research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-2,6-di-tert-butyl-4-{[2-(2,4-di­nitro­phen­yl)hydrazinyl­idene]meth­yl}phenol

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al-Khod 123, Muscat, Sultanate of , Oman, bOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and cDepartment of General Chemistry, O. O. Bohomolets National Medical University, Shevchenko Blvd. 13, 01601 Kiev, Ukraine
*Correspondence e-mail: kalibabchuk@ukr.net

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 December 2016; accepted 17 December 2016; online 6 January 2017)

The essential part (including all the non-hydrogen atoms except two methyl carbons) of the mol­ecule of the title compound, C21H26N4O5, lies on a mirror plane, which bis­ects the t-butyl groups. The conformation of the C=N bond of this Schiff base compound is E, and there is an intra­molecular N—H⋯O hydrogen bond present, forming an S(6) ring motif. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds, forming zigzag chains propagating along the a-axis direction. There are no other significant inter­molecular contacts present.

1. Chemical context

Sterically hindered phenol anti-oxidants are widely used in polymers and lubricants. They can protect polymers by increasing both their process stability and their long-term stability against oxidative degradation (Yamazaki & Seguchi, 1997[Yamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. A Polym. Chem. 35, 2431-2439.]; Silin et al., 1999[Silin, M. A., Kelaren, V. I., Abu-Ammar, V., Putkaradze, D. Kh. & Golubeva, I. A. (1999). Pet. Chem. 40, 209-214.]). Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and anti­tumor properties (Küçükgüzel et al., 2006[Küçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]; Khattab, 2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]; Karthikeyan et al., 2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]; Okabe et al., 1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). 2,4-Di­nitro­phenyl­hydrazine is frequently used as a reagent for the characterization of aldehydes and ketones (Furniss et al., 1999[Furniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1999). Vogel's Textbook of Practical Organic Chemistry, 5th ed. London: Longmans.]). Its derivatives are widely used as dyes (Guillaumont & Nakamura, 2000[Guillaumont, D. & Nakamura, S. (2000). Dyes Pigments, 46, 85-92.]). They are also found to have versatile coordin­ating abilities towards different metal ions (Raj & Kurup, 2007[Raj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898-903.]). The present work is a part of an ongoing structural study of Schiff bases and their utilization in the synthesis of quinoxaline derivatives (Faizi et al., 2016a[Faizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366-1369.]), fluorescence sensors (Faizi et al., 2016b[Faizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15-20.]) and coordination compounds (Faizi & Prisyazhnaya, 2015[Faizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175-m176.]). We report herein on the synthesis and crystal structure of the title Schiff base compound with a sterically hindered phenol group.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is shown in Fig. 1[link]. All the non-hydrogen atoms except C16 and C19 lie on a crystallographic mirror plane at y = [1\over4]: the complete tert-butyl groups are generated by mirror symmetry. The conformation of the C7=N1 bond of this Schiff base compound is E, and there is an intra­molecular N2—H2⋯O1 hydrogen bond present, forming an S(6) ring motif (Fig. 1[link] and Table 1[link]). The N1—N2 bond length is 1.385 (6) Å and the N1=C7 bond length is 1.278 (7) Å. The bond distances and angles in the title compound are comparable to those found in a closely related structure (Fun et al., 2013[Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203-o1204.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.86 1.96 2.583 (8) 129
O5—H5O⋯O1i 0.82 (2) 2.28 (5) 2.782 (7) 120 (4)
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling [symmetry code: (i) x, −y + [{1\over 2}], z]. Displacement ellipsoids are drawn at the 30% probability level. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line (see Table 1[link])

3. Supra­molecular features

In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming zigzag chains propagating along the a-axis direction (Fig. 2[link] and Table 1[link]). There are no other significant inter­molecular contacts present.

[Figure 2]
Figure 2
A view of the zigzag chains in the crystal structure of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1[link]). For clarity, only the H atoms involved in hydrogen bonding have been included.

4. Database survey

There are very few examples of similar compounds in the literature. To the best of our knowledge, the recent report (Bhardwaj & Singh, 2015[Bhardwaj, S. & Singh, A. K. (2015). J. Hazard. Mater. 296, 54-60.]) of a similar compound with an hy­droxy group in the ortho position, capable of visual and reversible sensing of cyanide in DMSO solution, has not been characterized crystallographically. A search of the Cambridge Structural Database (CSD, Version 5.37, update May 2016; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed the structure of one very similar compound, viz. 1-(2,4-di­nitro­phen­yl)-2-[(E)-2,4,5-tri­meth­oxy­benzyl­idene]hydrazine (II) (Fun et al., 2013[Fun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203-o1204.]), in which the 4-phenol group in the title compound is replaced by a trimeth­oxy group. In (II), the dihedral angle between the two benzene rings is 3.15 (11)°, compared to 0° in the title compound, owing to the mirror symmetry.

5. Synthesis and crystallization

A mixture of 3,5-di-tert-butyl-4-hy­droxy­benzaldehyde 0.100 g (0.427 mmol) and 2,4-di­nitro­phenyl­hydrazine (0.085 g, 0.427 mmol) in methanol was refluxed for 3 h in the presence of a catalytic amount of glacial acetic acid. After cooling, the red-coloured precipitate was washed with hot methanol several times, and then dried, giving a red-coloured shiny crystalline compound in high yield 170 g (96%). Yellow block-like crystals of the title compound (m.p. 372–373 K) were obtained by slow evaporation of a solution in di­chloro­methane and ethanol (5:1 v/v).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The OH H atom was located in a difference Fourier map and refined with a distance restraint of 0.82 (2) Å with Uiso(H) = 1.5Ueq(O). The NH and C-bound H atoms were included in calculated positions and allowed to ride on the parent atoms: N—H = 0.86 Å, C—H = 0.93–0.96 Å with Uiso(H) = 1.5Ueq(C-meth­yl) and 1.2Ueq(N,C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C21H26N4O5
Mr 414.46
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 296
a, b, c (Å) 18.7651 (10), 6.9193 (4), 17.259 (1)
V3) 2240.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.22 × 0.15 × 0.11
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.])
Tmin, Tmax 0.982, 0.994
No. of measured, independent and observed [I > 2σ(I)] reflections 14854, 2270, 912
Rint 0.105
(sin θ/λ)max−1) 0.606
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.215, 0.96
No. of reflections 2270
No. of parameters 178
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.39, −0.16
Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]), SHELXT (Sheldrick 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXT (Sheldrick 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

(E)-2,6-Di-tert-butyl-4-{[2-(2,4-dinitrophenyl)hydrazinylidene]methyl}phenol top
Crystal data top
C21H26N4O5Dx = 1.228 Mg m3
Mr = 414.46Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 6871 reflections
a = 18.7651 (10) Åθ = 1.1–26.2°
b = 6.9193 (4) ŵ = 0.09 mm1
c = 17.259 (1) ÅT = 296 K
V = 2240.9 (2) Å3Block, yellow
Z = 40.22 × 0.15 × 0.11 mm
F(000) = 880
Data collection top
STOE IPDS 2
diffractometer
2270 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus912 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.105
Detector resolution: 6.67 pixels mm-1θmax = 25.5°, θmin = 1.6°
rotation method scansh = 2222
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 88
Tmin = 0.982, Tmax = 0.994l = 2020
14854 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.071H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.215 w = 1/[σ2(Fo2) + (0.0904P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.96(Δ/σ)max < 0.001
2270 reflectionsΔρmax = 0.39 e Å3
178 parametersΔρmin = 0.16 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3313 (3)0.2500000.5101 (4)0.172 (3)
O20.2860 (3)0.2500000.3982 (3)0.1219 (18)
O30.4249 (4)0.2500000.1717 (3)0.1208 (19)
O40.5398 (4)0.2500000.1781 (3)0.134 (2)
O50.7461 (2)0.2500000.8580 (3)0.0968 (15)
H5O0.738 (3)0.2500000.9045 (15)0.145*
N10.5301 (3)0.2500000.5745 (3)0.0688 (13)
N20.4674 (3)0.2500000.5319 (3)0.0755 (14)
H20.4269080.2500000.5551800.091*
N30.3381 (3)0.2500000.4404 (4)0.0986 (19)
N40.4801 (5)0.2500000.2079 (4)0.0960 (18)
C10.4705 (4)0.2500000.4537 (3)0.0683 (16)
C20.4077 (3)0.2500000.4074 (4)0.0738 (17)
C30.4119 (4)0.2500000.3273 (4)0.0743 (17)
H30.3707790.2500000.2972650.089*
C40.4780 (4)0.2500000.2928 (4)0.0776 (17)
C50.5396 (4)0.2500000.3361 (4)0.0778 (18)
H5A0.5836620.2500000.3114880.093*
C60.5360 (3)0.2500000.4143 (3)0.0707 (16)
H60.5780770.2500000.4428790.085*
C70.5207 (3)0.2500000.6478 (4)0.0686 (16)
H70.4743750.2500000.6669310.082*
C80.5798 (3)0.2500000.7027 (3)0.0642 (15)
C90.6498 (3)0.2500000.6776 (3)0.0677 (15)
H90.6590760.2500000.6247010.081*
C100.7066 (3)0.2500000.7293 (3)0.0666 (16)
C110.6887 (3)0.2500000.8089 (4)0.0739 (17)
C120.6187 (3)0.2500000.8373 (3)0.0663 (15)
C130.5656 (3)0.2500000.7812 (3)0.0656 (15)
H130.5182930.2500000.7972760.079*
C140.7841 (3)0.2500000.7007 (4)0.0775 (18)
C150.7881 (4)0.2500000.6117 (4)0.098 (2)
H15A0.7649030.1367620.5921060.146*
H15B0.8371910.2500000.5960240.146*
C160.8233 (2)0.4334 (8)0.7297 (3)0.1114 (18)
H16A0.7973290.5462180.7138200.167*
H16B0.8703760.4372020.7081150.167*
H16C0.8263310.4304590.7852500.167*
C180.6013 (3)0.2500000.9242 (3)0.0755 (18)
C190.6312 (3)0.4323 (7)0.9640 (2)0.0973 (16)
H19A0.6791500.4080970.9808490.146*
H19B0.6021370.4644171.0078560.146*
H19C0.6310390.5379430.9278930.146*
C200.5207 (4)0.2500000.9375 (4)0.102 (2)
H20A0.5003340.3633870.9142880.154*
H20B0.5111120.2500000.9919990.154*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.081 (4)0.362 (10)0.073 (4)0.0000.007 (3)0.000
O20.083 (4)0.164 (5)0.118 (4)0.0000.024 (3)0.000
O30.147 (5)0.135 (5)0.080 (4)0.0000.034 (4)0.000
O40.147 (5)0.177 (6)0.078 (4)0.0000.013 (4)0.000
O50.077 (3)0.136 (4)0.078 (3)0.0000.017 (3)0.000
N10.072 (3)0.078 (3)0.056 (3)0.0000.000 (3)0.000
N20.063 (3)0.103 (4)0.061 (3)0.0000.005 (3)0.000
N30.068 (4)0.145 (6)0.083 (4)0.0000.009 (4)0.000
N40.130 (6)0.091 (4)0.068 (4)0.0000.009 (4)0.000
C10.083 (4)0.059 (4)0.064 (4)0.0000.008 (4)0.000
C20.078 (5)0.081 (4)0.063 (4)0.0000.010 (4)0.000
C30.082 (5)0.063 (4)0.078 (5)0.0000.022 (4)0.000
C40.102 (5)0.066 (4)0.065 (4)0.0000.007 (4)0.000
C50.086 (5)0.077 (4)0.070 (4)0.0000.001 (4)0.000
C60.072 (4)0.079 (4)0.061 (4)0.0000.004 (3)0.000
C70.067 (4)0.069 (4)0.069 (4)0.0000.003 (4)0.000
C80.069 (4)0.066 (4)0.058 (4)0.0000.001 (3)0.000
C90.077 (4)0.068 (4)0.058 (3)0.0000.001 (4)0.000
C100.069 (4)0.068 (4)0.063 (4)0.0000.003 (3)0.000
C110.064 (4)0.080 (4)0.078 (4)0.0000.016 (4)0.000
C120.069 (4)0.070 (4)0.060 (4)0.0000.011 (3)0.000
C130.061 (4)0.072 (4)0.064 (4)0.0000.002 (3)0.000
C140.075 (4)0.076 (4)0.082 (4)0.0000.001 (4)0.000
C150.084 (5)0.125 (6)0.084 (5)0.0000.019 (4)0.000
C160.086 (3)0.122 (4)0.126 (5)0.028 (3)0.000 (3)0.000 (4)
C180.076 (4)0.090 (5)0.061 (4)0.0000.004 (3)0.000
C190.115 (4)0.109 (4)0.068 (3)0.002 (3)0.002 (3)0.013 (3)
C200.089 (5)0.147 (7)0.071 (4)0.0000.017 (4)0.000
Geometric parameters (Å, º) top
O1—N31.209 (7)C9—H90.9300
O2—N31.219 (7)C10—C111.415 (8)
O3—N41.210 (7)C10—C141.536 (8)
O4—N41.232 (8)C11—C121.401 (8)
O5—C111.370 (7)C12—C131.390 (8)
O5—H5O0.816 (19)C12—C181.536 (8)
N1—C71.278 (7)C13—H130.9300
N1—N21.385 (6)C14—C151.538 (9)
N2—C11.352 (7)C14—C161.549 (6)
N2—H20.8600C14—C16i1.549 (6)
N3—C21.424 (8)C15—H15A0.96
N4—C41.466 (8)C15—H15B0.96
C1—C61.405 (8)C15—H15Ai0.96
C1—C21.422 (8)C16—H16A0.9600
C2—C31.385 (8)C16—H16B0.9600
C3—C41.374 (8)C16—H16C0.9600
C3—H30.9300C18—C201.530 (9)
C4—C51.376 (9)C18—C191.542 (5)
C5—C61.352 (8)C18—C19i1.542 (5)
C5—H5A0.9300C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C7—C81.458 (8)C19—H19C0.9600
C7—H70.9300C20—H20A0.96
C8—C131.380 (7)C20—H20B0.96
C8—C91.383 (8)C20—H20Ai0.96
C9—C101.390 (8)
C11—O5—H5O118 (4)C12—C11—C10124.2 (6)
C7—N1—N2114.1 (5)C13—C12—C11115.4 (5)
C1—N2—N1119.6 (5)C13—C12—C18121.9 (5)
C1—N2—H2120.2C11—C12—C18122.7 (5)
N1—N2—H2120.2C8—C13—C12123.0 (6)
O1—N3—O2120.6 (6)C8—C13—H13118.5
O1—N3—C2119.7 (6)C12—C13—H13118.5
O2—N3—C2119.7 (6)C10—C14—C15111.5 (5)
O3—N4—O4124.2 (7)C10—C14—C16110.2 (3)
O3—N4—C4119.5 (8)C15—C14—C16107.4 (4)
O4—N4—C4116.3 (7)C10—C14—C16i110.2 (3)
N2—C1—C6121.3 (6)C15—C14—C16i107.4 (4)
N2—C1—C2121.8 (6)C16—C14—C16i110.0 (6)
C6—C1—C2117.0 (5)C14—C15—H15A109.3
C3—C2—C1120.9 (6)C14—C15—H15B109.2
C3—C2—N3116.9 (6)H15A—C15—H15B109.6
C1—C2—N3122.3 (6)C14—C15—H15Ai109.3 (4)
C4—C3—C2118.9 (6)H15A—C15—H15Ai109.7
C4—C3—H3120.5H15B—C15—H15Ai109.6
C2—C3—H3120.5C14—C16—H16A109.5
C3—C4—C5121.5 (6)C14—C16—H16B109.5
C3—C4—N4117.2 (7)H16A—C16—H16B109.5
C5—C4—N4121.3 (7)C14—C16—H16C109.5
C6—C5—C4120.1 (7)H16A—C16—H16C109.5
C6—C5—H5A120.0H16B—C16—H16C109.5
C4—C5—H5A120.0C20—C18—C12110.9 (5)
C5—C6—C1121.7 (6)C20—C18—C19107.1 (4)
C5—C6—H6119.2C12—C18—C19110.9 (3)
C1—C6—H6119.2C20—C18—C19i107.1 (4)
N1—C7—C8122.6 (6)C12—C18—C19i110.9 (3)
N1—C7—H7118.7C19—C18—C19i109.8 (5)
C8—C7—H7118.7C18—C19—H19A109.5
C13—C8—C9119.4 (6)C18—C19—H19B109.5
C13—C8—C7119.4 (6)H19A—C19—H19B109.5
C9—C8—C7121.2 (5)C18—C19—H19C109.5
C8—C9—C10121.8 (6)H19A—C19—H19C109.5
C8—C9—H9119.1H19B—C19—H19C109.5
C10—C9—H9119.1C18—C20—H20A109.3
C9—C10—C11116.2 (6)C18—C20—H20B109.5
C9—C10—C14121.4 (5)H20A—C20—H20B109.6
C11—C10—C14122.4 (5)C18—C20—H20Ai109.3 (5)
O5—C11—C12121.4 (6)H20A—C20—H20Ai109.6
O5—C11—C10114.4 (6)H20B—C20—H20Ai109.6
C7—N1—N2—C1180.000 (1)C7—C8—C9—C10180.000 (1)
N1—N2—C1—C60.000 (1)C8—C9—C10—C110.000 (2)
N1—N2—C1—C2180.000 (1)C8—C9—C10—C14180.000 (1)
N2—C1—C2—C3180.000 (1)C9—C10—C11—O5180.000 (1)
C6—C1—C2—C30.000 (1)C14—C10—C11—O50.000 (1)
N2—C1—C2—N30.000 (1)C9—C10—C11—C120.000 (2)
C6—C1—C2—N3180.000 (1)C14—C10—C11—C12180.000 (1)
O1—N3—C2—C3180.000 (1)O5—C11—C12—C13180.000 (1)
O2—N3—C2—C30.000 (1)C10—C11—C12—C130.000 (2)
O1—N3—C2—C10.000 (1)O5—C11—C12—C180.000 (2)
O2—N3—C2—C1180.000 (1)C10—C11—C12—C18180.000 (2)
C1—C2—C3—C40.000 (1)C9—C8—C13—C120.000 (2)
N3—C2—C3—C4180.000 (1)C7—C8—C13—C12180.000 (1)
C2—C3—C4—C50.000 (1)C11—C12—C13—C80.000 (2)
C2—C3—C4—N4180.000 (1)C18—C12—C13—C8180.000 (2)
O3—N4—C4—C30.000 (1)C9—C10—C14—C150.000 (2)
O4—N4—C4—C3180.000 (1)C11—C10—C14—C15180.000 (1)
O3—N4—C4—C5180.000 (1)C9—C10—C14—C16119.2 (4)
O4—N4—C4—C50.000 (1)C11—C10—C14—C1660.8 (4)
C3—C4—C5—C60.000 (1)C9—C10—C14—C16i119.2 (4)
N4—C4—C5—C6180.000 (1)C11—C10—C14—C16i60.8 (4)
C4—C5—C6—C10.000 (1)C13—C12—C18—C200.000 (2)
N2—C1—C6—C5180.000 (1)C11—C12—C18—C20180.000 (2)
C2—C1—C6—C50.000 (1)C13—C12—C18—C19118.8 (4)
N2—N1—C7—C8180.000 (1)C11—C12—C18—C1961.2 (4)
N1—C7—C8—C13180.000 (1)C13—C12—C18—C19i118.8 (4)
N1—C7—C8—C90.000 (2)C11—C12—C18—C19i61.2 (4)
C13—C8—C9—C100.000 (2)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.861.962.583 (8)129
O5—H5O···O1ii0.82 (2)2.28 (5)2.782 (7)120 (4)
Symmetry code: (ii) x+1/2, y, z+3/2.
 

Acknowledgements

The authors are grateful to Ondokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, Samsun, Turkey, for the X-ray data collection, and Drs Igor Fritsky and Graham Smith for helpful discussions.

References

First citationBhardwaj, S. & Singh, A. K. (2015). J. Hazard. Mater. 296, 54–60.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H., Ali, A. & Potaskalov, V. A. (2016a). Acta Cryst. E72, 1366–1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFaizi, M. S. H., Gupta, S., Mohan, V. K., Jain, K. V. & Sen, P. (2016b). Sens. Actuators B Chem. 222, 15–20.  Web of Science CrossRef CAS Google Scholar
First citationFaizi, M. S. H. & Prisyazhnaya, E. V. (2015). Acta Cryst. E71, m175–m176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Chantrapromma, S., Nilwanna, B., Kobkeatthawin, T. & Boonnak, N. (2013). Acta Cryst. E69, o1203–o1204.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFurniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. (1999). Vogel's Textbook of Practical Organic Chemistry, 5th ed. London: Longmans.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGuillaumont, D. & Nakamura, S. (2000). Dyes Pigments, 46, 85–92.  Web of Science CrossRef CAS Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKüçükgüzel, G., Kocatepe, A., De Clercq, E., Şahin, F. & Güllüce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRaj, B. N. B. & Kurup, M. R. P. (2007). Spectrochim. Acta Part A, 66, 898–903.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilin, M. A., Kelaren, V. I., Abu-Ammar, V., Putkaradze, D. Kh. & Golubeva, I. A. (1999). Pet. Chem. 40, 209–214.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYamazaki, T. & Seguchi, T. (1997). J. Polym. Sci. A Polym. Chem. 35, 2431–2439.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds