research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-1-(2′,3′-O-iso­propyl­­idene-D-ribit­yl)-1H-imidazole-4-carboxamide: a crystal structure with Z′ = 4

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Università degli Studi di Napoli `Federico II', Complesso di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy, and bDipartimento di Farmacia, Università degli Studi di Napoli `Federico II', Via D. Montesano 49, 80131 Napoli, Italy
*Correspondence e-mail: vinpicci@unina.it, roberto.centore@unina.it

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 4 January 2017; accepted 10 January 2017; online 13 January 2017)

The title compound, C12H20N4O5, crystallizes in the monoclinic space group P21, with four crystallographically independent mol­ecules in the asymmetric unit. The four mol­ecules have a very similar conformation that is basically determined by the formation of two intra­molecular hydrogen bonds between the amino NH2 donors and the carbonyl and ring O-atom acceptors, forming, respectively, R(6) and R(7) ring motifs.. In the crystal, inter­molecular hydrogen bonding leads to the formation of R22(10) ring patterns, involving one amide CONH2 donor and an imidazole N-atom acceptor. The cluster of the four independent mol­ecules has approximate non-crystallographic C2 point symmetry. The structural analysis also shows that during the synthesis of the title compound, the reductive cleavage of the D-ribose ring of the inosine precursor proceeds stereoselectively, with retention of configuration.

1. Chemical context

Our group has long been involved into the synthesis of new heterocyclic compounds (Piccialli et al., 2007[Piccialli, V., Borbone, N. & Oliviero, G. (2007). Tetrahedron Lett. 48, 5131-5135.], 2013[Piccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781-1789.]; Centore et al., 2013[Centore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. pp. 3721-3728.]) including novel bioactive nucleoside and nucleotide analogues (Galeone et al., 2002[Galeone, A., Mayol, L., Oliviero, G., Piccialli, G. & Varra, M. (2002). Eur. J. Org. Chem. pp. 4234-4238.]). The latter are synthetic compounds that have been developed to mimic their natural counterparts (Jordheim, et al., 2013[Jordheim, L. P., Durantel, D., Zoulim, F. & Dumontet, C. (2013). Nat. Rev. Drug Discov. 12, 447-464.]). Several nucleoside and nucleotide analogues have been approved by the FDA for viral and cancer diseases and others have entered clinical trials. Therefore, the synthesis of new nucleoside analogues with potential biological activities (D'Atri et al., 2012[D'Atri, V., Oliviero, G., Amato, J., Borbone, N., D'Errico, S., Mayol, L., Piccialli, V., Haider, S., Hoorelbeke, B., Balzarini, J. & Piccialli, G. (2012). Chem. Commun. 48, 9516-9518.]) continues to be a keen research field. Recent efforts from our group in this field have been directed to the synthesis of sugar and/or base-modified nucleosides (D'Errico et al., 2012a[D'Errico, S., Oliviero, G., Amato, J., Borbone, N., Cerullo, V., Hemminki, A., Piccialli, V., Zaccaria, S., Mayol, L. & Piccialli, G. (2012a). Chem. Commun. 48, 9310-9312.]; de Champdorè et al., 2004[Champdoré, M. de, Di Fabio, G., Messere, A., Montesarchio, D., Piccialli, G., Loddo, R., La Colla, M. & La Colla, P. (2004). Tetrahedron, 60, 6555-6563.]) and nucleotides, mixing the principles of combinatorial chemistry with those of high-throughput screening. Within this framework, we have pioneered the development of a synthetic solid-phase strategy (Oliviero et al., 2007[Oliviero, G., Amato, J., Borbone, N., D'Errico, S., Piccialli, G. & Mayol, L. (2007). Tetrahedron Lett. 48, 397-400.], 2008[Oliviero, G., Amato, J., Borbone, N., D'Errico, S., Piccialli, G., Bucci, E., Piccialli, V. & Mayol, L. (2008). Tetrahedron, 64, 6475-6481.], 2010a[Oliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Piccialli, G. & Mayol, L. (2010a). Eur. J. Org. Chem. pp. 1517-1524.],b[Oliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Varra, M., Piccialli, G. & Mayol, L. (2010b). Tetrahedron, 66, 1931-1936.]; D'Errico et al., 2011[D'Errico, S., Oliviero, G., Borbone, N., Amato, J., Piccialli, V., Varra, M., Mayol, L. & Piccialli, G. (2011). Molecules, 16, 8110-8118.], 2015[D'Errico, S., Oliviero, G., Borbone, N., Piccialli, V. & Piccialli, G. (2015). Curr. Protoc. Nucleic Acid Chem. 1.35.1-1.35.24.]) that has also allowed us to synthesize N-1 alkyl inosines and 5-amino­imidazole-4-carboxamide riboside (AICAR) analogues (D'Errico et al., 2012b[D'Errico, S., Oliviero, G., Borbone, N., Amato, J., D'Alonzo, D., Piccialli, V., Mayol, L. & Piccialli, G. (2012b). Molecules, 17, 13036-13044.]), starting from cheap inosine. AICAR is a purine biosynthetic precursor that acts as a modulator of a number of biological properties. Once in the cells, AICAR is 5′-phospho­rylated to ZMP, a mimic of adenosine 5′-monophosphate (AMP). The direct binding of ZMP to an allosteric site of AMPK causes its phospho­rylation and activation by a cellular kinase, resulting in a series of important metabolic events, including the inhibition of the basal and insulin-stimulated glucose uptake, the inhibition of lipid synthesis and the activation of certain ATP-generating processes such as glycolysis and fatty acid oxidation. Nevertheless, AICAR is far from being a good drug lead-compound because it has a short half-life in cells and is not strictly specific for the AMPK enzyme. The discovery of the anti­viral activity of a­cyclo­vir and acyclic nucleoside phospho­nates has suggested that the replacement of the furan­ose ring with a hy­droxy­lated alkyl chain could induce new biological activities. Based on these precedents, we have recently reported the synthesis of a small collection of 5-amino­imidazole-4-carboxamides carrying a D-ribityl chain at the N1-imidazole position, including the title compound (D'Errico et al., 2013[D'Errico, S., Oliviero, G., Borbone, N., Amato, J., Piccialli, V., Varra, M., Mayol, L. & Piccialli, G. (2013). Molecules, 18, 9420-9431.]).

[Scheme 1]

The present X-ray diffraction study was undertaken in order to confirm the structure of the title compound, 5-amino-1-(2′,3′-O-iso­propyl­idene-D-ribit­yl)-1-H-imidazole-4-carboxamide, a precursor of the new sugar-modified AICAR.

2. Structural commentary

The asymmetric unit of the title compound contains four independent mol­ecules with identical configuration (Z′ = 4). The mol­ecular structure of one mol­ecule (A) is shown in Fig. 1[link] as an example. The mol­ecular conformation is basically determined by the formation of two intra­molecular hydrogen bonds (Table 1[link]) between the amino NH2 donors and, respectively, the carbonyl (O5) and the ring (O1) acceptors, which form, respectively, R(6) and R(7) ring motifs. The formation of the intra­molecular hydrogen bonds is possible because of the pyramidal geometry of the N atom; the sums of valence angles around atoms N3A, N3B, N3C and N3D are, respectively, 336, 339, 334 and 337°.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3A—H3NA⋯O5A 0.89 (4) 2.32 (4) 2.945 (4) 127 (3)
N3A—H6NA⋯O1A 0.89 (4) 2.66 (4) 3.250 (4) 125 (3)
N4A—H4NA⋯O3Ai 0.92 (4) 2.05 (4) 2.973 (3) 178 (3)
N4A—H5NA⋯N2C 0.91 (4) 2.23 (4) 3.064 (4) 153 (3)
O3A—H3AO⋯O4Cii 0.79 (4) 2.05 (4) 2.831 (3) 170 (4)
O4A—H4AO⋯O5Aiii 0.80 (4) 2.01 (4) 2.798 (3) 166 (4)
N3B—H3NB⋯O1B 0.89 (3) 2.35 (3) 3.037 (3) 133 (3)
N3B—H6NB⋯O5B 0.95 (4) 2.39 (3) 2.977 (3) 120 (3)
N3B—H6NB⋯O5Div 0.95 (4) 2.52 (4) 3.196 (4) 129 (3)
N4B—H4NB⋯O3Biii 0.89 (4) 2.03 (4) 2.901 (3) 170 (3)
N4B—H5NB⋯N2Diii 0.85 (4) 2.16 (4) 2.920 (4) 150 (3)
O3B—H3BO⋯N3Cv 0.87 (3) 1.98 (4) 2.838 (4) 168 (3)
O4B—H4BO⋯O5Bi 0.91 (4) 1.81 (4) 2.715 (3) 170 (3)
N3C—H3NC⋯O1C 0.87 (4) 2.48 (4) 3.152 (4) 134 (3)
N3C—H6NC⋯O5C 0.90 (4) 2.21 (3) 2.874 (3) 130 (3)
N4C—H4NC⋯N2A 0.86 (4) 2.14 (4) 2.934 (4) 154 (3)
N4C—H5NC⋯O3Ciii 0.84 (4) 2.12 (4) 2.959 (3) 176 (4)
O3C—H3CO⋯O5Bvi 0.80 (4) 2.03 (4) 2.823 (3) 173 (3)
O4C—H4CO⋯O5Ci 0.80 (4) 1.97 (4) 2.738 (3) 162 (4)
N3D—H6ND⋯N4Cvii 0.92 (4) 2.62 (4) 3.268 (4) 128 (3)
N3D—H6ND⋯O5D 0.92 (4) 2.36 (4) 2.972 (4) 124 (3)
N4D—H4ND⋯N2Bi 0.89 (4) 2.26 (4) 3.075 (4) 153 (3)
N4D—H5ND⋯O3Di 0.87 (4) 2.09 (4) 2.957 (3) 176 (3)
O3D—H3DO⋯O4Bviii 0.90 (4) 1.82 (4) 2.711 (3) 171 (3)
O4D—H4DO⋯O5Diii 0.79 (3) 2.06 (3) 2.822 (3) 164 (4)
Symmetry codes: (i) x+1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+1]; (iii) x-1, y, z; (iv) [-x+2, y-{\script{1\over 2}}, -z+2]; (v) x, y, z+1; (vi) x+1, y, z-1; (vii) [-x+2, y+{\script{1\over 2}}, -z+1]; (viii) [-x+2, y+{\script{1\over 2}}, -z+2].
[Figure 1]
Figure 1
A view of the mol­ecular structure of one of the four crystallographically independent mol­ecules (A) of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Intra­molecular hydrogen bonds are represented by dashed lines (see Table 1[link]).

The title compound was obtained starting from commercial 2′,3′-O-iso­propyl­idene inosine (compound 1 of Fig. 2[link]) through a synthetic route involving four steps. In the first step [(i) of Fig. 2[link]], the ribose ring is opened by reductive cleavage of the C1′—O4′ bond of 2′,3′-O-iso­propyl­idene inosine. The configuration of atom C4′ (C6A in Fig. 1)[link] in the title compound is R and this confirms the stereoselectivity of the reductive ribose opening.

[Figure 2]
Figure 2
Scheme of the synthesis of the title compound. Reagents and conditions: (i) diiso­butyl­aluminium hydride (DIBAL-H), THF, 24 h, room temperature; (ii) Ac2O, py, 16 h, room temperature; (iii) K2CO3, 2,4-di­nitro­chloro­benzene (DNClB), DMF, 3 h, 353 K; (iv) Ethyl­enedi­amine (EDA), DMF, 323 K, 16 h.

The four independent mol­ecules have a similar conformation. This can be inferred from Fig. 3[link], in which they are overlayed, and from Table 2[link] in which some parameters of the Hirshfeld surface of the four mol­ecules are presented (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]).

Table 2
Parameters (Å2, Å3) of the Hirshfeld surface of the four crystallographically independent mol­ecules A, B, C and D)

Mol­ecule Volume Area Globularity Asphericity
A 356.33 322.48 0.754 0.144
B 348.71 318.70 0.752 0.142
C 349.46 317.26 0.756 0.144
D 355.80 323.52 0.751 0.141
Hirshfeld surface analysis was performed using the program CrystalExplorer (Wolff et al. 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Australia.]).
[Figure 3]
Figure 3
Overlay of the four crystallographically independent mol­ecules (A, B, C and D) of the title compound, viewed in two different orientations.

3. Supra­molecular features

In the crystal of the title compound, the cluster of the four crystallographically independent mol­ecules (A, B, C, D) has approximate non-crystallographic C2 point symmetry, around a direction parallel to b/2 + c, see Fig. 4[link]a. Actually, the presence of non-crystallographic, local symmetry, is not uncommon in high Z′ structures (Brock, 2016[Brock, C. P. (2016). Acta Cryst. B72, 807-821.]). Mol­ecules are held in the crystal through a complex pattern of hydrogen bonds (Table 1[link]). In particular, the independent mol­ecules A and C are hydrogen bonded through an R22(10) ring pattern, involving one amido CONH2 donor and the imidazole N acceptor (Table 1[link] and Fig. 4[link]b). An analogous pattern is formed between mol­ecules B and D. As is evident from Fig. 4[link]a, in the cluster of four independent mol­ecules, the pair of mol­ecules (A and C) that are bonded through the R22(10) ring pattern produce a hollow in which the methyl groups of the other pair (B and D) are fitted.

[Figure 4]
Figure 4
(a) The cluster formed by the four crystallographically independent mol­ecules (A, B, C and D) of the title compound. Hydrogen bonds are represented by dashed lines (see Table 1[link]). (b) The pair of independent mol­ecules, A and B, with indication of some hydrogen-bonding patterns (dashed lines; see Table 1[link]).

4. Hirshfeld surface analysis

In order to assess possible packing differences involving the four independent mol­ecules, we have examined their Hirshfeld surfaces (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The Hirshfeld fingerprint plots of the four independent mol­ecules are illustrated in Fig. 5[link]. The fingerprint plot is a graphical two-dimensional map that indicates the distribution of the inter­actions for a single mol­ecule in the crystal (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). In the plot, for each point of the Hirshfeld surface enveloping the mol­ecule in the crystal, the distance di to the nearest atom inside the surface and the distance de to the nearest atom outside the surface are reported. The colour of each point in the plot is related to the abundance of that inter­action, from blue (low) to green (high) to red (very high). A distinctive feature of each plot of Fig. 5[link] is represented by the two spikes at di + de = 1.8 Å, pointing to the lower left of the plots and symmetrically disposed with respect to the diagonal. They correspond to the strong hydrogen bonds present in the crystal packing. Another common feature is the sting along the diagonal, at di = de = 1.05 Å, which reflects points on the Hirshfeld surface that involve nearly head-to-head H⋯H contacts. Although none of the four plots of Fig. 5[link] is superimposable on the others, they all look very similar, thus indicating that the packing around each mol­ecule is similar.

[Figure 5]
Figure 5
Hirshfeld fingerprint plots of the four crystallographically independent mol­ecules (A, B, C and D) of the title compound.

5. Database survey

A search of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]; WebCSD v1.1.2, last update 2016-12-21) gave no match for the title compound and no match for the substructure formed by the 1-amino-(2′,3′-O-iso­propyl­idene-D-ribit­yl) moiety. On the other hand, for the substructure formed by the uncyclized D-ribityl moiety, nine hits were found (CSD refcodes: ADRBFT10, DIQVAA, JERHET, QQQAVY, QQQHCA, RBFLAV10, RBFLCU, RIBBAD, RIBHQN10). They all crystallized in chiral space groups (four in P21, three in P212121, one in C2 and one in P1). Only in two cases (both in space group P21) was Z′ > 1 and, in particular, it was Z′ = 2. If the filters of three-dimensional coordinates and an R factor ≤ 7% are applied, only three hits still hold: DIQVAA (P21), JERHET (P21) and RBFLAV10 (P212121).

6. Synthesis and crystallization

The title compound, was synthesized starting from 2′,3′-O- iso­propyl­idene inosine (1 in Fig. 1[link]), as described recently (D'Errico et al., 2013[D'Errico, S., Oliviero, G., Borbone, N., Amato, J., Piccialli, V., Varra, M., Mayol, L. & Piccialli, G. (2013). Molecules, 18, 9420-9431.]). In particular, compound 3 (0.18 mmol) was dissolved in DMF (2.0 ml) and then ethyl­ene di­amine (EDA, 3.6 mmol) was added. The mixture was stirred at 323 K for 16 h (TLC monitoring: CHCl3/MeOH, 8:2) and then the solvents were removed under reduced pressure. The crude product was purified by silica gel column chromatography, eluting with increasing amounts of MeOH in CHCl3 (from 0 to 10%). The fractions containing the title compound were collected and solvents evaporated under reduced pressure. The obtained pale-yellow amorphous solid (71% yield) was dissolved in the minimal amount of CH3OH and left to slowly evaporate at 277 K, to give pale-yellow prismatic crystals.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms bonded to O and N atoms were located in difference Fourier maps and their coordinates were refined. The C-bound H atoms were included in calculated positions and refined as riding atoms: with C—H = 0.96–0.98 Å. For all H atoms, Uiso = 1.2Ueq of the carrier atom was assumed (1.5 in the case of the H atoms of methyl groups).

Table 3
Experimental details

Crystal data
Chemical formula C12H20N4O5
Mr 300.32
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 11.627 (4), 18.929 (4), 13.085 (3)
β (°) 93.67 (2)
V3) 2873.9 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.40 × 0.25 × 0.25
 
Data collection
Diffractometer Bruker–Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.945, 0.961
No. of measured, independent and observed [I > 2σ(I)] reflections 21683, 11330, 9391
Rint 0.030
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.087, 1.06
No. of reflections 11330
No. of parameters 838
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.24
Absolute structure Flack x determined using 3518 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.1 (3)
Computer programs: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]), DIRAX/LSQ (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]), EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2016 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2016 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

5-Amino-1-(2',3'-O-isopropylidene-D-ribityl)-1H-imidazole-4-carboxamide top
Crystal data top
C12H20N4O5F(000) = 1280
Mr = 300.32Dx = 1.388 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 11.627 (4) ÅCell parameters from 93 reflections
b = 18.929 (4) Åθ = 2.7–23.4°
c = 13.085 (3) ŵ = 0.11 mm1
β = 93.67 (2)°T = 293 K
V = 2873.9 (13) Å3Prism, pale yellow
Z = 80.40 × 0.25 × 0.25 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
11330 independent reflections
Radiation source: normal-focus sealed tube9391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD rotation images, thick slices scansh = 1415
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 2422
Tmin = 0.945, Tmax = 0.961l = 1516
21683 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0372P)2 + 0.3518P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
11330 reflectionsΔρmax = 0.21 e Å3
838 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack x determined using 3518 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A0.4499 (2)0.10494 (19)0.8668 (2)0.0385 (7)
C2A0.4978 (3)0.1789 (2)0.8642 (3)0.0571 (10)
H2A10.5753350.1791820.8941360.086*
H2A20.4510410.2098920.9023010.086*
H2A30.4973750.1948530.7945160.086*
C3A0.4644 (4)0.0711 (3)0.9697 (3)0.0666 (12)
H3A10.4320810.0243880.9664230.100*
H3A20.4256270.0987701.0184270.100*
H3A30.5449780.0681870.9906390.100*
C4A0.4311 (2)0.06262 (17)0.7036 (2)0.0293 (6)
H4A0.4450380.1069560.6677610.035*
C5A0.3109 (2)0.06458 (16)0.7440 (2)0.0298 (6)
H5A0.2588480.0896540.6945820.036*
C6A0.2590 (2)0.00699 (17)0.7667 (2)0.0302 (6)
H6A0.3191120.0382520.7970120.036*
C7A0.1629 (2)0.00012 (18)0.8393 (2)0.0387 (7)
H7A10.1943680.0193800.9038600.046*
H7A20.1058990.0332010.8105260.046*
C8A0.4623 (2)0.00136 (18)0.6370 (2)0.0331 (7)
H8A10.4459510.0427900.6707920.040*
H8A20.4163910.0030800.5725100.040*
C9A0.6330 (2)0.04647 (18)0.5475 (2)0.0346 (7)
H9A0.5909440.0753090.5012330.042*
C10A0.6729 (2)0.02857 (17)0.6727 (2)0.0304 (6)
C11A0.7716 (2)0.00571 (16)0.6308 (2)0.0296 (6)
C12A0.8881 (2)0.02684 (17)0.6631 (2)0.0311 (7)
N1A0.58465 (18)0.00469 (14)0.61784 (18)0.0316 (6)
N2A0.74518 (18)0.04130 (14)0.55249 (19)0.0338 (6)
N3A0.6553 (3)0.07792 (17)0.7459 (2)0.0467 (7)
H3NA0.721 (3)0.091 (2)0.780 (3)0.056*
H6NA0.603 (3)0.066 (2)0.790 (3)0.056*
N4A0.9726 (2)0.00707 (17)0.6193 (2)0.0397 (7)
H4NA1.047 (3)0.0066 (19)0.636 (3)0.048*
H5NA0.958 (3)0.038 (2)0.567 (3)0.048*
O1A0.50240 (15)0.06020 (12)0.79547 (15)0.0346 (5)
O2A0.32999 (16)0.10699 (12)0.83281 (16)0.0398 (5)
O3A0.21584 (17)0.03486 (13)0.67078 (17)0.0368 (5)
H3AO0.241 (3)0.073 (2)0.663 (3)0.044*
O4A0.10827 (18)0.06497 (14)0.8579 (2)0.0475 (6)
H4AO0.058 (3)0.069 (2)0.813 (3)0.057*
O5A0.90664 (16)0.07293 (12)0.72975 (18)0.0415 (5)
C1B0.8545 (2)0.12784 (18)0.8964 (2)0.0347 (7)
C2B0.8112 (3)0.1470 (2)0.7896 (3)0.0528 (9)
H2B10.7324250.1323450.7782650.079*
H2B20.8573290.1238230.7413880.079*
H2B30.8162540.1972750.7807240.079*
C3B0.8344 (4)0.0528 (2)0.9203 (3)0.0719 (13)
H3B10.8639320.0429530.9890450.108*
H3B20.8730140.0235200.8733780.108*
H3B30.7532020.0431480.9141040.108*
C4B0.9924 (2)0.20415 (18)0.9727 (2)0.0321 (7)
H4B1.0363730.2388840.9356590.039*
C5B0.8700 (2)0.23281 (16)0.9824 (2)0.0289 (6)
H5B0.8501090.2647220.9249450.035*
C6B1.0590 (2)0.18687 (16)1.0732 (2)0.0295 (6)
H6B1.0068880.1653431.1202760.035*
C7B1.1590 (2)0.13783 (18)1.0591 (2)0.0368 (7)
H7B11.1307510.0943301.0273690.044*
H7B21.2115370.1596741.0139410.044*
C8B0.8436 (2)0.26854 (17)1.0808 (2)0.0307 (6)
H8B10.8662280.2379401.1380310.037*
H8B20.8878560.3118791.0883990.037*
C9B0.6687 (2)0.34498 (17)1.0474 (2)0.0362 (7)
H9B0.7075780.3823211.0188510.043*
C10B0.6377 (2)0.24188 (16)1.1177 (2)0.0267 (6)
C11B0.5373 (2)0.28025 (16)1.1038 (2)0.0282 (6)
C12B0.4237 (2)0.25680 (17)1.1263 (2)0.0287 (6)
N1B0.72083 (17)0.28476 (13)1.08206 (18)0.0292 (5)
N2B0.55807 (19)0.34474 (14)1.0585 (2)0.0363 (6)
N3B0.6610 (2)0.17694 (15)1.1577 (2)0.0364 (6)
H3NB0.713 (3)0.152 (2)1.125 (3)0.044*
H6NB0.596 (3)0.148 (2)1.168 (2)0.044*
N4B0.3352 (2)0.29355 (16)1.0870 (2)0.0374 (7)
H4NB0.266 (3)0.2772 (19)1.100 (2)0.045*
H5NB0.343 (3)0.331 (2)1.052 (3)0.045*
O1B0.80252 (15)0.17051 (11)0.97070 (15)0.0335 (5)
O2B0.97407 (18)0.14387 (15)0.9101 (2)0.0589 (8)
O3B1.09799 (15)0.25348 (11)1.11297 (17)0.0314 (5)
H3BO1.105 (3)0.2541 (19)1.180 (3)0.038*
O4B1.21881 (17)0.12216 (12)1.15462 (17)0.0399 (5)
H4BO1.279 (3)0.153 (2)1.160 (3)0.048*
O5B0.41145 (15)0.20287 (12)1.18070 (16)0.0358 (5)
C1C1.3293 (2)0.31702 (17)0.6014 (2)0.0326 (7)
C2C1.2971 (3)0.2956 (2)0.7064 (3)0.0478 (9)
H2C11.2207940.3122000.7171520.072*
H2C21.3507330.3159890.7568970.072*
H2C31.2992560.2451000.7120970.072*
C3C1.3097 (4)0.3939 (2)0.5819 (3)0.0616 (10)
H3C11.3303610.4053450.5139940.092*
H3C21.3562900.4209720.6308540.092*
H3C31.2298840.4048560.5883730.092*
C4C1.4572 (2)0.24411 (17)0.5198 (2)0.0306 (6)
H4C1.5072030.2075390.5517380.037*
C5C1.3333 (2)0.21551 (16)0.5076 (2)0.0274 (6)
H5C1.3216980.1821620.5633340.033*
C6C1.5083 (2)0.26831 (16)0.4210 (2)0.0281 (6)
H6C1.4500990.2938880.3780660.034*
C7C1.6126 (2)0.31482 (18)0.4441 (2)0.0363 (7)
H7C11.5898740.3561040.4817890.044*
H7C21.6693280.2890620.4869740.044*
C8C1.2928 (2)0.18192 (17)0.4079 (2)0.0312 (7)
H8C11.3047230.2142660.3520520.037*
H8C21.3371920.1394780.3972190.037*
C9C1.1244 (2)0.10359 (17)0.4449 (2)0.0341 (7)
H9C1.1682110.0662320.4723040.041*
C10C1.0799 (2)0.20609 (16)0.3757 (2)0.0265 (6)
C11C0.9828 (2)0.16832 (16)0.3938 (2)0.0275 (6)
C12C0.8653 (2)0.19404 (17)0.3728 (2)0.0284 (6)
N1C1.17044 (17)0.16400 (13)0.40830 (18)0.0287 (5)
N2C1.01193 (18)0.10398 (14)0.4372 (2)0.0349 (6)
N3C1.0940 (2)0.27011 (15)0.3283 (2)0.0343 (6)
H3NC1.147 (3)0.295 (2)0.361 (3)0.041*
H6NC1.026 (3)0.2926 (19)0.320 (3)0.041*
N4C0.7807 (2)0.15465 (17)0.4048 (2)0.0371 (6)
H4NC0.794 (3)0.119 (2)0.445 (3)0.044*
H5NC0.712 (3)0.1667 (19)0.394 (3)0.044*
O1C1.26738 (15)0.27748 (11)0.52323 (14)0.0321 (5)
O2C1.44747 (17)0.30005 (15)0.59017 (18)0.0517 (7)
O3C1.54041 (15)0.20510 (12)0.37092 (16)0.0314 (5)
H3CO1.508 (3)0.202 (2)0.315 (3)0.038*
O4C1.66330 (18)0.33696 (13)0.35309 (18)0.0408 (6)
H4CO1.706 (3)0.305 (2)0.343 (3)0.049*
O5C0.84870 (16)0.25104 (12)0.32754 (16)0.0370 (5)
C1D0.9304 (2)0.34582 (18)0.6288 (2)0.0365 (7)
C2D0.9758 (3)0.2712 (2)0.6311 (3)0.0514 (9)
H2D11.0490440.2699860.6012240.077*
H2D20.9224550.2410580.5927500.077*
H2D30.9846960.2550650.7006770.077*
C3D0.9309 (3)0.3795 (3)0.5249 (3)0.0594 (10)
H3D10.9034720.4271540.5285580.089*
H3D20.8816770.3531550.4771110.089*
H3D31.0080470.3795450.5027040.089*
C4D0.8097 (2)0.38604 (16)0.7520 (2)0.0298 (6)
H4D0.7644690.3605250.8008420.036*
C5D0.9361 (2)0.38703 (17)0.7923 (2)0.0285 (6)
H5D0.9548390.3422670.8271220.034*
C6D0.7563 (2)0.45837 (16)0.7322 (2)0.0285 (6)
H6D0.8139510.4900260.7055060.034*
C7D0.6519 (2)0.45495 (18)0.6564 (2)0.0358 (7)
H7D10.6753800.4375770.5912270.043*
H7D20.5963250.4219230.6813270.043*
C8D0.9789 (2)0.44773 (17)0.8599 (2)0.0319 (7)
H8D10.9577470.4922730.8271780.038*
H8D20.9431460.4456030.9248220.038*
C9D1.1624 (2)0.40135 (18)0.9468 (2)0.0345 (7)
H9D1.1270800.3715850.9918860.041*
C10D1.1837 (2)0.47887 (16)0.8249 (2)0.0287 (6)
C11D1.2887 (2)0.45647 (16)0.8665 (2)0.0292 (6)
C12D1.4012 (2)0.47614 (16)0.8326 (2)0.0300 (6)
N1D1.10368 (18)0.44364 (14)0.87749 (18)0.0296 (5)
N2D1.27366 (18)0.40725 (14)0.94288 (19)0.0337 (6)
N3D1.1549 (2)0.52948 (17)0.7538 (2)0.0434 (7)
H3ND1.101 (3)0.517 (2)0.710 (3)0.052*
H6ND1.215 (3)0.546 (2)0.719 (3)0.052*
N4D1.4901 (2)0.43900 (16)0.8729 (2)0.0383 (7)
H4ND1.484 (3)0.410 (2)0.925 (3)0.046*
H5ND1.559 (3)0.454 (2)0.862 (3)0.046*
O1D0.99370 (15)0.39015 (12)0.69983 (15)0.0341 (5)
O2D0.81508 (16)0.34503 (12)0.66228 (17)0.0407 (5)
O3D0.72582 (16)0.48331 (12)0.82927 (15)0.0323 (5)
H3DO0.739 (3)0.530 (2)0.829 (3)0.039*
O4D0.59912 (19)0.52187 (13)0.64195 (19)0.0426 (6)
H4DO0.554 (3)0.528 (2)0.684 (3)0.040 (10)*
O5D1.41082 (16)0.52327 (12)0.76776 (16)0.0398 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0323 (15)0.047 (2)0.0357 (18)0.0033 (14)0.0020 (12)0.0069 (15)
C2A0.0444 (19)0.052 (3)0.074 (3)0.0073 (17)0.0035 (17)0.023 (2)
C3A0.069 (3)0.093 (4)0.037 (2)0.013 (2)0.0004 (16)0.002 (2)
C4A0.0218 (12)0.0339 (18)0.0321 (16)0.0003 (11)0.0008 (10)0.0044 (13)
C5A0.0239 (13)0.0330 (18)0.0323 (16)0.0037 (12)0.0004 (10)0.0002 (13)
C6A0.0229 (12)0.0310 (18)0.0365 (16)0.0040 (11)0.0005 (10)0.0031 (13)
C7A0.0320 (15)0.042 (2)0.0428 (18)0.0028 (14)0.0083 (12)0.0010 (15)
C8A0.0208 (12)0.043 (2)0.0364 (16)0.0021 (12)0.0051 (11)0.0032 (14)
C9A0.0265 (14)0.039 (2)0.0384 (17)0.0016 (12)0.0024 (11)0.0047 (14)
C10A0.0262 (13)0.0339 (18)0.0310 (16)0.0006 (12)0.0017 (11)0.0015 (13)
C11A0.0263 (13)0.0273 (17)0.0352 (16)0.0017 (11)0.0028 (11)0.0005 (13)
C12A0.0284 (14)0.0283 (18)0.0363 (17)0.0019 (12)0.0006 (11)0.0046 (14)
N1A0.0228 (11)0.0378 (16)0.0346 (13)0.0016 (10)0.0039 (9)0.0014 (11)
N2A0.0257 (11)0.0371 (16)0.0388 (14)0.0014 (10)0.0029 (9)0.0035 (12)
N3A0.0396 (15)0.052 (2)0.0491 (18)0.0022 (13)0.0041 (13)0.0154 (15)
N4A0.0233 (12)0.0489 (19)0.0470 (17)0.0030 (12)0.0038 (11)0.0074 (14)
O1A0.0268 (10)0.0421 (14)0.0340 (11)0.0047 (8)0.0053 (8)0.0050 (10)
O2A0.0305 (10)0.0437 (15)0.0454 (13)0.0002 (9)0.0034 (8)0.0168 (11)
O3A0.0259 (10)0.0373 (14)0.0467 (13)0.0042 (9)0.0013 (8)0.0116 (11)
O4A0.0326 (11)0.0525 (17)0.0572 (16)0.0042 (11)0.0017 (10)0.0204 (13)
O5A0.0321 (11)0.0388 (14)0.0532 (14)0.0023 (9)0.0007 (9)0.0085 (11)
C1B0.0330 (15)0.040 (2)0.0317 (17)0.0031 (13)0.0040 (11)0.0041 (14)
C2B0.061 (2)0.060 (3)0.036 (2)0.0034 (19)0.0016 (15)0.0063 (18)
C3B0.119 (4)0.042 (3)0.058 (3)0.005 (2)0.030 (2)0.006 (2)
C4B0.0233 (12)0.0389 (19)0.0345 (17)0.0001 (12)0.0050 (11)0.0013 (14)
C5B0.0222 (13)0.0328 (18)0.0314 (16)0.0008 (11)0.0002 (10)0.0016 (12)
C6B0.0225 (12)0.0285 (17)0.0377 (16)0.0012 (11)0.0040 (11)0.0006 (13)
C7B0.0277 (14)0.0365 (19)0.0460 (19)0.0046 (12)0.0012 (12)0.0029 (15)
C8B0.0179 (12)0.0331 (18)0.0407 (16)0.0017 (11)0.0008 (10)0.0063 (14)
C9B0.0256 (14)0.0318 (18)0.0510 (19)0.0031 (12)0.0020 (12)0.0024 (15)
C10B0.0238 (12)0.0279 (17)0.0281 (15)0.0013 (11)0.0003 (10)0.0038 (12)
C11B0.0235 (13)0.0297 (17)0.0315 (15)0.0017 (11)0.0011 (10)0.0003 (13)
C12B0.0238 (12)0.0340 (18)0.0281 (15)0.0022 (12)0.0002 (10)0.0043 (13)
N1B0.0207 (10)0.0285 (15)0.0384 (14)0.0009 (9)0.0009 (9)0.0037 (11)
N2B0.0234 (11)0.0359 (16)0.0496 (16)0.0017 (10)0.0006 (10)0.0057 (13)
N3B0.0307 (13)0.0323 (17)0.0463 (16)0.0027 (11)0.0038 (11)0.0019 (13)
N4B0.0212 (12)0.0409 (18)0.0499 (17)0.0006 (11)0.0020 (10)0.0123 (13)
O1B0.0311 (10)0.0354 (13)0.0348 (11)0.0087 (9)0.0073 (8)0.0068 (9)
O2B0.0325 (12)0.0735 (19)0.0694 (17)0.0105 (11)0.0068 (10)0.0422 (15)
O3B0.0263 (9)0.0347 (13)0.0331 (11)0.0006 (8)0.0018 (8)0.0042 (10)
O4B0.0298 (10)0.0345 (14)0.0546 (14)0.0009 (9)0.0040 (9)0.0089 (11)
O5B0.0276 (9)0.0398 (14)0.0397 (12)0.0025 (9)0.0001 (8)0.0077 (10)
C1C0.0314 (14)0.0380 (19)0.0286 (16)0.0002 (13)0.0033 (11)0.0046 (14)
C2C0.0516 (19)0.054 (2)0.0383 (19)0.0004 (16)0.0070 (14)0.0019 (17)
C3C0.098 (3)0.040 (2)0.046 (2)0.004 (2)0.0083 (19)0.0042 (19)
C4C0.0227 (12)0.0349 (18)0.0340 (16)0.0005 (12)0.0004 (10)0.0057 (13)
C5C0.0214 (12)0.0280 (16)0.0332 (16)0.0007 (11)0.0045 (10)0.0027 (12)
C6C0.0218 (12)0.0279 (16)0.0346 (15)0.0022 (11)0.0010 (10)0.0027 (13)
C7C0.0323 (15)0.0350 (19)0.0416 (18)0.0077 (13)0.0036 (12)0.0020 (15)
C8C0.0195 (12)0.0332 (18)0.0417 (17)0.0034 (11)0.0077 (11)0.0074 (14)
C9C0.0264 (13)0.0317 (18)0.0441 (18)0.0010 (12)0.0020 (11)0.0023 (14)
C10C0.0264 (12)0.0259 (16)0.0275 (15)0.0012 (11)0.0035 (10)0.0019 (12)
C11C0.0227 (12)0.0297 (17)0.0300 (15)0.0008 (11)0.0012 (10)0.0018 (12)
C12C0.0252 (13)0.0317 (18)0.0285 (15)0.0003 (11)0.0024 (10)0.0026 (13)
N1C0.0206 (10)0.0290 (15)0.0369 (14)0.0025 (9)0.0041 (9)0.0045 (11)
N2C0.0247 (11)0.0326 (16)0.0476 (16)0.0020 (10)0.0025 (10)0.0033 (12)
N3C0.0318 (12)0.0293 (15)0.0422 (15)0.0037 (11)0.0068 (10)0.0006 (12)
N4C0.0220 (11)0.0400 (18)0.0494 (17)0.0021 (11)0.0030 (11)0.0129 (13)
O1C0.0252 (9)0.0371 (13)0.0338 (11)0.0045 (8)0.0002 (7)0.0097 (10)
O2C0.0311 (11)0.0708 (19)0.0538 (15)0.0093 (11)0.0077 (9)0.0328 (13)
O3C0.0235 (9)0.0374 (13)0.0330 (11)0.0025 (8)0.0010 (8)0.0078 (10)
O4C0.0316 (11)0.0348 (14)0.0571 (14)0.0018 (9)0.0117 (9)0.0072 (11)
O5C0.0297 (10)0.0379 (14)0.0435 (12)0.0012 (9)0.0038 (8)0.0063 (11)
C1D0.0310 (15)0.042 (2)0.0371 (17)0.0042 (13)0.0047 (12)0.0068 (15)
C2D0.0472 (19)0.045 (2)0.062 (2)0.0059 (16)0.0096 (16)0.0112 (19)
C3D0.070 (2)0.067 (3)0.041 (2)0.008 (2)0.0042 (16)0.003 (2)
C4D0.0234 (12)0.0316 (18)0.0345 (16)0.0045 (12)0.0038 (10)0.0010 (13)
C5D0.0237 (12)0.0291 (17)0.0328 (16)0.0016 (11)0.0037 (10)0.0037 (13)
C6D0.0208 (12)0.0315 (17)0.0331 (15)0.0013 (11)0.0016 (10)0.0018 (13)
C7D0.0294 (14)0.041 (2)0.0365 (17)0.0016 (13)0.0039 (11)0.0001 (14)
C8D0.0204 (12)0.0398 (19)0.0351 (16)0.0019 (12)0.0002 (10)0.0013 (14)
C9D0.0272 (14)0.040 (2)0.0359 (17)0.0022 (12)0.0004 (11)0.0079 (14)
C10D0.0271 (13)0.0289 (17)0.0296 (15)0.0001 (11)0.0011 (10)0.0008 (13)
C11D0.0253 (13)0.0289 (18)0.0329 (16)0.0000 (11)0.0004 (11)0.0010 (13)
C12D0.0254 (13)0.0298 (18)0.0347 (17)0.0018 (11)0.0008 (11)0.0068 (14)
N1D0.0230 (11)0.0350 (15)0.0303 (13)0.0014 (10)0.0017 (9)0.0013 (11)
N2D0.0250 (11)0.0363 (16)0.0393 (15)0.0002 (10)0.0009 (9)0.0036 (12)
N3D0.0352 (14)0.050 (2)0.0444 (17)0.0022 (13)0.0009 (11)0.0160 (15)
N4D0.0226 (12)0.0458 (19)0.0462 (17)0.0010 (12)0.0007 (11)0.0083 (14)
O1D0.0270 (9)0.0415 (14)0.0342 (11)0.0057 (9)0.0061 (8)0.0043 (10)
O2D0.0257 (10)0.0454 (15)0.0508 (14)0.0007 (9)0.0009 (8)0.0194 (11)
O3D0.0284 (10)0.0327 (13)0.0359 (12)0.0017 (9)0.0023 (8)0.0048 (10)
O4D0.0323 (11)0.0474 (16)0.0482 (14)0.0074 (10)0.0033 (10)0.0143 (12)
O5D0.0310 (10)0.0410 (15)0.0477 (13)0.0018 (9)0.0056 (9)0.0085 (11)
Geometric parameters (Å, º) top
C1A—O1A1.426 (4)C1C—O1C1.425 (4)
C1A—O2A1.437 (3)C1C—O2C1.428 (3)
C1A—C3A1.492 (5)C1C—C3C1.492 (5)
C1A—C2A1.508 (5)C1C—C2C1.502 (4)
C2A—H2A10.9600C2C—H2C10.9600
C2A—H2A20.9600C2C—H2C20.9600
C2A—H2A30.9600C2C—H2C30.9600
C3A—H3A10.9600C3C—H3C10.9600
C3A—H3A20.9600C3C—H3C20.9600
C3A—H3A30.9600C3C—H3C30.9600
C4A—O1A1.417 (3)C4C—O2C1.413 (4)
C4A—C8A1.509 (4)C4C—C6C1.526 (4)
C4A—C5A1.525 (4)C4C—C5C1.538 (4)
C4A—H4A0.9800C4C—H4C0.9800
C5A—O2A1.418 (4)C5C—O1C1.423 (3)
C5A—C6A1.520 (4)C5C—C8C1.501 (4)
C5A—H5A0.9800C5C—H5C0.9800
C6A—O3A1.423 (4)C6C—O3C1.426 (3)
C6A—C7A1.518 (4)C6C—C7C1.513 (4)
C6A—H6A0.9800C6C—H6C0.9800
C7A—O4A1.414 (4)C7C—O4C1.425 (4)
C7A—H7A10.9700C7C—H7C10.9700
C7A—H7A20.9700C7C—H7C20.9700
C8A—N1A1.461 (3)C8C—N1C1.463 (3)
C8A—H8A10.9700C8C—H8C10.9700
C8A—H8A20.9700C8C—H8C20.9700
C9A—N2A1.306 (3)C9C—N2C1.305 (3)
C9A—N1A1.362 (4)C9C—N1C1.363 (4)
C9A—H9A0.9300C9C—H9C0.9300
C10A—N3A1.363 (4)C10C—N1C1.366 (4)
C10A—N1A1.367 (4)C10C—C11C1.370 (4)
C10A—C11A1.373 (4)C10C—N3C1.376 (4)
C11A—N2A1.377 (4)C11C—N2C1.377 (4)
C11A—C12A1.449 (4)C11C—C12C1.460 (4)
C12A—O5A1.243 (4)C12C—O5C1.240 (4)
C12A—N4A1.334 (4)C12C—N4C1.323 (4)
N3A—H3NA0.89 (4)N3C—H3NC0.87 (4)
N3A—H6NA0.89 (4)N3C—H6NC0.90 (4)
N4A—H4NA0.92 (4)N4C—H4NC0.86 (4)
N4A—H5NA0.91 (4)N4C—H5NC0.84 (4)
O3A—H3AO0.79 (4)O3C—H3CO0.80 (4)
O4A—H4AO0.80 (4)O4C—H4CO0.80 (4)
C1B—O2B1.423 (4)C1D—O1D1.422 (4)
C1B—O1B1.427 (3)C1D—O2D1.437 (3)
C1B—C3B1.476 (5)C1D—C3D1.501 (5)
C1B—C2B1.500 (5)C1D—C2D1.507 (5)
C2B—H2B10.9600C2D—H2D10.9600
C2B—H2B20.9600C2D—H2D20.9600
C2B—H2B30.9600C2D—H2D30.9600
C3B—H3B10.9600C3D—H3D10.9600
C3B—H3B20.9600C3D—H3D20.9600
C3B—H3B30.9600C3D—H3D30.9600
C4B—O2B1.413 (4)C4D—O2D1.412 (3)
C4B—C6B1.518 (4)C4D—C6D1.519 (4)
C4B—C5B1.536 (4)C4D—C5D1.530 (4)
C4B—H4B0.9800C4D—H4D0.9800
C5B—O1B1.419 (3)C5D—O1D1.421 (3)
C5B—C8B1.503 (4)C5D—C8D1.515 (4)
C5B—H5B0.9800C5D—H5D0.9800
C6B—O3B1.427 (4)C6D—O3D1.421 (3)
C6B—C7B1.508 (4)C6D—C7D1.519 (4)
C6B—H6B0.9800C6D—H6D0.9800
C7B—O4B1.422 (4)C7D—O4D1.415 (4)
C7B—H7B10.9700C7D—H7D10.9700
C7B—H7B20.9700C7D—H7D20.9700
C8B—N1B1.462 (3)C8D—N1D1.457 (3)
C8B—H8B10.9700C8D—H8D10.9700
C8B—H8B20.9700C8D—H8D20.9700
C9B—N2B1.304 (4)C9D—N2D1.303 (3)
C9B—N1B1.355 (4)C9D—N1D1.360 (4)
C9B—H9B0.9300C9D—H9D0.9300
C10B—N3B1.357 (4)C10D—N3D1.362 (4)
C10B—N1B1.367 (4)C10D—N1D1.366 (4)
C10B—C11B1.377 (4)C10D—C11D1.372 (4)
C11B—N2B1.385 (4)C11D—N2D1.385 (4)
C11B—C12B1.441 (4)C11D—C12D1.456 (4)
C12B—O5B1.258 (3)C12D—O5D1.241 (4)
C12B—N4B1.319 (4)C12D—N4D1.332 (4)
N3B—H3NB0.89 (3)N3D—H3ND0.86 (4)
N3B—H6NB0.95 (4)N3D—H6ND0.92 (4)
N4B—H4NB0.89 (4)N4D—H4ND0.89 (4)
N4B—H5NB0.85 (4)N4D—H5ND0.87 (4)
O3B—H3BO0.87 (3)O3D—H3DO0.90 (4)
O4B—H4BO0.91 (4)O4D—H4DO0.79 (3)
O1A—C1A—O2A105.1 (2)O1C—C1C—O2C104.7 (2)
O1A—C1A—C3A107.9 (3)O1C—C1C—C3C109.0 (3)
O2A—C1A—C3A110.0 (3)O2C—C1C—C3C109.8 (3)
O1A—C1A—C2A111.3 (3)O1C—C1C—C2C111.8 (3)
O2A—C1A—C2A108.7 (3)O2C—C1C—C2C109.3 (3)
C3A—C1A—C2A113.5 (3)C3C—C1C—C2C112.0 (3)
C1A—C2A—H2A1109.5C1C—C2C—H2C1109.5
C1A—C2A—H2A2109.5C1C—C2C—H2C2109.5
H2A1—C2A—H2A2109.5H2C1—C2C—H2C2109.5
C1A—C2A—H2A3109.5C1C—C2C—H2C3109.5
H2A1—C2A—H2A3109.5H2C1—C2C—H2C3109.5
H2A2—C2A—H2A3109.5H2C2—C2C—H2C3109.5
C1A—C3A—H3A1109.5C1C—C3C—H3C1109.5
C1A—C3A—H3A2109.5C1C—C3C—H3C2109.5
H3A1—C3A—H3A2109.5H3C1—C3C—H3C2109.5
C1A—C3A—H3A3109.5C1C—C3C—H3C3109.5
H3A1—C3A—H3A3109.5H3C1—C3C—H3C3109.5
H3A2—C3A—H3A3109.5H3C2—C3C—H3C3109.5
O1A—C4A—C8A108.4 (2)O2C—C4C—C6C112.3 (3)
O1A—C4A—C5A101.9 (2)O2C—C4C—C5C102.5 (2)
C8A—C4A—C5A118.6 (2)C6C—C4C—C5C115.5 (2)
O1A—C4A—H4A109.2O2C—C4C—H4C108.7
C8A—C4A—H4A109.2C6C—C4C—H4C108.7
C5A—C4A—H4A109.2C5C—C4C—H4C108.7
O2A—C5A—C6A112.8 (2)O1C—C5C—C8C109.4 (2)
O2A—C5A—C4A101.5 (2)O1C—C5C—C4C101.8 (2)
C6A—C5A—C4A115.5 (2)C8C—C5C—C4C118.6 (2)
O2A—C5A—H5A108.9O1C—C5C—H5C108.9
C6A—C5A—H5A108.9C8C—C5C—H5C108.9
C4A—C5A—H5A108.9C4C—C5C—H5C108.9
O3A—C6A—C7A110.7 (2)O3C—C6C—C7C110.5 (2)
O3A—C6A—C5A106.3 (2)O3C—C6C—C4C105.4 (2)
C7A—C6A—C5A111.1 (2)C7C—C6C—C4C110.9 (2)
O3A—C6A—H6A109.6O3C—C6C—H6C110.0
C7A—C6A—H6A109.6C7C—C6C—H6C110.0
C5A—C6A—H6A109.6C4C—C6C—H6C110.0
O4A—C7A—C6A112.8 (3)O4C—C7C—C6C112.0 (2)
O4A—C7A—H7A1109.0O4C—C7C—H7C1109.2
C6A—C7A—H7A1109.0C6C—C7C—H7C1109.2
O4A—C7A—H7A2109.0O4C—C7C—H7C2109.2
C6A—C7A—H7A2109.0C6C—C7C—H7C2109.2
H7A1—C7A—H7A2107.8H7C1—C7C—H7C2107.9
N1A—C8A—C4A109.8 (2)N1C—C8C—C5C110.3 (2)
N1A—C8A—H8A1109.7N1C—C8C—H8C1109.6
C4A—C8A—H8A1109.7C5C—C8C—H8C1109.6
N1A—C8A—H8A2109.7N1C—C8C—H8C2109.6
C4A—C8A—H8A2109.7C5C—C8C—H8C2109.6
H8A1—C8A—H8A2108.2H8C1—C8C—H8C2108.1
N2A—C9A—N1A112.1 (3)N2C—C9C—N1C112.5 (3)
N2A—C9A—H9A123.9N2C—C9C—H9C123.8
N1A—C9A—H9A123.9N1C—C9C—H9C123.8
N3A—C10A—N1A122.9 (3)N1C—C10C—C11C105.6 (3)
N3A—C10A—C11A131.5 (3)N1C—C10C—N3C122.9 (2)
N1A—C10A—C11A105.3 (3)C11C—C10C—N3C131.4 (3)
C10A—C11A—N2A110.4 (2)C10C—C11C—N2C110.4 (2)
C10A—C11A—C12A125.9 (3)C10C—C11C—C12C124.4 (3)
N2A—C11A—C12A123.7 (2)N2C—C11C—C12C125.1 (2)
O5A—C12A—N4A122.7 (3)O5C—C12C—N4C123.1 (3)
O5A—C12A—C11A121.1 (3)O5C—C12C—C11C119.7 (2)
N4A—C12A—C11A116.3 (3)N4C—C12C—C11C117.3 (3)
C9A—N1A—C10A107.1 (2)C9C—N1C—C10C106.7 (2)
C9A—N1A—C8A126.1 (2)C9C—N1C—C8C126.9 (2)
C10A—N1A—C8A126.6 (2)C10C—N1C—C8C126.4 (3)
C9A—N2A—C11A105.1 (2)C9C—N2C—C11C104.8 (2)
C10A—N3A—H3NA112 (3)C10C—N3C—H3NC111 (2)
C10A—N3A—H6NA114 (3)C10C—N3C—H6NC110 (2)
H3NA—N3A—H6NA110 (4)H3NC—N3C—H6NC113 (3)
C12A—N4A—H4NA118 (2)C12C—N4C—H4NC122 (2)
C12A—N4A—H5NA122 (2)C12C—N4C—H5NC121 (2)
H4NA—N4A—H5NA119 (3)H4NC—N4C—H5NC116 (3)
C4A—O1A—C1A106.5 (2)C5C—O1C—C1C106.5 (2)
C5A—O2A—C1A109.6 (2)C4C—O2C—C1C110.7 (2)
C6A—O3A—H3AO109 (3)C6C—O3C—H3CO111 (3)
C7A—O4A—H4AO106 (3)C7C—O4C—H4CO103 (3)
O2B—C1B—O1B104.3 (2)O1D—C1D—O2D105.1 (2)
O2B—C1B—C3B110.2 (3)O1D—C1D—C3D108.0 (3)
O1B—C1B—C3B108.7 (3)O2D—C1D—C3D109.8 (3)
O2B—C1B—C2B109.4 (3)O1D—C1D—C2D112.0 (3)
O1B—C1B—C2B111.5 (3)O2D—C1D—C2D108.5 (3)
C3B—C1B—C2B112.5 (3)C3D—C1D—C2D113.2 (3)
C1B—C2B—H2B1109.5C1D—C2D—H2D1109.5
C1B—C2B—H2B2109.5C1D—C2D—H2D2109.5
H2B1—C2B—H2B2109.5H2D1—C2D—H2D2109.5
C1B—C2B—H2B3109.5C1D—C2D—H2D3109.5
H2B1—C2B—H2B3109.5H2D1—C2D—H2D3109.5
H2B2—C2B—H2B3109.5H2D2—C2D—H2D3109.5
C1B—C3B—H3B1109.5C1D—C3D—H3D1109.5
C1B—C3B—H3B2109.5C1D—C3D—H3D2109.5
H3B1—C3B—H3B2109.5H3D1—C3D—H3D2109.5
C1B—C3B—H3B3109.5C1D—C3D—H3D3109.5
H3B1—C3B—H3B3109.5H3D1—C3D—H3D3109.5
H3B2—C3B—H3B3109.5H3D2—C3D—H3D3109.5
O2B—C4B—C6B112.2 (3)O2D—C4D—C6D113.1 (2)
O2B—C4B—C5B103.1 (2)O2D—C4D—C5D101.5 (2)
C6B—C4B—C5B115.4 (2)C6D—C4D—C5D114.9 (2)
O2B—C4B—H4B108.6O2D—C4D—H4D109.0
C6B—C4B—H4B108.6C6D—C4D—H4D109.0
C5B—C4B—H4B108.6C5D—C4D—H4D109.0
O1B—C5B—C8B108.9 (2)O1D—C5D—C8D108.1 (2)
O1B—C5B—C4B101.9 (2)O1D—C5D—C4D101.7 (2)
C8B—C5B—C4B118.0 (2)C8D—C5D—C4D118.9 (2)
O1B—C5B—H5B109.2O1D—C5D—H5D109.2
C8B—C5B—H5B109.2C8D—C5D—H5D109.2
C4B—C5B—H5B109.2C4D—C5D—H5D109.2
O3B—C6B—C7B111.0 (2)O3D—C6D—C7D111.3 (2)
O3B—C6B—C4B105.0 (2)O3D—C6D—C4D105.6 (2)
C7B—C6B—C4B112.4 (2)C7D—C6D—C4D112.0 (2)
O3B—C6B—H6B109.4O3D—C6D—H6D109.3
C7B—C6B—H6B109.4C7D—C6D—H6D109.3
C4B—C6B—H6B109.4C4D—C6D—H6D109.3
O4B—C7B—C6B111.1 (2)O4D—C7D—C6D111.8 (3)
O4B—C7B—H7B1109.4O4D—C7D—H7D1109.3
C6B—C7B—H7B1109.4C6D—C7D—H7D1109.3
O4B—C7B—H7B2109.4O4D—C7D—H7D2109.3
C6B—C7B—H7B2109.4C6D—C7D—H7D2109.3
H7B1—C7B—H7B2108.0H7D1—C7D—H7D2107.9
N1B—C8B—C5B110.9 (2)N1D—C8D—C5D109.8 (2)
N1B—C8B—H8B1109.5N1D—C8D—H8D1109.7
C5B—C8B—H8B1109.5C5D—C8D—H8D1109.7
N1B—C8B—H8B2109.5N1D—C8D—H8D2109.7
C5B—C8B—H8B2109.5C5D—C8D—H8D2109.7
H8B1—C8B—H8B2108.0H8D1—C8D—H8D2108.2
N2B—C9B—N1B112.5 (3)N2D—C9D—N1D112.4 (3)
N2B—C9B—H9B123.7N2D—C9D—H9D123.8
N1B—C9B—H9B123.7N1D—C9D—H9D123.8
N3B—C10B—N1B122.8 (2)N3D—C10D—N1D122.8 (3)
N3B—C10B—C11B132.5 (3)N3D—C10D—C11D131.5 (3)
N1B—C10B—C11B104.7 (3)N1D—C10D—C11D105.4 (3)
C10B—C11B—N2B110.6 (2)C10D—C11D—N2D110.1 (2)
C10B—C11B—C12B126.2 (3)C10D—C11D—C12D126.4 (3)
N2B—C11B—C12B123.1 (2)N2D—C11D—C12D123.3 (2)
O5B—C12B—N4B122.3 (2)O5D—C12D—N4D123.3 (3)
O5B—C12B—C11B120.3 (2)O5D—C12D—C11D121.0 (2)
N4B—C12B—C11B117.4 (3)N4D—C12D—C11D115.7 (3)
C9B—N1B—C10B107.6 (2)C9D—N1D—C10D107.1 (2)
C9B—N1B—C8B126.1 (2)C9D—N1D—C8D126.1 (2)
C10B—N1B—C8B126.3 (3)C10D—N1D—C8D126.7 (2)
C9B—N2B—C11B104.5 (2)C9D—N2D—C11D104.9 (2)
C10B—N3B—H3NB114 (2)C10D—N3D—H3ND114 (3)
C10B—N3B—H6NB115 (2)C10D—N3D—H6ND115 (2)
H3NB—N3B—H6NB110 (3)H3ND—N3D—H6ND108 (3)
C12B—N4B—H4NB116 (2)C12D—N4D—H4ND122 (2)
C12B—N4B—H5NB122 (2)C12D—N4D—H5ND118 (2)
H4NB—N4B—H5NB122 (3)H4ND—N4D—H5ND117 (3)
C5B—O1B—C1B106.8 (2)C5D—O1D—C1D106.2 (2)
C4B—O2B—C1B110.8 (2)C4D—O2D—C1D109.9 (2)
C6B—O3B—H3BO113 (2)C6D—O3D—H3DO106 (2)
C7B—O4B—H4BO105 (2)C7D—O4D—H4DO109 (3)
O1A—C4A—C5A—O2A36.6 (3)O2C—C4C—C5C—O1C30.6 (3)
C8A—C4A—C5A—O2A155.4 (3)C6C—C4C—C5C—O1C91.8 (3)
O1A—C4A—C5A—C6A85.8 (3)O2C—C4C—C5C—C8C150.6 (3)
C8A—C4A—C5A—C6A33.1 (4)C6C—C4C—C5C—C8C28.2 (4)
O2A—C5A—C6A—O3A164.3 (2)O2C—C4C—C6C—O3C165.3 (2)
C4A—C5A—C6A—O3A79.6 (3)C5C—C4C—C6C—O3C77.6 (3)
O2A—C5A—C6A—C7A43.9 (3)O2C—C4C—C6C—C7C45.7 (3)
C4A—C5A—C6A—C7A159.9 (2)C5C—C4C—C6C—C7C162.8 (3)
O3A—C6A—C7A—O4A59.0 (3)O3C—C6C—C7C—O4C62.4 (3)
C5A—C6A—C7A—O4A176.8 (2)C4C—C6C—C7C—O4C178.8 (2)
O1A—C4A—C8A—N1A57.2 (3)O1C—C5C—C8C—N1C58.9 (3)
C5A—C4A—C8A—N1A172.6 (2)C4C—C5C—C8C—N1C174.9 (3)
N3A—C10A—C11A—N2A174.9 (3)N1C—C10C—C11C—N2C0.2 (3)
N1A—C10A—C11A—N2A0.7 (3)N3C—C10C—C11C—N2C175.3 (3)
N3A—C10A—C11A—C12A5.3 (5)N1C—C10C—C11C—C12C178.4 (3)
N1A—C10A—C11A—C12A179.6 (3)N3C—C10C—C11C—C12C6.5 (5)
C10A—C11A—C12A—O5A5.1 (5)C10C—C11C—C12C—O5C6.6 (4)
N2A—C11A—C12A—O5A175.2 (3)N2C—C11C—C12C—O5C175.5 (3)
C10A—C11A—C12A—N4A173.3 (3)C10C—C11C—C12C—N4C172.7 (3)
N2A—C11A—C12A—N4A6.3 (4)N2C—C11C—C12C—N4C5.2 (4)
N2A—C9A—N1A—C10A1.1 (4)N2C—C9C—N1C—C10C0.5 (3)
N2A—C9A—N1A—C8A175.9 (3)N2C—C9C—N1C—C8C178.1 (3)
N3A—C10A—N1A—C9A175.9 (3)C11C—C10C—N1C—C9C0.4 (3)
C11A—C10A—N1A—C9A1.0 (3)N3C—C10C—N1C—C9C176.1 (3)
N3A—C10A—N1A—C8A9.3 (5)C11C—C10C—N1C—C8C178.0 (3)
C11A—C10A—N1A—C8A175.8 (3)N3C—C10C—N1C—C8C6.3 (4)
C4A—C8A—N1A—C9A80.1 (3)C5C—C8C—N1C—C9C86.2 (3)
C4A—C8A—N1A—C10A93.7 (4)C5C—C8C—N1C—C10C90.9 (3)
N1A—C9A—N2A—C11A0.6 (3)N1C—C9C—N2C—C11C0.4 (3)
C10A—C11A—N2A—C9A0.1 (3)C10C—C11C—N2C—C9C0.1 (3)
C12A—C11A—N2A—C9A179.8 (3)C12C—C11C—N2C—C9C178.1 (3)
C8A—C4A—O1A—C1A163.8 (2)C8C—C5C—O1C—C1C163.9 (2)
C5A—C4A—O1A—C1A38.0 (3)C4C—C5C—O1C—C1C37.5 (3)
O2A—C1A—O1A—C4A24.6 (3)O2C—C1C—O1C—C5C30.0 (3)
C3A—C1A—O1A—C4A142.0 (3)C3C—C1C—O1C—C5C147.5 (3)
C2A—C1A—O1A—C4A92.8 (3)C2C—C1C—O1C—C5C88.2 (3)
C6A—C5A—O2A—C1A101.6 (3)C6C—C4C—O2C—C1C111.3 (3)
C4A—C5A—O2A—C1A22.5 (3)C5C—C4C—O2C—C1C13.3 (3)
O1A—C1A—O2A—C5A0.2 (3)O1C—C1C—O2C—C4C9.1 (3)
C3A—C1A—O2A—C5A115.7 (3)C3C—C1C—O2C—C4C126.0 (3)
C2A—C1A—O2A—C5A119.4 (3)C2C—C1C—O2C—C4C110.7 (3)
O2B—C4B—C5B—O1B27.9 (3)O2D—C4D—C5D—O1D36.2 (3)
C6B—C4B—C5B—O1B94.8 (3)C6D—C4D—C5D—O1D86.2 (3)
O2B—C4B—C5B—C8B147.1 (3)O2D—C4D—C5D—C8D154.7 (3)
C6B—C4B—C5B—C8B24.5 (4)C6D—C4D—C5D—C8D32.2 (3)
O2B—C4B—C6B—O3B164.1 (2)O2D—C4D—C6D—O3D163.0 (2)
C5B—C4B—C6B—O3B78.2 (3)C5D—C4D—C6D—O3D81.0 (3)
O2B—C4B—C6B—C7B43.3 (3)O2D—C4D—C6D—C7D41.7 (3)
C5B—C4B—C6B—C7B161.0 (3)C5D—C4D—C6D—C7D157.7 (2)
O3B—C6B—C7B—O4B63.3 (3)O3D—C6D—C7D—O4D59.2 (3)
C4B—C6B—C7B—O4B179.4 (2)C4D—C6D—C7D—O4D177.2 (2)
O1B—C5B—C8B—N1B57.6 (3)O1D—C5D—C8D—N1D57.0 (3)
C4B—C5B—C8B—N1B173.0 (3)C4D—C5D—C8D—N1D172.0 (2)
N3B—C10B—C11B—N2B179.7 (3)N3D—C10D—C11D—N2D174.9 (3)
N1B—C10B—C11B—N2B1.3 (3)N1D—C10D—C11D—N2D0.9 (3)
N3B—C10B—C11B—C12B3.3 (5)N3D—C10D—C11D—C12D9.4 (5)
N1B—C10B—C11B—C12B177.6 (3)N1D—C10D—C11D—C12D176.6 (3)
C10B—C11B—C12B—O5B14.5 (4)C10D—C11D—C12D—O5D8.8 (5)
N2B—C11B—C12B—O5B169.5 (3)N2D—C11D—C12D—O5D176.1 (3)
C10B—C11B—C12B—N4B164.9 (3)C10D—C11D—C12D—N4D169.1 (3)
N2B—C11B—C12B—N4B11.1 (4)N2D—C11D—C12D—N4D6.0 (4)
N2B—C9B—N1B—C10B0.5 (4)N2D—C9D—N1D—C10D0.4 (4)
N2B—C9B—N1B—C8B179.9 (3)N2D—C9D—N1D—C8D177.8 (3)
N3B—C10B—N1B—C9B179.8 (3)N3D—C10D—N1D—C9D175.5 (3)
C11B—C10B—N1B—C9B1.1 (3)C11D—C10D—N1D—C9D0.8 (3)
N3B—C10B—N1B—C8B0.2 (4)N3D—C10D—N1D—C8D7.2 (5)
C11B—C10B—N1B—C8B179.4 (3)C11D—C10D—N1D—C8D178.1 (3)
C5B—C8B—N1B—C9B89.4 (3)C5D—C8D—N1D—C9D80.6 (3)
C5B—C8B—N1B—C10B90.1 (3)C5D—C8D—N1D—C10D96.2 (3)
N1B—C9B—N2B—C11B0.3 (3)N1D—C9D—N2D—C11D0.1 (3)
C10B—C11B—N2B—C9B1.0 (3)C10D—C11D—N2D—C9D0.6 (3)
C12B—C11B—N2B—C9B177.5 (3)C12D—C11D—N2D—C9D176.5 (3)
C8B—C5B—O1B—C1B162.2 (2)C8D—C5D—O1D—C1D164.5 (2)
C4B—C5B—O1B—C1B36.8 (3)C4D—C5D—O1D—C1D38.6 (3)
O2B—C1B—O1B—C5B31.6 (3)O2D—C1D—O1D—C5D26.1 (3)
C3B—C1B—O1B—C5B149.1 (3)C3D—C1D—O1D—C5D143.3 (3)
C2B—C1B—O1B—C5B86.3 (3)C2D—C1D—O1D—C5D91.5 (3)
C6B—C4B—O2B—C1B115.2 (3)C6D—C4D—O2D—C1D102.3 (3)
C5B—C4B—O2B—C1B9.6 (3)C5D—C4D—O2D—C1D21.4 (3)
O1B—C1B—O2B—C4B12.5 (3)O1D—C1D—O2D—C4D1.5 (3)
C3B—C1B—O2B—C4B129.0 (3)C3D—C1D—O2D—C4D117.4 (3)
C2B—C1B—O2B—C4B106.9 (3)C2D—C1D—O2D—C4D118.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8A—H8A1···O4Ci0.972.623.444 (4)143
N3A—H3NA···O5A0.89 (4)2.32 (4)2.945 (4)127 (3)
N3A—H6NA···O1A0.89 (4)2.66 (4)3.250 (4)125 (3)
N4A—H4NA···O3Aii0.92 (4)2.05 (4)2.973 (3)178 (3)
N4A—H5NA···N2C0.91 (4)2.23 (4)3.064 (4)153 (3)
O3A—H3AO···O4Ci0.79 (4)2.05 (4)2.831 (3)170 (4)
O4A—H4AO···O5Aiii0.80 (4)2.01 (4)2.798 (3)166 (4)
C3B—H3B1···N1Div0.962.583.398 (5)144
C8B—H8B1···O5Cv0.972.513.243 (4)132
C8B—H8B2···O4Avi0.972.433.291 (4)147
N3B—H3NB···O1B0.89 (3)2.35 (3)3.037 (3)133 (3)
N3B—H6NB···O5B0.95 (4)2.39 (3)2.977 (3)120 (3)
N3B—H6NB···O5Div0.95 (4)2.52 (4)3.196 (4)129 (3)
N4B—H4NB···O3Biii0.89 (4)2.03 (4)2.901 (3)170 (3)
N4B—H5NB···N2Diii0.85 (4)2.16 (4)2.920 (4)150 (3)
O3B—H3BO···N3Cv0.87 (3)1.98 (4)2.838 (4)168 (3)
O4B—H4BO···O5Bii0.91 (4)1.81 (4)2.715 (3)170 (3)
C8C—H8C1···O5Bvii0.972.643.380 (3)133
C8C—H8C2···O4Di0.972.413.360 (4)166
N3C—H3NC···O1C0.87 (4)2.48 (4)3.152 (4)134 (3)
N3C—H6NC···O5C0.90 (4)2.21 (3)2.874 (3)130 (3)
N4C—H4NC···N2A0.86 (4)2.14 (4)2.934 (4)154 (3)
N4C—H5NC···O3Ciii0.84 (4)2.12 (4)2.959 (3)176 (4)
O3C—H3CO···O5Bvii0.80 (4)2.03 (4)2.823 (3)173 (3)
O4C—H4CO···O5Cii0.80 (4)1.97 (4)2.738 (3)162 (4)
N3D—H6ND···N4Cviii0.92 (4)2.62 (4)3.268 (4)128 (3)
N3D—H6ND···O5D0.92 (4)2.36 (4)2.972 (4)124 (3)
N4D—H4ND···N2Bii0.89 (4)2.26 (4)3.075 (4)153 (3)
N4D—H5ND···O3Dii0.87 (4)2.09 (4)2.957 (3)176 (3)
O3D—H3DO···O4Bix0.90 (4)1.82 (4)2.711 (3)171 (3)
O4D—H4DO···O5Diii0.79 (3)2.06 (3)2.822 (3)164 (4)
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y, z; (iii) x1, y, z; (iv) x+2, y1/2, z+2; (v) x, y, z+1; (vi) x+1, y+1/2, z+2; (vii) x+1, y, z1; (viii) x+2, y+1/2, z+1; (ix) x+2, y+1/2, z+2.
Parameters (Å2, Å3) of the Hirshfeld surface of the four crystallographically independent molecules A, B, C and D) top
MoleculeVolumeAreaGlobularityAsphericity
A356.33322.480.7540.144
B348.71318.700.7520.142
C349.46317.260.7560.144
D355.80323.520.7510.141
Hirshfeld surface analysis was performed using the program CrystalExplorer (Wolff et al. 2012).
 

Acknowledgements

The authors thank the Centro Regionale di Competenza NTAP of Regione Campania (Italy) for the X-ray facility.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrock, C. P. (2016). Acta Cryst. B72, 807–821.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCentore, R., Fusco, S., Capobianco, A., Piccialli, V., Zaccaria, S. & Peluso, A. (2013). Eur. J. Org. Chem. pp. 3721–3728.  Web of Science CSD CrossRef Google Scholar
First citationChampdoré, M. de, Di Fabio, G., Messere, A., Montesarchio, D., Piccialli, G., Loddo, R., La Colla, M. & La Colla, P. (2004). Tetrahedron, 60, 6555–6563.  Google Scholar
First citationD'Atri, V., Oliviero, G., Amato, J., Borbone, N., D'Errico, S., Mayol, L., Piccialli, V., Haider, S., Hoorelbeke, B., Balzarini, J. & Piccialli, G. (2012). Chem. Commun. 48, 9516–9518.  CAS Google Scholar
First citationD'Errico, S., Oliviero, G., Amato, J., Borbone, N., Cerullo, V., Hemminki, A., Piccialli, V., Zaccaria, S., Mayol, L. & Piccialli, G. (2012a). Chem. Commun. 48, 9310–9312.  CAS Google Scholar
First citationD'Errico, S., Oliviero, G., Borbone, N., Amato, J., D'Alonzo, D., Piccialli, V., Mayol, L. & Piccialli, G. (2012b). Molecules, 17, 13036–13044.  CAS Google Scholar
First citationD'Errico, S., Oliviero, G., Borbone, N., Amato, J., Piccialli, V., Varra, M., Mayol, L. & Piccialli, G. (2011). Molecules, 16, 8110–8118.  CAS Google Scholar
First citationD'Errico, S., Oliviero, G., Borbone, N., Amato, J., Piccialli, V., Varra, M., Mayol, L. & Piccialli, G. (2013). Molecules, 18, 9420–9431.  CAS Google Scholar
First citationD'Errico, S., Oliviero, G., Borbone, N., Piccialli, V. & Piccialli, G. (2015). Curr. Protoc. Nucleic Acid Chem. 1.35.1–1.35.24.  Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaleone, A., Mayol, L., Oliviero, G., Piccialli, G. & Varra, M. (2002). Eur. J. Org. Chem. pp. 4234–4238.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJordheim, L. P., Durantel, D., Zoulim, F. & Dumontet, C. (2013). Nat. Rev. Drug Discov. 12, 447–464.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOliviero, G., Amato, J., Borbone, N., D'Errico, S., Piccialli, G., Bucci, E., Piccialli, V. & Mayol, L. (2008). Tetrahedron, 64, 6475–6481.  Web of Science CrossRef CAS Google Scholar
First citationOliviero, G., Amato, J., Borbone, N., D'Errico, S., Piccialli, G. & Mayol, L. (2007). Tetrahedron Lett. 48, 397–400.  Web of Science CrossRef CAS Google Scholar
First citationOliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Piccialli, G. & Mayol, L. (2010a). Eur. J. Org. Chem. pp. 1517–1524.  Web of Science CrossRef Google Scholar
First citationOliviero, G., D'Errico, S., Borbone, N., Amato, J., Piccialli, V., Varra, M., Piccialli, G. & Mayol, L. (2010b). Tetrahedron, 66, 1931–1936.  Web of Science CrossRef CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPiccialli, V., Borbone, N. & Oliviero, G. (2007). Tetrahedron Lett. 48, 5131–5135.  Web of Science CSD CrossRef CAS Google Scholar
First citationPiccialli, V., D'Errico, S., Borbone, N., Oliviero, G., Centore, R. & Zaccaria, S. (2013). Eur. J. Org. Chem. pp. 1781–1789.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds