3—C4 | 121.2 (6) | C8—C13—H13 | 119.3 |
C2—C3—H3 | 119.4 | O2—C14—Re01 | 179.0 (5) |
C4—C3—H3 | 119.4 | O4—C15—Re01 | 175.7 (6) |
C5—C4—C3 | 121.2 (7) | O3—C16—Re01 | 177.0 (5) |
C7—S1—C1—C2 | −178.2 (6) | C1—S1—C7—N1 | −0.3 (5) |
C7—S1—C1—C6 | 0.3 (4) | C1—S1—C7—C8 | −179.6 (4) |
C6—C1—C2—C3 | 1.3 (9) | N1—C7—C8—C13 | 149.4 (6) |
S1—C1—C2—C3 | 179.7 (5) | S1—C7—C8—C13 | −31.3 (7) |
C1—C2—C3—C4 | −1.0 (9) | N1—C7—C8—C9 | −32.5 (8) |
C2—C3—C4—C5 | −0.1 (10) | S1—C7—C8—C9 | 146.7 (4) |
C3—C4—C5—C6 | 1.0 (9) | Re01—O1—C9—C10 | −128.2 (5) |
C4—C5—C6—C1 | −0.8 (9) | Re01i—O1—C9—C10 | 92.4 (6) |
C4—C5—C6—N1 | −179.4 (5) | Re01—O1—C9—C8 | 49.8 (6) |
C2—C1—C6—C5 | −0.4 (8) | Re01i—O1—C9—C8 | −89.7 (6) |
S1—C1—C6—C5 | −179.1 (4) | C13—C8—C9—O1 | −175.9 (5) |
C2—C1—C6—N1 | 178.4 (5) | C7—C8—C9—O1 | 6.0 (8) |
S1—C1—C6—N1 | −0.3 (6) | C13—C8—C9—C10 | 2.0 (9) |
C7—N1—C6—C5 | 178.8 (6) | C7—C8—C9—C10 | −176.0 (5) |
Re01—N1—C6—C5 | 2.0 (8) | O1—C9—C10—C11 | 177.1 (6) |
C7—N1—C6—C1 | 0.1 (7) | C8—C9—C10—C11 | −0.9 (9) |
Re01—N1—C6—C1 | −176.7 (4) | C9—C10—C11—C12 | −1.0 (10) |
C6—N1—C7—C8 | 179.4 (5) | C10—C11—C12—C13 | 1.7 (10) |
Re01—N1—C7—C8 | −3.5 (8) | C11—C12—C13—C8 | −0.6 (10) |
C6—N1—C7—S1 | 0.1 (6) | C9—C8—C13—C12 | −1.3 (9) |
Re01—N1—C7—S1 | 177.2 (2) | C7—C8—C13—C12 | 176.7 (6) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C13—H13···O3ii | 0.95 | 2.52 | 3.276 (8) | 137 |
Symmetry code: (ii) x, y, z−1. |
[Re2(C13H8NOS)2(CO)6] | Dx = 2.242 Mg m−3 |
Mr = 992.99 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbcn | Cell parameters from 2943 reflections |
a = 16.1480 (7) Å | θ = 2.9–28.0° |
b = 11.6519 (5) Å | µ = 8.42 mm−1 |
c = 15.6329 (8) Å | T = 296 K |
V = 2941.4 (2) Å3 | Needle, yellow |
Z = 4 | 0.25 × 0.18 × 0.12 mm |
F(000) = 1872 |
Bruker SMART APEX CCD diffractometer | 2943 reflections with I > 2σ(I) |
ω scans | Rint = 0.027 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | θmax = 29.3°, θmin = 2.9° |
Tmin = 0.18, Tmax = 0.38 | h = −12→22 |
11735 measured reflections | k = −15→14 |
3510 independent reflections | l = −21→19 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.0263P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max = 0.001 |
3510 reflections | Δρmax = 1.09 e Å−3 |
208 parameters | Δρmin = −0.95 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Re01 | −0.00490 (2) | 0.15435 (2) | 0.35969 (2) | 0.01406 (6) | |
S1 | 0.07316 (6) | 0.54284 (8) | 0.35632 (6) | 0.0210 (2) | |
O1 | 0.07833 (17) | 0.1789 (2) | 0.25483 (14) | 0.0159 (6) | |
O2 | 0.13167 (17) | 0.1285 (2) | 0.49308 (18) | 0.0287 (7) | |
O3 | −0.01421 (17) | −0.1089 (3) | 0.34887 (19) | 0.0293 (7) | |
O4 | −0.13228 (17) | 0.1328 (2) | 0.50382 (18) | 0.0302 (7) | |
N1 | 0.00453 (16) | 0.3439 (3) | 0.36089 (19) | 0.0158 (8) | |
C1 | −0.0277 (2) | 0.5344 (3) | 0.3923 (2) | 0.0164 (8) | |
C2 | −0.0769 (2) | 0.6243 (3) | 0.4226 (2) | 0.0198 (8) | |
H2 | −0.0566 | 0.6988 | 0.4265 | 0.024* | |
C3 | −0.1569 (2) | 0.5978 (3) | 0.4467 (2) | 0.0212 (8) | |
H3 | −0.1914 | 0.6555 | 0.4672 | 0.025* | |
C4 | −0.1866 (2) | 0.4861 (3) | 0.4407 (3) | 0.0219 (9) | |
H4 | −0.2410 | 0.4705 | 0.4562 | 0.026* | |
C5 | −0.1369 (2) | 0.3980 (3) | 0.4121 (2) | 0.0173 (8) | |
H5 | −0.1576 | 0.3237 | 0.4083 | 0.021* | |
C6 | −0.0555 (2) | 0.4210 (3) | 0.3892 (2) | 0.0142 (7) | |
C7 | 0.0748 (2) | 0.3953 (3) | 0.3416 (2) | 0.0159 (8) | |
C8 | 0.1503 (2) | 0.3426 (3) | 0.3103 (2) | 0.0167 (8) | |
C9 | 0.1499 (2) | 0.2380 (3) | 0.2657 (2) | 0.0165 (8) | |
C10 | 0.2230 (2) | 0.1963 (3) | 0.2318 (2) | 0.0213 (9) | |
H10 | 0.2227 | 0.1273 | 0.2019 | 0.026* | |
C11 | 0.2959 (2) | 0.2549 (4) | 0.2414 (2) | 0.0271 (10) | |
H11 | 0.3443 | 0.2262 | 0.2173 | 0.033* | |
C12 | 0.2980 (2) | 0.3564 (3) | 0.2867 (3) | 0.0294 (10) | |
H12 | 0.3478 | 0.3950 | 0.2945 | 0.035* | |
C13 | 0.2258 (2) | 0.4003 (3) | 0.3203 (3) | 0.0237 (9) | |
H13 | 0.2272 | 0.4694 | 0.3501 | 0.028* | |
C14 | 0.0788 (2) | 0.1374 (3) | 0.4440 (3) | 0.0183 (8) | |
C15 | −0.0848 (2) | 0.1418 (3) | 0.4488 (3) | 0.0197 (8) | |
C16 | −0.0108 (2) | −0.0097 (4) | 0.3516 (2) | 0.0189 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Re01 | 0.01466 (9) | 0.01247 (9) | 0.01505 (10) | 0.00037 (6) | 0.00097 (6) | 0.00113 (6) |
S1 | 0.0214 (5) | 0.0153 (4) | 0.0264 (6) | −0.0040 (4) | 0.0031 (4) | −0.0005 (4) |
O1 | 0.0149 (13) | 0.0178 (12) | 0.0151 (14) | −0.0016 (10) | 0.0013 (10) | −0.0023 (11) |
O2 | 0.0307 (16) | 0.0265 (14) | 0.0288 (18) | 0.0057 (12) | −0.0083 (14) | −0.0005 (13) |
O3 | 0.0357 (17) | 0.0147 (14) | 0.038 (2) | −0.0035 (12) | 0.0049 (14) | 0.0005 (14) |
O4 | 0.0323 (16) | 0.0318 (15) | 0.0265 (18) | 0.0006 (13) | 0.0133 (14) | 0.0065 (13) |
N1 | 0.0161 (17) | 0.0151 (18) | 0.0162 (19) | −0.0012 (12) | 0.0013 (13) | 0.0003 (12) |
C1 | 0.0161 (17) | 0.0199 (19) | 0.0132 (19) | −0.0010 (15) | 0.0031 (15) | 0.0030 (17) |
C2 | 0.028 (2) | 0.0132 (17) | 0.018 (2) | 0.0005 (15) | −0.0005 (18) | 0.0004 (16) |
C3 | 0.027 (2) | 0.0184 (19) | 0.018 (2) | 0.0071 (16) | −0.0001 (17) | −0.0029 (17) |
C4 | 0.0179 (18) | 0.025 (2) | 0.022 (2) | 0.0023 (16) | 0.0024 (17) | 0.0004 (17) |
C5 | 0.0166 (18) | 0.0140 (17) | 0.021 (2) | −0.0012 (14) | −0.0008 (16) | −0.0004 (16) |
C6 | 0.0168 (18) | 0.0117 (16) | 0.0142 (18) | 0.0025 (14) | 0.0014 (15) | −0.0007 (15) |
C7 | 0.0168 (18) | 0.0191 (19) | 0.0120 (19) | −0.0018 (15) | −0.0010 (15) | −0.0024 (16) |
C8 | 0.0138 (17) | 0.0193 (19) | 0.017 (2) | −0.0018 (15) | 0.0004 (15) | −0.0007 (16) |
C9 | 0.0137 (17) | 0.0189 (18) | 0.017 (2) | 0.0020 (15) | −0.0012 (15) | 0.0046 (16) |
C10 | 0.0186 (19) | 0.025 (2) | 0.020 (2) | 0.0063 (16) | 0.0023 (16) | 0.0014 (17) |
C11 | 0.0165 (19) | 0.039 (3) | 0.026 (2) | 0.0049 (18) | 0.0050 (17) | −0.004 (2) |
C12 | 0.0152 (19) | 0.044 (3) | 0.029 (3) | −0.0067 (18) | 0.0014 (18) | −0.008 (2) |
C13 | 0.0205 (19) | 0.020 (2) | 0.030 (2) | −0.0053 (17) | 0.0003 (18) | −0.0063 (17) |
C14 | 0.0218 (19) | 0.0146 (18) | 0.019 (2) | 0.0011 (15) | 0.0018 (17) | −0.0015 (16) |
C15 | 0.0224 (19) | 0.0132 (18) | 0.023 (2) | 0.0021 (15) | −0.0029 (17) | −0.0010 (16) |
C16 | 0.0155 (18) | 0.024 (2) | 0.017 (2) | 0.0015 (15) | 0.0018 (15) | 0.0019 (16) |
Re01—C14 | 1.898 (4) | C2—H2 | 0.9300 |
Re01—C15 | 1.904 (4) | C3—C4 | 1.390 (4) |
Re01—C16 | 1.918 (4) | C3—H3 | 0.9300 |
Re01—O1 | 2.139 (2) | C4—C5 | 1.377 (4) |
Re01—O1i | 2.166 (2) | C4—H4 | 0.9300 |
Re01—N1 | 2.214 (3) | C5—C6 | 1.389 (5) |
S1—C1 | 1.726 (4) | C5—H5 | 0.9300 |
S1—C7 | 1.735 (4) | C7—C8 | 1.450 (5) |
O1—C9 | 1.355 (4) | C8—C13 | 1.401 (5) |
O1—Re01i | 2.166 (2) | C8—C9 | 1.404 (5) |
O2—C14 | 1.153 (4) | C9—C10 | 1.382 (5) |
O3—C16 | 1.158 (5) | C10—C11 | 1.370 (5) |
O4—C15 | 1.157 (5) | C10—H10 | 0.9300 |
N1—C7 | 1.318 (4) | C11—C12 | 1.378 (6) |
N1—C6 | 1.393 (4) | C11—H11 | 0.9300 |
C1—C6 | 1.396 (5) | C12—C13 | 1.377 (5) |
C1—C2 | 1.398 (5) | C12—H12 | 0.9300 |
C2—C3 | 1.380 (5) | C13—H13 | 0.9300 |
C14—Re01—C15 | 88.10 (18) | C5—C4—H4 | 119.4 |
C14—Re01—C16 | 88.70 (15) | C3—C4—H4 | 119.4 |
C15—Re01—C16 | 86.45 (14) | C4—C5—C6 | 119.4 (3) |
C14—Re01—O1 | 95.63 (14) | C4—C5—H5 | 120.3 |
C15—Re01—O1 | 175.25 (12) | C6—C5—H5 | 120.3 |
C16—Re01—O1 | 96.54 (13) | C5—C6—N1 | 128.0 (3) |
C14—Re01—O1i | 167.74 (13) | C5—C6—C1 | 118.5 (3) |
C15—Re01—O1i | 104.12 (14) | N1—C6—C1 | 113.5 (3) |
C16—Re01—O1i | 92.87 (13) | N1—C7—C8 | 127.5 (3) |
O1—Re01—O1i | 72.12 (12) | N1—C7—S1 | 114.0 (3) |
C14—Re01—N1 | 92.80 (12) | C8—C7—S1 | 118.5 (3) |
C15—Re01—N1 | 96.72 (12) | C13—C8—C9 | 118.4 (3) |
C16—Re01—N1 | 176.53 (14) | C13—C8—C7 | 119.4 (3) |
O1—Re01—N1 | 80.20 (10) | C9—C8—C7 | 122.1 (3) |
O1i—Re01—N1 | 85.00 (10) | O1—C9—C10 | 120.1 (3) |
C1—S1—C7 | 90.05 (17) | O1—C9—C8 | 120.5 (3) |
C9—O1—Re01 | 120.5 (2) | C10—C9—C8 | 119.4 (3) |
C9—O1—Re01i | 129.6 (2) | C11—C10—C9 | 121.1 (4) |
Re01—O1—Re01i | 105.77 (11) | C11—C10—H10 | 119.4 |
C7—N1—C6 | 112.3 (3) | C9—C10—H10 | 119.4 |
C7—N1—Re01 | 120.7 (2) | C10—C11—C12 | 120.3 (4) |
C6—N1—Re01 | 126.7 (2) | C10—C11—H11 | 119.8 |
C6—C1—C2 | 122.6 (3) | C12—C11—H11 | 119.8 |
C6—C1—S1 | 110.2 (3) | C13—C12—C11 | 119.6 (4) |
C2—C1—S1 | 127.2 (3) | C13—C12—H12 | 120.2 |
C3—C2—C1 | 117.2 (3) | C11—C12—H12 | 120.2 |
C3—C2—H2 | 121.4 | C12—C13—C8 | 121.0 (3) |
C1—C2—H2 | 121.4 | C12—C13—H13 | 119.5 |
C2—C3—C4 | 120.9 (3) | C8—C13—H13 | 119.5 |
C2—C3—H3 | 119.6 | O2—C14—Re01 | 177.6 (3) |
C4—C3—H3 | 119.6 | O4—C15—Re01 | 178.7 (3) |
C5—C4—C3 | 121.3 (3) | O3—C16—Re01 | 178.3 (3) |
C7—S1—C1—C6 | −1.5 (3) | C1—S1—C7—N1 | 1.0 (3) |
C7—S1—C1—C2 | 177.1 (4) | C1—S1—C7—C8 | −179.2 (3) |
C6—C1—C2—C3 | −2.7 (6) | N1—C7—C8—C13 | −158.5 (4) |
S1—C1—C2—C3 | 178.8 (3) | S1—C7—C8—C13 | 21.7 (5) |
C1—C2—C3—C4 | 0.0 (6) | N1—C7—C8—C9 | 25.2 (6) |
C2—C3—C4—C5 | 1.2 (6) | S1—C7—C8—C9 | −154.6 (3) |
C3—C4—C5—C6 | 0.2 (6) | Re01—O1—C9—C10 | 135.2 (3) |
C4—C5—C6—N1 | 178.4 (4) | Re01i—O1—C9—C10 | −71.1 (4) |
C4—C5—C6—C1 | −2.8 (5) | Re01—O1—C9—C8 | −45.7 (4) |
C7—N1—C6—C5 | 177.8 (4) | Re01i—O1—C9—C8 | 108.0 (3) |
Re01—N1—C6—C5 | −9.0 (5) | C13—C8—C9—O1 | 179.7 (3) |
C7—N1—C6—C1 | −1.0 (4) | C7—C8—C9—O1 | −4.0 (5) |
Re01—N1—C6—C1 | 172.2 (2) | C13—C8—C9—C10 | −1.2 (5) |
C2—C1—C6—C5 | 4.2 (6) | C7—C8—C9—C10 | 175.1 (3) |
S1—C1—C6—C5 | −177.2 (3) | O1—C9—C10—C11 | 179.5 (3) |
C2—C1—C6—N1 | −176.9 (3) | C8—C9—C10—C11 | 0.4 (6) |
S1—C1—C6—N1 | 1.8 (4) | C9—C10—C11—C12 | 1.1 (6) |
C6—N1—C7—C8 | −180.0 (4) | C10—C11—C12—C13 | −1.8 (6) |
Re01—N1—C7—C8 | 6.3 (5) | C11—C12—C13—C8 | 0.9 (6) |
C6—N1—C7—S1 | −0.2 (4) | C9—C8—C13—C12 | 0.5 (6) |
Re01—N1—C7—S1 | −173.91 (16) | C7—C8—C13—C12 | −175.9 (4) |
Symmetry code: (i) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2ii | 0.93 | 2.49 | 3.387 (4) | 163 |
C2—H2···O3iii | 0.93 | 2.64 | 3.467 (5) | 149 |
Symmetry codes: (ii) x−1/2, −y+1/2, −z+1; (iii) x, y+1, z. |
Footnotes
1This paper is dedicated to the memory of Professor S. K. Mohanlal.
Acknowledgements
MP thanks the University Grants Commission, India, for a Rajiv Gandhi National Fellowship and for facilities availed at the Networking Resource Centre, School of Chemistry, University of Hyderabad, India.
References
Bradshaw, T. D. & Westwell, A. D. (2004). Curr. Med. Chem. 11, 1009–1021. CrossRef CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kastl, A., Dieckmann, S., Wähler, K., Völker, T., Kastl, L., Merkel, A. L., Vultur, A., Shannan, B., Harms, K., Ocker, M., Parak, W. J., Herlyn, M. & Meggers, E. (2013). ChemMedChem, 8, 924–927. CrossRef CAS Google Scholar
Kumar, S. V., Lo, W. K. C., Brooks, H. J. L., Hanton, L. R. & Crowley, J. D. (2016). Aust. J. Chem. 69, 489–498. CrossRef CAS Google Scholar
Lo, K. K.-W., Louie, M.-W. & Zhang, K. Y. (2010). Coord. Chem. Rev. 254, 2603–2622. CrossRef CAS Google Scholar
Lo, K. K.-W., Zhang, K. Y. & Li, S. P.-Y. (2011). Eur. J. Inorg. Chem. pp. 3551–3568. CrossRef Google Scholar
Potgieter, K. C., Gerber, T. I. A. & Hosten, E. (2012). Inorg. Chem. Commun. 24, 231–233. CrossRef CAS Google Scholar
Rosenberg, B., Van Camp, L. & Krigas, T. (1965). Nature, 205, 698–699. CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, D. F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375–3384. CrossRef CAS PubMed Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Teo, S.-B., Okechuckwu, R. C., Teoh, S.-G., Fun, H.-K. & Chinnakali, K. (1995). Acta Cryst. C51, 1629–1630. CrossRef CAS IUCr Journals Google Scholar
Wallace, L. & Rillema, D. P. (1993). Inorg. Chem. 32, 3836–3843. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, G.-W., Zhao, J.-H., Hu, Y.-X., Zhang, D.-Y. & Li, X. (2016). Synth. Met. 212, 131–141. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.