research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the cis and trans polymorphs of bis­­[μ-2-(1,3-benzo­thia­zol-2-yl)phenolato]-κ3N,O:O;κ3O:N,O-bis­­[fac-tri­carbonyl­rhenium(I)]1

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Thiagarajar College, Madurai 625 009, Tamil Nadu, India, and bDepartment of Chemistry, University of Hyderabad, South Campus, Hyderabad 500 046, Telengana, India
*Correspondence e-mail: mailtorvkk@yahoo.co.in

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 11 January 2017; accepted 26 January 2017; online 31 January 2017)

The title dinuclear complex, [Re2(C13H8NOS)2(CO)6], crystallizes in two polymorphs where the 2-(1,3-benzo­thia­zol-2-yl)phenolate ligands and two carbonyl groups are trans- (I) or cis-arranged (II) with respect to the [Re2O2(CO)4] core. Polymorphs I and II exhibit a crystallographically imposed centre of symmetry and a twofold rotation axis, respectively. The structures may be described as being formed by two octa­hedrally distorted metal-coordinating units fused through μ-oxido bridges, leading to edge-sharing dimers. The crystal packing is governed by C—H⋯O hydrogen-bonding inter­actions, forming chains parallel to the c axis in I and a three-dimensional network in II.

1. Chemical context

Organometallic complexes are regarded as inter­esting and important compounds owing to their versatile photophysical, photochemical and biological properties. In particular, the importance of the use of metal complexes in medicine began with the discovery of the anti-cancer activity of cis-platin (Rosenberg et al., 1965[Rosenberg, B., Van Camp, L. & Krigas, T. (1965). Nature, 205, 698-699.]). Since then, attempts to synthesize and characterize novel organometallics with potential pharmaceutical applications remains the main focus of anti­cancer drug discovery.

While it has been discovered recently that some rhenium–indolato complexes exhibit light-induced anti-cancer activity (Kastl et al., 2013[Kastl, A., Dieckmann, S., Wähler, K., Völker, T., Kastl, L., Merkel, A. L., Vultur, A., Shannan, B., Harms, K., Ocker, M., Parak, W. J., Herlyn, M. & Meggers, E. (2013). ChemMedChem, 8, 924-927.]), a number of tricarbon­yl–rhenium complexes are well known agents in the field of biomedical imaging (Lo et al., 2010[Lo, K. K.-W., Louie, M.-W. & Zhang, K. Y. (2010). Coord. Chem. Rev. 254, 2603-2622.], 2011[Lo, K. K.-W., Zhang, K. Y. & Li, S. P.-Y. (2011). Eur. J. Inorg. Chem. pp. 3551-3568.]). Several rhenium(I) tricarbonyl heterocyclic complexes are known to exhibit intense luminescence in the visible region and, owing to their stability to photodecomposition, are promising candidates for solar energy conversion applications (Wallace & Rillema, 1993[Wallace, L. & Rillema, D. P. (1993). Inorg. Chem. 32, 3836-3843.]). In the context of earlier works (Shi et al., 1996[Shi, D. F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375-3384.]; Bradshaw & Westwell, 2004[Bradshaw, T. D. & Westwell, A. D. (2004). Curr. Med. Chem. 11, 1009-1021.]; Potgieter et al., 2012[Potgieter, K. C., Gerber, T. I. A. & Hosten, E. (2012). Inorg. Chem. Commun. 24, 231-233.]) suggesting benzo­thia­zole derivatives to be promising ligands for rhenium which possess potential usefulness in radiotherapy, the intra- and inter­molecular features of the crystal structures of the title compound may well be regarded as relevant. More recently, a host of rhenium–tricarbonyl complexes containing heterocyclic derivatives have been shown to exhibit anti­microbial properties (Kumar et al., 2016[Kumar, S. V., Lo, W. K. C., Brooks, H. J. L., Hanton, L. R. & Crowley, J. D. (2016). Aust. J. Chem. 69, 489-498.]). In a recent review, a systematic evaluation of neutral ReI tricarbonyl complexes was undertaken for their suitability as organic light-emitting diodes (Zhao et al., 2016[Zhao, G.-W., Zhao, J.-H., Hu, Y.-X., Zhang, D.-Y. & Li, X. (2016). Synth. Met. 212, 131-141.]).

[Scheme 1]

2. Structural commentary

The title compound, [Re(CO)3(L)]2 where L= 2-(1,3-benzo­thia­zol-2-yl)phenolate, crystallizes in two different forms, viz. the trans form (I, Fig. 1[link]) in the triclinic space group P[\overline{1}] and the cis form (II, Fig. 2[link]) in the ortho­rhom­bic space group Pbca. The structure of the compound may be described as being composed of two octa­hedral metal-coordinating units fused through μ-oxido bridges leading to edge-sharing dimers. The presence of the inversion centre in I leads to Re—O-bridged centrosymmetric dimeric mol­ecular units. In II, dimerization through Re—O bridging is achieved through a twofold rotation axis. In both I and II, coordination around the rhenium atom is similar, the metal exhibiting a distorted octa­hedral environment with atoms C16 and N1 occupying the apical sites and atoms C14, C15, O1 and O1i/O1ii at the equatorial plane [symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) −x, y, [{1\over 2}] − z]. The N1—Re01—O1i—C9i torsion angle associated with the Re—O bridging of symmetry-related mol­ecules in trans polymorph I [137.1 (5)°] is distinctly different from the corresponding value in the cis polymorph II [−59.4 (3)°]. The Re⋯Re and O1⋯O1 separations in the Re2O2 core are 3.4799 (5) and 2.581 (8) Å, and 3.4332 (5) and 2.535 (4) Å in I and II, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of I, with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by (1 − x, 1 − y, 1 − z). H atoms have been omitted for clarity.
[Figure 2]
Figure 2
The mol­ecular structure of II, with displacement ellipsoids drawn at the 50% probability level. Unlabelled atoms are related to labelled atoms by (−x, y, [{1\over 2}] − z). H atoms have been omitted for clarity.

The conformation of the ligand in I and II is significantly different. The dihedral angles between the planar benzo­thia­zole unit and the benzene rings in I and II are 32.23 (18) and 22.78 (8)°, respectively. The value observed in II closely agrees with that observed in the crystal structure of 2-(4-hy­droxy­phen­yl)benzo­thia­zole [18.49 (6)°; Teo et al., 1995[Teo, S.-B., Okechuckwu, R. C., Teoh, S.-G., Fun, H.-K. & Chinnakali, K. (1995). Acta Cryst. C51, 1629-1630.]], which inter­estingly crystallizes in the same space group. The larger value observed in I may be attributed to the `flipping' of the twofold symmetry into an inversion centre.

3. Supra­molecular features

The crystal structures of I and II are governed by C—H⋯O hydrogen bonds which significantly differ in their strengths and the mode of participation of the carbonyl O atoms. In I, the O3 atom of the apical carbonyl group C16=O3 plays a role in connecting the mol­ecules across inversion centres into a chain along the c axis (Fig. 3[link], Table 1[link]). In addition, a short O4⋯O4iii contact [symmetry code: (iii) –x + 1, –y + 2, –z + 1] involving centrosymmetrcally related carbonyl groups C15=O4 [2.792 (10) Å] is present, linking the chains along the b axis to form layers parallel to the bc plane.

Table 1
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O3i 0.95 2.52 3.276 (8) 137
Symmetry code: (i) x, y, z-1.
[Figure 3]
Figure 3
Crystal packing of I, showing the formation of mol­ecular chains parallel to the c axis via C—H⋯O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding are omitted.

In II, the oxygen atom of the equatorial carbonyl group C14=O2 links the mol­ecules across the glide planes into a three-dimensional network (Fig. 4[link], Table 2[link]). Similarly to that observed in I, a C—H⋯O hydrogen bond involving the O3 atom of the apical carbonyl group C16=O3 is present, which extends along the b axis through translation. Therefore it may be concluded that in both the trans and cis polymorphs, the mode of participation to the hydrogen-bonding network of the O atom of the apical carbonyl group is through simple translation, while there is a significant `switching' in the choice of the O atoms of the equatorial carbonyl groups. A common feature between the two structures is that one of the three carbonyl groups, namely C14=O2 in I and C15=O4 in II, forbids its O atom from participating in the inter­molecular inter­actions.

Table 2
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2i 0.93 2.49 3.387 (4) 163
C2—H2⋯O3ii 0.93 2.64 3.467 (5) 149
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) x, y+1, z.
[Figure 4]
Figure 4
Crystal packing of II approximately, viewed along the b axis, showing mol­ecules linked into a the three-dimensional network through C—H⋯O hydrogen bonds (red dashed lines). H atoms not involved in hydrogen bonding are omitted.

4. Database survey

A search in the Cambridge structural Database (Version 5.35, November 2014 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for μ-oxido bridging dinuclear complexes of rhenium having an octa­hedral coordination environment similar to that observed in the title compounds (i.e. involving three carbonyl C atoms, two oxygens and a nitro­gen) was made. The search returned 45 crystal structures with three-dimensional coordinates determined, excluding duplicate structure determinations and having an R factor less than 0.075. Out of these 45 crystal structures, 25 crystallize in the monoclinic, nine in the triclinic, eight in the ortho­rhom­bic and three in the trigonal systems. In these compounds, the Re⋯Re distance ranges from 3.330 to 3.501 Å, the O⋯O separation within the Re2O2 core ranges from 2.485 to 2.701 Å, and Re—O bond lengths from 2.065 to 2.215 Å.

5. Synthesis and crystallization

For I:

A mixture of Re2(CO)10 (101.3 mg, 0.1552 mmol), 2-(1,3-benzo­thia­zol-2-yl)phenol (69.7 mg, 0.307 mmol) and 2-phenyl-2-imidazoline (45.8 mg, 0.323 mmol) in toluene (10 ml) in a Teflon flask was placed in a steel bomb. The bomb was placed in an oven maintained at 433 K for 48 h and then cooled to 298 K. Pale-yellow crystals were obtained and separated by filtration.

For II:

A mixture of Re2(CO)10 (101.8 mg, 0.156 mmol), 2-(1,3-benzo­thia­zol-2-yl)phenol (69.9 mg, 0.308 mmol) and 2-(pyrid­in-4-yl)-1-(2,4,6-tri­methyl­benz­yl)-1H-benzo[d]imidazole (101.1 mg, 0.309 mmol) in toluene (10 ml) in a Teflon flask was placed in a steel bomb. The bomb was placed in an oven maintained at 433 K for 48 h and then cooled to 298 K. Pale-yellow crystals were obtained and separated by filtration.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. In both I and II, the H atoms were placed in calculated positions (C—H = 0.93–0.97 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) set at 1.2–1.5Ueq(C). In I, two outliers (9 11 2, 2 2 4) were omitted in the last cycles of refinement.

Table 3
Experimental details

  I II
Crystal data
Chemical formula [Re2(C13H8NOS)2(CO)6] [Re2(C13H8NOS)2(CO)6]
Mr 992.99 992.99
Crystal system, space group Triclinic, P[\overline{1}] Orthorhombic, Pbcn
Temperature (K) 100 296
a, b, c (Å) 8.9250 (11), 9.7342 (12), 10.0844 (12) 16.1480 (7), 11.6519 (5), 15.6329 (8)
α, β, γ (°) 66.438 (5), 75.636 (5), 63.585 (5) 90, 90, 90
V3) 716.59 (16) 2941.4 (2)
Z 1 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 8.64 8.42
Crystal size (mm) 0.28 × 0.18 × 0.15 0.25 × 0.18 × 0.12
 
Data collection
Diffractometer Bruker SMART APEX CCD Bruker SMART APEX CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.168, 0.357 0.18, 0.38
No. of measured, independent and observed [I > 2σ(I)] reflections 23724, 3325, 3113 11735, 3510, 2943
Rint 0.105 0.027
(sin θ/λ)max−1) 0.654 0.688
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.08 0.027, 0.060, 1.07
No. of reflections 3325 3510
No. of parameters 208 208
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 2.91, −2.74 1.09, −0.95
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLUTON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLUTON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

(I) trans-Bis[µ-2-(1,3-benzothiazol-2-yl)phenolato]-κ3N,O:O;κ3O:N,O-bis[fac-tricarbonylrhenium(I)] top
Crystal data top
[Re2(C13H8NOS)2(CO)6]Z = 1
Mr = 992.99F(000) = 468
Triclinic, P1Dx = 2.301 Mg m3
a = 8.9250 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7342 (12) ÅCell parameters from 3113 reflections
c = 10.0844 (12) Åθ = 2.5–27.7°
α = 66.438 (5)°µ = 8.64 mm1
β = 75.636 (5)°T = 100 K
γ = 63.585 (5)°Needle, yellow
V = 716.59 (16) Å30.28 × 0.18 × 0.15 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3113 reflections with I > 2σ(I)
ω scansRint = 0.105
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 27.7°, θmin = 2.5°
Tmin = 0.168, Tmax = 0.357h = 1111
23724 measured reflectionsk = 1212
3325 independent reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0558P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3325 reflectionsΔρmax = 2.91 e Å3
208 parametersΔρmin = 2.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component perfect inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re010.36347 (2)0.70142 (2)0.47571 (2)0.01179 (10)
S10.5151 (2)0.69074 (18)0.00066 (15)0.0204 (3)
O10.3841 (5)0.4733 (5)0.4716 (4)0.0136 (7)
O20.0115 (6)0.9108 (6)0.3751 (5)0.0285 (11)
O30.2004 (7)0.6662 (7)0.7869 (5)0.0329 (12)
O40.3450 (7)1.0258 (6)0.4663 (8)0.0413 (14)
N10.4733 (6)0.7154 (5)0.2528 (5)0.0143 (9)
C10.6280 (7)0.7795 (7)0.0280 (6)0.0206 (12)
C20.7395 (9)0.8452 (8)0.0704 (7)0.0258 (14)
H20.76250.84480.16740.031*
C30.8153 (8)0.9111 (8)0.0215 (8)0.0283 (15)
H30.89300.95500.08560.034*
C40.7797 (8)0.9142 (8)0.1200 (8)0.0267 (14)
H40.83370.95990.15070.032*
C50.6676 (8)0.8521 (7)0.2161 (7)0.0201 (12)
H50.64270.85630.31200.024*
C60.5912 (7)0.7828 (6)0.1703 (6)0.0164 (11)
C70.4244 (7)0.6635 (6)0.1754 (6)0.0158 (10)
C80.3038 (7)0.5852 (7)0.2262 (6)0.0173 (11)
C90.2952 (7)0.4856 (6)0.3742 (6)0.0144 (10)
C100.1877 (8)0.4040 (7)0.4184 (7)0.0214 (12)
H100.18130.33560.51640.026*
C110.0890 (9)0.4215 (8)0.3198 (7)0.0255 (13)
H110.01750.36360.35130.031*
C120.0942 (8)0.5229 (8)0.1760 (7)0.0225 (12)
H120.02480.53690.11010.027*
C130.2023 (8)0.6028 (7)0.1310 (6)0.0208 (12)
H130.20730.67140.03290.025*
C140.1446 (8)0.8311 (7)0.4146 (6)0.0203 (12)
C150.3586 (8)0.9012 (7)0.4703 (7)0.0244 (13)
C160.2666 (8)0.6763 (7)0.6697 (6)0.0176 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re010.01088 (13)0.00927 (12)0.01551 (13)0.00340 (8)0.00144 (7)0.00480 (8)
S10.0232 (7)0.0199 (7)0.0161 (6)0.0080 (6)0.0009 (5)0.0060 (5)
O10.0121 (18)0.0103 (17)0.0185 (17)0.0032 (14)0.0007 (14)0.0074 (14)
O20.016 (2)0.029 (2)0.032 (2)0.0011 (18)0.0068 (18)0.0100 (19)
O30.027 (3)0.042 (3)0.025 (2)0.008 (2)0.0042 (19)0.012 (2)
O40.030 (3)0.021 (2)0.083 (4)0.010 (2)0.001 (3)0.029 (3)
N10.014 (2)0.010 (2)0.017 (2)0.0043 (17)0.0020 (17)0.0023 (16)
C10.016 (3)0.013 (2)0.024 (3)0.004 (2)0.001 (2)0.001 (2)
C20.024 (3)0.020 (3)0.022 (3)0.007 (2)0.002 (2)0.000 (2)
C30.016 (3)0.021 (3)0.035 (3)0.009 (2)0.002 (2)0.003 (2)
C40.020 (3)0.020 (3)0.036 (3)0.010 (2)0.005 (3)0.001 (2)
C50.015 (3)0.017 (3)0.025 (3)0.007 (2)0.003 (2)0.003 (2)
C60.014 (3)0.011 (2)0.021 (2)0.004 (2)0.0010 (19)0.0040 (19)
C70.013 (3)0.010 (2)0.019 (2)0.0011 (19)0.0009 (19)0.0040 (19)
C80.015 (3)0.016 (2)0.020 (2)0.005 (2)0.001 (2)0.009 (2)
C90.012 (2)0.009 (2)0.021 (2)0.0012 (19)0.0004 (19)0.0073 (19)
C100.018 (3)0.019 (3)0.027 (3)0.010 (2)0.004 (2)0.004 (2)
C110.026 (3)0.025 (3)0.032 (3)0.014 (3)0.008 (3)0.009 (2)
C120.022 (3)0.024 (3)0.028 (3)0.007 (2)0.009 (2)0.013 (2)
C130.020 (3)0.018 (3)0.020 (2)0.003 (2)0.003 (2)0.007 (2)
C140.028 (3)0.017 (3)0.017 (2)0.011 (2)0.002 (2)0.006 (2)
C150.021 (3)0.015 (3)0.036 (3)0.004 (2)0.000 (2)0.012 (2)
C160.014 (3)0.022 (3)0.018 (2)0.005 (2)0.006 (2)0.006 (2)
Geometric parameters (Å, º) top
Re01—C141.890 (7)C2—H20.9500
Re01—C151.905 (7)C3—C41.392 (11)
Re01—C161.898 (6)C3—H30.9500
Re01—O12.162 (4)C4—C51.376 (8)
Re01—O1i2.171 (4)C4—H40.9500
Re01—N12.194 (5)C5—C61.396 (9)
S1—C11.722 (7)C5—H50.9500
S1—C71.726 (6)C7—C81.465 (8)
O1—C91.348 (7)C8—C131.390 (9)
O1—Re01i2.171 (4)C8—C91.424 (7)
O2—C141.157 (8)C9—C101.390 (8)
O3—C161.170 (8)C10—C111.400 (9)
O4—C151.148 (9)C10—H100.9500
N1—C71.317 (8)C11—C121.394 (9)
N1—C61.405 (7)C11—H110.9500
C1—C21.398 (8)C12—C131.382 (9)
C1—C61.400 (8)C12—H120.9500
C2—C31.384 (11)C13—H130.9500
C14—Re01—C1583.9 (3)C5—C4—H4119.4
C14—Re01—C1687.9 (2)C3—C4—H4119.4
C15—Re01—C1686.4 (3)C4—C5—C6118.8 (6)
C14—Re01—O198.2 (2)C4—C5—H5120.6
C15—Re01—O1176.1 (2)C6—C5—H5120.6
C16—Re01—O197.0 (2)C5—C6—C1119.8 (5)
C14—Re01—O1i170.6 (2)C5—C6—N1126.5 (5)
C15—Re01—O1i104.5 (2)C1—C6—N1113.7 (5)
C16—Re01—O1i96.8 (2)N1—C7—C8125.9 (5)
O1—Re01—O1i73.12 (18)N1—C7—S1115.5 (4)
C14—Re01—N192.1 (2)C8—C7—S1118.6 (5)
C15—Re01—N197.5 (2)C13—C8—C9119.9 (5)
C16—Re01—N1176.0 (2)C13—C8—C7120.9 (5)
O1—Re01—N179.11 (16)C9—C8—C7119.1 (5)
O1i—Re01—N182.68 (16)O1—C9—C10120.0 (5)
C1—S1—C789.8 (3)O1—C9—C8121.6 (5)
C9—O1—Re01115.5 (3)C10—C9—C8118.3 (6)
C9—O1—Re01i126.8 (3)C9—C10—C11120.6 (5)
Re01—O1—Re01i106.88 (18)C9—C10—H10119.7
C7—N1—C6110.7 (5)C11—C10—H10119.7
C7—N1—Re01120.7 (4)C12—C11—C10120.8 (6)
C6—N1—Re01128.5 (4)C12—C11—H11119.6
C2—C1—C6121.4 (6)C10—C11—H11119.6
C2—C1—S1128.4 (5)C13—C12—C11118.8 (6)
C6—C1—S1110.2 (4)C13—C12—H12120.6
C3—C2—C1117.7 (6)C11—C12—H12120.6
C3—C2—H2121.2C12—C13—C8121.4 (5)
C1—C2—H2121.2C12—C13—H13119.3
C2—C3—C4121.2 (6)C8—C13—H13119.3
C2—C3—H3119.4O2—C14—Re01179.0 (5)
C4—C3—H3119.4O4—C15—Re01175.7 (6)
C5—C4—C3121.2 (7)O3—C16—Re01177.0 (5)
C7—S1—C1—C2178.2 (6)C1—S1—C7—N10.3 (5)
C7—S1—C1—C60.3 (4)C1—S1—C7—C8179.6 (4)
C6—C1—C2—C31.3 (9)N1—C7—C8—C13149.4 (6)
S1—C1—C2—C3179.7 (5)S1—C7—C8—C1331.3 (7)
C1—C2—C3—C41.0 (9)N1—C7—C8—C932.5 (8)
C2—C3—C4—C50.1 (10)S1—C7—C8—C9146.7 (4)
C3—C4—C5—C61.0 (9)Re01—O1—C9—C10128.2 (5)
C4—C5—C6—C10.8 (9)Re01i—O1—C9—C1092.4 (6)
C4—C5—C6—N1179.4 (5)Re01—O1—C9—C849.8 (6)
C2—C1—C6—C50.4 (8)Re01i—O1—C9—C889.7 (6)
S1—C1—C6—C5179.1 (4)C13—C8—C9—O1175.9 (5)
C2—C1—C6—N1178.4 (5)C7—C8—C9—O16.0 (8)
S1—C1—C6—N10.3 (6)C13—C8—C9—C102.0 (9)
C7—N1—C6—C5178.8 (6)C7—C8—C9—C10176.0 (5)
Re01—N1—C6—C52.0 (8)O1—C9—C10—C11177.1 (6)
C7—N1—C6—C10.1 (7)C8—C9—C10—C110.9 (9)
Re01—N1—C6—C1176.7 (4)C9—C10—C11—C121.0 (10)
C6—N1—C7—C8179.4 (5)C10—C11—C12—C131.7 (10)
Re01—N1—C7—C83.5 (8)C11—C12—C13—C80.6 (10)
C6—N1—C7—S10.1 (6)C9—C8—C13—C121.3 (9)
Re01—N1—C7—S1177.2 (2)C7—C8—C13—C12176.7 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3ii0.952.523.276 (8)137
Symmetry code: (ii) x, y, z1.
(II) cis-Bis[µ-2-(1,3-benzothiazol-2-yl)phenolato]-κ3N,O:O;κ3O:N,O-bis[fac-tricarbonylrhenium(I)] top
Crystal data top
[Re2(C13H8NOS)2(CO)6]Dx = 2.242 Mg m3
Mr = 992.99Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 2943 reflections
a = 16.1480 (7) Åθ = 2.9–28.0°
b = 11.6519 (5) ŵ = 8.42 mm1
c = 15.6329 (8) ÅT = 296 K
V = 2941.4 (2) Å3Needle, yellow
Z = 40.25 × 0.18 × 0.12 mm
F(000) = 1872
Data collection top
Bruker SMART APEX CCD
diffractometer
2943 reflections with I > 2σ(I)
ω scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
θmax = 29.3°, θmin = 2.9°
Tmin = 0.18, Tmax = 0.38h = 1222
11735 measured reflectionsk = 1514
3510 independent reflectionsl = 2119
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0263P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3510 reflectionsΔρmax = 1.09 e Å3
208 parametersΔρmin = 0.95 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re010.00490 (2)0.15435 (2)0.35969 (2)0.01406 (6)
S10.07316 (6)0.54284 (8)0.35632 (6)0.0210 (2)
O10.07833 (17)0.1789 (2)0.25483 (14)0.0159 (6)
O20.13167 (17)0.1285 (2)0.49308 (18)0.0287 (7)
O30.01421 (17)0.1089 (3)0.34887 (19)0.0293 (7)
O40.13228 (17)0.1328 (2)0.50382 (18)0.0302 (7)
N10.00453 (16)0.3439 (3)0.36089 (19)0.0158 (8)
C10.0277 (2)0.5344 (3)0.3923 (2)0.0164 (8)
C20.0769 (2)0.6243 (3)0.4226 (2)0.0198 (8)
H20.05660.69880.42650.024*
C30.1569 (2)0.5978 (3)0.4467 (2)0.0212 (8)
H30.19140.65550.46720.025*
C40.1866 (2)0.4861 (3)0.4407 (3)0.0219 (9)
H40.24100.47050.45620.026*
C50.1369 (2)0.3980 (3)0.4121 (2)0.0173 (8)
H50.15760.32370.40830.021*
C60.0555 (2)0.4210 (3)0.3892 (2)0.0142 (7)
C70.0748 (2)0.3953 (3)0.3416 (2)0.0159 (8)
C80.1503 (2)0.3426 (3)0.3103 (2)0.0167 (8)
C90.1499 (2)0.2380 (3)0.2657 (2)0.0165 (8)
C100.2230 (2)0.1963 (3)0.2318 (2)0.0213 (9)
H100.22270.12730.20190.026*
C110.2959 (2)0.2549 (4)0.2414 (2)0.0271 (10)
H110.34430.22620.21730.033*
C120.2980 (2)0.3564 (3)0.2867 (3)0.0294 (10)
H120.34780.39500.29450.035*
C130.2258 (2)0.4003 (3)0.3203 (3)0.0237 (9)
H130.22720.46940.35010.028*
C140.0788 (2)0.1374 (3)0.4440 (3)0.0183 (8)
C150.0848 (2)0.1418 (3)0.4488 (3)0.0197 (8)
C160.0108 (2)0.0097 (4)0.3516 (2)0.0189 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re010.01466 (9)0.01247 (9)0.01505 (10)0.00037 (6)0.00097 (6)0.00113 (6)
S10.0214 (5)0.0153 (4)0.0264 (6)0.0040 (4)0.0031 (4)0.0005 (4)
O10.0149 (13)0.0178 (12)0.0151 (14)0.0016 (10)0.0013 (10)0.0023 (11)
O20.0307 (16)0.0265 (14)0.0288 (18)0.0057 (12)0.0083 (14)0.0005 (13)
O30.0357 (17)0.0147 (14)0.038 (2)0.0035 (12)0.0049 (14)0.0005 (14)
O40.0323 (16)0.0318 (15)0.0265 (18)0.0006 (13)0.0133 (14)0.0065 (13)
N10.0161 (17)0.0151 (18)0.0162 (19)0.0012 (12)0.0013 (13)0.0003 (12)
C10.0161 (17)0.0199 (19)0.0132 (19)0.0010 (15)0.0031 (15)0.0030 (17)
C20.028 (2)0.0132 (17)0.018 (2)0.0005 (15)0.0005 (18)0.0004 (16)
C30.027 (2)0.0184 (19)0.018 (2)0.0071 (16)0.0001 (17)0.0029 (17)
C40.0179 (18)0.025 (2)0.022 (2)0.0023 (16)0.0024 (17)0.0004 (17)
C50.0166 (18)0.0140 (17)0.021 (2)0.0012 (14)0.0008 (16)0.0004 (16)
C60.0168 (18)0.0117 (16)0.0142 (18)0.0025 (14)0.0014 (15)0.0007 (15)
C70.0168 (18)0.0191 (19)0.0120 (19)0.0018 (15)0.0010 (15)0.0024 (16)
C80.0138 (17)0.0193 (19)0.017 (2)0.0018 (15)0.0004 (15)0.0007 (16)
C90.0137 (17)0.0189 (18)0.017 (2)0.0020 (15)0.0012 (15)0.0046 (16)
C100.0186 (19)0.025 (2)0.020 (2)0.0063 (16)0.0023 (16)0.0014 (17)
C110.0165 (19)0.039 (3)0.026 (2)0.0049 (18)0.0050 (17)0.004 (2)
C120.0152 (19)0.044 (3)0.029 (3)0.0067 (18)0.0014 (18)0.008 (2)
C130.0205 (19)0.020 (2)0.030 (2)0.0053 (17)0.0003 (18)0.0063 (17)
C140.0218 (19)0.0146 (18)0.019 (2)0.0011 (15)0.0018 (17)0.0015 (16)
C150.0224 (19)0.0132 (18)0.023 (2)0.0021 (15)0.0029 (17)0.0010 (16)
C160.0155 (18)0.024 (2)0.017 (2)0.0015 (15)0.0018 (15)0.0019 (16)
Geometric parameters (Å, º) top
Re01—C141.898 (4)C2—H20.9300
Re01—C151.904 (4)C3—C41.390 (4)
Re01—C161.918 (4)C3—H30.9300
Re01—O12.139 (2)C4—C51.377 (4)
Re01—O1i2.166 (2)C4—H40.9300
Re01—N12.214 (3)C5—C61.389 (5)
S1—C11.726 (4)C5—H50.9300
S1—C71.735 (4)C7—C81.450 (5)
O1—C91.355 (4)C8—C131.401 (5)
O1—Re01i2.166 (2)C8—C91.404 (5)
O2—C141.153 (4)C9—C101.382 (5)
O3—C161.158 (5)C10—C111.370 (5)
O4—C151.157 (5)C10—H100.9300
N1—C71.318 (4)C11—C121.378 (6)
N1—C61.393 (4)C11—H110.9300
C1—C61.396 (5)C12—C131.377 (5)
C1—C21.398 (5)C12—H120.9300
C2—C31.380 (5)C13—H130.9300
C14—Re01—C1588.10 (18)C5—C4—H4119.4
C14—Re01—C1688.70 (15)C3—C4—H4119.4
C15—Re01—C1686.45 (14)C4—C5—C6119.4 (3)
C14—Re01—O195.63 (14)C4—C5—H5120.3
C15—Re01—O1175.25 (12)C6—C5—H5120.3
C16—Re01—O196.54 (13)C5—C6—N1128.0 (3)
C14—Re01—O1i167.74 (13)C5—C6—C1118.5 (3)
C15—Re01—O1i104.12 (14)N1—C6—C1113.5 (3)
C16—Re01—O1i92.87 (13)N1—C7—C8127.5 (3)
O1—Re01—O1i72.12 (12)N1—C7—S1114.0 (3)
C14—Re01—N192.80 (12)C8—C7—S1118.5 (3)
C15—Re01—N196.72 (12)C13—C8—C9118.4 (3)
C16—Re01—N1176.53 (14)C13—C8—C7119.4 (3)
O1—Re01—N180.20 (10)C9—C8—C7122.1 (3)
O1i—Re01—N185.00 (10)O1—C9—C10120.1 (3)
C1—S1—C790.05 (17)O1—C9—C8120.5 (3)
C9—O1—Re01120.5 (2)C10—C9—C8119.4 (3)
C9—O1—Re01i129.6 (2)C11—C10—C9121.1 (4)
Re01—O1—Re01i105.77 (11)C11—C10—H10119.4
C7—N1—C6112.3 (3)C9—C10—H10119.4
C7—N1—Re01120.7 (2)C10—C11—C12120.3 (4)
C6—N1—Re01126.7 (2)C10—C11—H11119.8
C6—C1—C2122.6 (3)C12—C11—H11119.8
C6—C1—S1110.2 (3)C13—C12—C11119.6 (4)
C2—C1—S1127.2 (3)C13—C12—H12120.2
C3—C2—C1117.2 (3)C11—C12—H12120.2
C3—C2—H2121.4C12—C13—C8121.0 (3)
C1—C2—H2121.4C12—C13—H13119.5
C2—C3—C4120.9 (3)C8—C13—H13119.5
C2—C3—H3119.6O2—C14—Re01177.6 (3)
C4—C3—H3119.6O4—C15—Re01178.7 (3)
C5—C4—C3121.3 (3)O3—C16—Re01178.3 (3)
C7—S1—C1—C61.5 (3)C1—S1—C7—N11.0 (3)
C7—S1—C1—C2177.1 (4)C1—S1—C7—C8179.2 (3)
C6—C1—C2—C32.7 (6)N1—C7—C8—C13158.5 (4)
S1—C1—C2—C3178.8 (3)S1—C7—C8—C1321.7 (5)
C1—C2—C3—C40.0 (6)N1—C7—C8—C925.2 (6)
C2—C3—C4—C51.2 (6)S1—C7—C8—C9154.6 (3)
C3—C4—C5—C60.2 (6)Re01—O1—C9—C10135.2 (3)
C4—C5—C6—N1178.4 (4)Re01i—O1—C9—C1071.1 (4)
C4—C5—C6—C12.8 (5)Re01—O1—C9—C845.7 (4)
C7—N1—C6—C5177.8 (4)Re01i—O1—C9—C8108.0 (3)
Re01—N1—C6—C59.0 (5)C13—C8—C9—O1179.7 (3)
C7—N1—C6—C11.0 (4)C7—C8—C9—O14.0 (5)
Re01—N1—C6—C1172.2 (2)C13—C8—C9—C101.2 (5)
C2—C1—C6—C54.2 (6)C7—C8—C9—C10175.1 (3)
S1—C1—C6—C5177.2 (3)O1—C9—C10—C11179.5 (3)
C2—C1—C6—N1176.9 (3)C8—C9—C10—C110.4 (6)
S1—C1—C6—N11.8 (4)C9—C10—C11—C121.1 (6)
C6—N1—C7—C8180.0 (4)C10—C11—C12—C131.8 (6)
Re01—N1—C7—C86.3 (5)C11—C12—C13—C80.9 (6)
C6—N1—C7—S10.2 (4)C9—C8—C13—C120.5 (6)
Re01—N1—C7—S1173.91 (16)C7—C8—C13—C12175.9 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O2ii0.932.493.387 (4)163
C2—H2···O3iii0.932.643.467 (5)149
Symmetry codes: (ii) x1/2, y+1/2, z+1; (iii) x, y+1, z.
 

Footnotes

1This paper is dedicated to the memory of Professor S. K. Mohanlal.

Acknowledgements

MP thanks the University Grants Commission, India, for a Rajiv Gandhi National Fellowship and for facilities availed at the Networking Resource Centre, School of Chemistry, University of Hyderabad, India.

References

First citationBradshaw, T. D. & Westwell, A. D. (2004). Curr. Med. Chem. 11, 1009–1021.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKastl, A., Dieckmann, S., Wähler, K., Völker, T., Kastl, L., Merkel, A. L., Vultur, A., Shannan, B., Harms, K., Ocker, M., Parak, W. J., Herlyn, M. & Meggers, E. (2013). ChemMedChem, 8, 924–927.  CrossRef CAS Google Scholar
First citationKumar, S. V., Lo, W. K. C., Brooks, H. J. L., Hanton, L. R. & Crowley, J. D. (2016). Aust. J. Chem. 69, 489–498.  CrossRef CAS Google Scholar
First citationLo, K. K.-W., Louie, M.-W. & Zhang, K. Y. (2010). Coord. Chem. Rev. 254, 2603–2622.  CrossRef CAS Google Scholar
First citationLo, K. K.-W., Zhang, K. Y. & Li, S. P.-Y. (2011). Eur. J. Inorg. Chem. pp. 3551–3568.  CrossRef Google Scholar
First citationPotgieter, K. C., Gerber, T. I. A. & Hosten, E. (2012). Inorg. Chem. Commun. 24, 231–233.  CrossRef CAS Google Scholar
First citationRosenberg, B., Van Camp, L. & Krigas, T. (1965). Nature, 205, 698–699.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, D. F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375–3384.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeo, S.-B., Okechuckwu, R. C., Teoh, S.-G., Fun, H.-K. & Chinnakali, K. (1995). Acta Cryst. C51, 1629–1630.  CrossRef CAS IUCr Journals Google Scholar
First citationWallace, L. & Rillema, D. P. (1993). Inorg. Chem. 32, 3836–3843.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, G.-W., Zhao, J.-H., Hu, Y.-X., Zhang, D.-Y. & Li, X. (2016). Synth. Met. 212, 131–141.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds